<2
CHEMICAL PROBLEMS 2024 no. 4 (22) ISSN 2221-8688
499
UDC: 544+547
CRYSTAL STRUCTURE AND HIRSHFELD SURFACE ANALYSIS OF 4-{2,2-DICHLORO-1-[(E)-(2,4-DICHLOROPHENYL)DIAZENYL]ETHENYL}-N,N-
DIMETHYLANILINE
A.M. Maharramov1, U.F. Askerova1, N.E. Ahmedova1, A.B. Askarov2, D.B. Tagiyev3, Sh.I. Gahramanova3, I.M. Shikhaliyeva1, S.H. Mukhtarova4, M. Akkurt5
1Baku State University, 23 Academic Zahid Khalilov Street, 1148 Baku, Azerbaijan, email:[email protected], [email protected]. 2Sumgait State University, 1 Baku Street, 5008, Sumgait, Azerbaijan 3Insitute of Catalysis and Inorganic Chemistry, H.Javid Ave. 113, AZ1143Baku, Azerbaijan 4Azerbaijan Technical University, 25 Huseyn Javid Avenue, Baku 1073, Baku, Azerbaijan 5Erciyes University, Yenidogan, Turhan Baytop Street No:1, 38280 Talas,Kayseri, Turkey
Received 05.03.2024 Accepted 06.05.2024
Abstract: In the title compound, C16Hi3Cl4N3, the dihedral angle between the benzene rings of the dichlorophenyl and dimethylaniline groups is 50.85 (13)°. The central -N=N- unit shows an E configuration. In the crystal, molecules form parallel layers to the (100) plane by C—H—n and face-to-face n-n [centroid-to-centroid distances = 4.0538 (17) and 4.0537 (17) Â] interactions. These layers are connected by Van der Waals interactions to stabilize the crystal structure. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from Cl-H/H-Cl (36.4%), H—H (23.3%) and C-H/H-C (15.2%) contacts.
Key words: Molecule structure, Dichlorodiazadienes, Fingerprint, Dimethylaniline group, Van der Waals interactions
DOI: 10.32737/2221-8688-2024-4-499-508
1. Introduction
Corresponding dihalodiazabutadiene derivatives were synthesized from the reaction of N-substituted hydrazones of various benzoic aldehyde derivatives with polyhalogen alkanes in the presence of CuCl catalyst [1-2]. The synthesized compounds were studied as dyes [34]. At the same time, due to strong reactivity,
they have been applied as convenient synthons in the synthesis of many compounds [5]. Similar studies were also conducted on the basis of dimethylamino benzoic aldehyde and corresponding new diazo dyes were synthesized [6-8].
Scheme 1. Synthesis of 4-{2,2-dichloro-1-[(E)-(2,4-dichlorophenyl)diazenyl]ethenyl}-N,N-
dimethylaniline
www.chemprob.org
CHEMICAL PROBLEMS 2024 no. 4 (22)
In this article, we provide information about the synthesis and structural features of a new diazo dye "4-{2,2-dichloro-1-[(E)-(2,4-dichlorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline" (Scheme 1).
Investigation of intermolecular
interactions of title compound was provided by Hirschfeld surface analysis [9-10], which has been widely used to study intermolecular interactions in the crystal structure in recent years [11-12].
2. Material and Methods
The syntheses of compounds were carried out at the Organic Chemistry Department of Baku State University (Baku, Azerbaijan). Every reagent utilized in this investigation came from commercial source (Aldrich, TCI-Europe, Strem, ABCR). NMR spectra were recorded on a Bruker Avance 300 (1H: 300 MHz, Karlsruhe, Germany); chemical shifts (5) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references (CDCl3 5H = 7.26 ppm, 5C = 77.16 pp). The X-ray analyses of compound was carried out using the Bruker APEX II CCD diffractometer (T = 296 K, X(MoKa) - radiation, graphite monochromator, 9- and ro-scan).
Dye was synthesized according to a literature protocol [1]. A 20 ml screw-neck vial
was charged with dimethyl sulfoxide (DMSO; 10 ml), (E)-4-((2-(2,4-
dichlorophenyl)hydrazineylidene)methyl)-N,N-dimethylaniline (308 mg, 1 mmol), tetramethylethylenediamine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1-3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2-3), and extracted with dichloromethane (3 20 ml). The combined organic phase was washed with water (3 * 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo in a rotary evaporator.
Fig. 1. 1H NMR spectrum of synthesized compound in CDCl3 solution.
The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and dichloromethane (v/v = 3/1-1/1). white solid (yield 75%); m.p. 405 K. Analysis calculated for C^HoCUN? (M = 389.10). NMR (300 MHz, Chloroform-d) 5 7.61 - 7.46 (m, 3H), 7.28 (s, 1H), 7.21 (d, J = 8.5 Hz, 1H), 7.01 (d, J = 8.5 Hz, 1H), 6.77 (s,
1H), 3.08 (s, 6H). 13C NMR (75 MHz, CDQ3) 5 127.0, 125.7, 125.4, 125.3, 123.4, 123.3, 123.1, 113.9, 113.9, 111.3, 111.2, 25.1. Compound was dissolved in dichloromethane and then left at room temperature for slow evaporation; red crystal of compound suitable for X-rays started to form after ca 2 d.
8;»«I ttSWfi
a ci
1J * Ii i
« 14a 135 130 12S 120 US 110 10S 100 95 90 «5 80 7S 70 45 60 SS SO 45 « 35 30 25 2D IS 10 S 0
Fig. 2. 13C NMR spectrum of synthesized compound in CDCl3 solution.
3. Result and discussion 3.1. Stuructural commentary
In the title compound, (Fig. 3), the C8 and C11-C16) of the dichlorophenyl and dihedral angle between the benzene rings (C3- dimethylaniline groups is 50.85 (13)°.
Fig. 3. The molecular structure of the title compound, showing the atom labelling and displacement
ellipsoids drawn at the 50% probability level.
The title molecule adopts an E configuration with respect to the N1=N2 bond. The N1/N2/C1-C3/Cl1/Cl2 unit is approximately planar with a maximum deviation of -0.165 (2) A, and makes dihedral angles of 57.37 (10) and 16.91 (11)°, respectively, with the C3-C8 and C11-C16 benzene rings. CCDC no:2333616.
3.2. Supramolecular features and
Hirshfeld surface analysis
In the crystal, molecules form parallel layers to the (100) plane by C—H • n (Table 1) and face-to-face n-n [Cg2-Cg2a = 4.0538 (17) A and Cg2-"Cg2b = 4.0537 (17) A; symmetry codes (a) x, 3/2 - y, - 1/2 + z and (b) x, 3/2 - y, 1/2 + z; Cg2 is a centroid of the dichlorophenyl ring (C11-C16)] interactions (Figures 4, 5 and 6).
Table 1. Hydrogen-bond geometry (A, °)
("D " and "A" are donor and acceptor, respectively.)
D—H A D—H H-A D-A D—H-A
C8—H8-Cg1i 0.95 2.98 3.789 (3) 144
Symmetry code: (i) x, -y-1/2, z-3/2.
Fig. 4. The crystal packing of the title compound viewed along the a-axis with intermolecular C— H ••n interactions and face-to-face n-n interactions shown as dashed lines.
Fig. 5. The crystal packing of the title compound viewed along the ¿-axis with intermolecular C— H ••n interactions and face-to-face n-n interactions shown as dashed lines.
Fig. 6. The crystal packing of the title compound viewed along the c-axis with intermolecular C— H ••n interactions and face-to-face n-n interactions shown as dashed lines.
These layers are additionally bound by the Van structure (Table 2). der Waals interactions stabilizing the crystal
Table 2. Summary of short interatomic contacts (Â) in the title compound
C11---H13 2.86 x,-1+y,z
C4--H8 2.90 x,1/2-y,1/2+z
H15--C12 3.14 2-x,1-y,1-z
H5---H10C 2.52 1-x,1/2+y,3/2-z
H10A--C5 2.90 1 -x,1 -y,1 -z
C11-C14 3.47 x,1/2-y,-1/2+z
To visualize the intermolecular interactions in corresponding two-dimensional fingerprint the title molecule, CrystalExplorer17.5 [13] was plots. In the Hirshfeld surface mapped over used to compute Hirshfeld surfaces and their dnorm (Fig. 7).
Fig. 7. (a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of -0.0653 to +1.0161 a.u.
Fig. 8 depicts the two-dimensional fingerprint plots of (di, de) points from all the contacts contributing to the Hirshfeld surface analysis in normal mode for all atoms. The most important intermolecular interactions are Cl H/H CI contacts, contributing 36.4% to
(A) 0,6 0.8 1,0 1,2 1,4 1.6 1.8 2,0 7,7 2.4 2.6 2,8
(C) H...H
the overall crystal packing. Other interactions and their respective contributions are H--H (23.3%), C-H/H-C (15.2%), Cl-C/C-Cl (6.2%), Cl-Cl (5.7%), C-C (4.0%), Cl-N/N-Cl (3.9%) and N--C/C--N (2.0%), respectively
d.
¿i' ' i.
d;
(b) CI...H/H...CI
d.
6til
Ê$KÊ
d\
(d) C...H/H...C
Fig. 8. The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) Cl---H/H-- Cl, (c) H-- H and (d) C -H/H- C interactions. The di and de values are the closest internal and external distances (in Ä) from given points on the
Hirshfeld surface.
3.3. Database Survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; [14]) for structures having an (E)-1 -(2,2-dichloro-1 -phenyl ethenyl)-2-phenyldiazene unit gave 26 hits. Six compounds closely resemble the title compound, viz. HAFXOF, DULTAI [15] ), HODQAV [15], HONBOE, HONBUK and XIZREG.
In the crystal of HAFXOF, C—H- N interactions, C—Ck--rc and n-n stacking interactions [centroid-to-centroid distance = 3.7719 (14) A] link the molecules, forming molecular layers approximately parallel to the (002) plane. Additional weak Van der Waals interactions between the layers consolidate the three-dimensional packing. In the crystal of DULTAI, the molecules are connected by a short Ck-H contact (2.96 A) and C—Ck-rc interactions, which contribute to the overall packing energy stabilization, into infinite
columns along the a-axis direction. In HODQAV, molecules are stacked in columns along the a axis via weak C—H--Cl hydrogen bonds and face-to-face n-n stacking interactions. The crystal packing is further stabilized by short Ck-Cl contacts. In the crystals of HONBOE and HONBUK, molecules are linked through weak X^Cl contacts [X = Br for HONBOE and Cl for HONBUK] and C— H--Cl and C—Ck-rc interactions into sheets parallel to the ab plane. In XIZREG, molecules are linked by C—H---O hydrogen bonds into chains running parallel to the c axis. The crystal packing is further stabilized by C—Ck-rc, C—
and N—O- • n interactions
3.4. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and treated as riding atoms, C—H = 0.95 A with ^iso(H) = 1.2^eq(C) for aromatic H atoms and
C—H = 0.98 A with ^iso(H) = 1.50eq(C) for methyl H atoms. Owing to poor agreement between observed and calculated intensities, twenty four outliers (1 14 0, -1 13 2, 1 12 2, 2 12 1, 1 12 0, 1 12 3, 0 12 1, 0 13 4, 1 9 2, 0 10
0, 1 10 3, 2 10 0, -2 13 3, 0 14 2, 0 12 2, -1 12 3, -2 12 2, 2 9 0, 1 13 2, -2 13 4, 0 13 3, 0 11 3, -1 10 3, 3 9 2) were omitted during the final refinement cycle.
Table 3. Experimental details
Chemical formula C16H13O4N3
Mr 389.09
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a; b; c (Â) 18.6030 (17); 11.0500 (12); 8.1050 (7)
ß (°) 91.393 (8)
V (Â3) 1665.6 (3)
Z 4
Radiation type Synchrotron, X = 0.79313 Â
|i (mm-1) 0.96
Crystal size (mm) 0.23 x 0.15 x 0.12
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan SCALA [16]
T ■ T T min 1 max 0.789, 0.876
No. of measured, independent and observed [I > 2o(I)] reflections 12533, 3761, 3040
Rint 0.064
(sin 9/X)max (Â-1) 0.649
R[F2 > 2g(F2)], wR(F2), S 0.055, 0.150, 1.03
No. of reflections 3761
No. of parameters 211
H-atom treatment H-atom parameters constrained
Apmax, Apmin (e Â~3) 0.64, -0.57
Computer programs: Marccd [17]), iMosflm [18],, SHELXT [19] , SHELXL [20], ORTEP-3 for Windows [21], PLATON[22].
4. Conclusion
The dihedral angle between the benzene rings of the dichlorophenyl and dimethylaniline groups in the title compound, C16H13Cl4N3, is 50.85 (13)°. The title molecule shows an E configuration with respect to the -N=N- unit between the aromatic rings. If the two groups of higher priority are on opposite sides of the double bond (trans to each other), the bond is assigned the configuration E (from entgegen the German word for "opposite"). The
molecules ensure the stability of the crystal structure by forming layers parallel to the (100) plane through C—H- n and face-to-face n-n stacking interactions. Thus, important information was obtained about the synthesis and structural properties of a new diazo dye, "4-{2,2-dichloro-1-[(E)-(2,4-dichlorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline".
References
1. Shikhaliyev N.Q., ibrahimova S.A., Atakishiyeva G.T., Ahmedova N.E. et.al., Crystal structures and Hirshfeld surface analyses of methyl 4-{2, 2-dichloro-1-[(E)-phenyldiazenyl] ethenyl} benzoate, methyl 4-{2, 2-dichloro-1 -[(E)-(4-methylphenyl) diazenyl] ethenyl} benzoate and methyl 4-{2, 2-dichloro-1 -[(E)-(3, 4-dimethylphenyl) diazenyl] ethenyl} benzoate // Acta Crystallographica Section E: Crystallographic Communications, 2024, V. 80(2).
https://doi.org/10.1107/S2056989024000732
2. Shikhaliyev N.G., Suleymanova G.T., israyilova A.A., Ganbarov K.G., Babayeva G.V., et al. Synthesis, characterization and antibacterial studies of dichlorodiazadienes // Organic Chemistry, 2019, (part vi) p. 64-73. https://doi.org/10.24820/ark.5550190.p010.9 79
3. Atakishiyeva G.T., Qajar A.M., Babayeva G.V., Mukhtarova S.H., et.al., Biological new targets prediction & adme profiling of 1, 1-dichlordiazodienes on the basis of o-nitrobenzoic aldehyde // New Materials, Compounds and Applications, 2023, V. 7(2), p. 84-92.
4. Shikhaliev N.G., Suleymanova G.T., Bagirova K.N., Asgerova U.F., et.al., Synthesis of dihalogendiazadiene and farmazan derivatives in the catalytic olefinization reaction // Dimensional Systems, 2018, V. 2, p. 24-32.
5. Shikhaliyev N.G., Maharramov A.M., Suleymanova G.T., Babazade A.A., Nenajdenko V.G., et.al., Arylhydrazones of a-keto esters via methanolysis of
dichlorodiazabutadienes: Synthesis and structural study // Mendeleev Communications, 2021, V. 31(5), p. 677-9 https://doi .org/10.1016/j.mencom.2021.09.02 8
6. Shikhaliyev N.Q., Atioglu Z., Akkurt M., Suleymanova G.T., et.al., Crystal structure and Hirshfeld surface analysis of (E)-4-({2, 2-dichloro-1 -[4-(dimethylamino) phenyl] ethenyl} diazenyl) benzonitrile // Acta Crystallographica Section E: Crystallographic Communications, 2021, V. 77(10), p. 994-998. https://doi.org/10.1107/S2056989021009154
7. Ozkaraca K., Akkurt M., Shikhaliyev N.Q., Askerova U.F., Suleymanova G.T., et al. Crystal structure and Hirshfeld surface analysis of 4-{2, 2-dichloro-1-[(E)-2-(4-methylphenyl) diazen-1-yl] ethenyl}-N, N-dimethylaniline // Acta Crystallographica Section E: Crystallographic Communications, 2020, V. 76(7), p. 1122-5. https://doi.org/10.1107/S2056989020007744
8. Ozkaraca K., Akkurt M., Shikhaliyev N.Q., Askerova U.F., Suleymanova G.T., et al. Crystal structure and Hirshfeld surface analysis of (E)-4-{2, 2-dichloro-1-[(3, 5-dimethylphenyl) diazenyl] ethenyl}-N, N-dimethylaniline // Acta Crystallographica Section E: Crystallographic Communications, 2020, V. 76(8), p. 1251-4. https://doi.org/10.1107/S2056989020009202
9. Suda S., Tateno A., Nakane D., Akitsu T. Hirshfeld Surface Analysis for Investigation of Intermolecular Interaction of Molecular Crystals // International Journal of Organic
Chemistry, 2023, V. 13(2), p. 57-85, 10.4236/ijoc.2023.132006
10. McKinnon J.J., Fabbiani F.P., Spackman M.A. Comparison of polymorphic molecular crystal structures through Hirshfeld surface analysis // Crystal growth & design, 2007, V. 7(4), p. 755-769. https://doi.org/10.1021/cg060773k
11. Guerrab W., Lgaz H., Kansiz S., Mague J.T., et.al., Synthesis of a novel phenytoin derivative: crystal structure, Hirshfeld surface analysis and DFT calculations // Journal of Molecular Structure, 2020, V. 1205, 127630. https://doi.org/10.1016/j.molstruc.2019.1276 30
12. Naghiyev F.N., Cisterna J., Khalilov A.N., et al., Crystal structure and Hirshfeld surface analysis of acetoacetanilide based reaction products // Molecules, 2020, V. 25(9), 2235. https://doi.org/10.3390/molecules25092235
13. Spackman M.A., Jayatilaka D. Hirshfeld surface analysis // CrystEngComm. 2009, V. 11(1), p. 19-32. 0.1039/B818330A
14. Spackman P.R., Turner M.J., McKinnon J.J., Wolff S.K., Grimwood D.J., et al. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals // Journal of Applied Crystallography, 2021, V. 54(3), p. 1006-11. https://doi.org/10.1107/S160057672100291 0
15. Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. The Cambridge structural database Structural Science, Crystal Engineering and Materials // Acta Crystallographica Section B, 2016, V. 72(2), p.171-9. https://doi.org/10.1107/S205252061600395 4
16. Atioglu Z., Akkurt M., Shikhaliyev N.Q.,
Suleymanova G.T., Bagirova K.N., Toze F.A. Crystal structure and Hirshfeld surface analysis of (E)-1-[2, 2-dichloro-1-(4-nitrophenyl) ethenyl]-2-(4-fluorophenyl) diazene // Acta Crystallographica Section E: Crystallographic Communications, 2019, V. 75(2), p. 237-41.
https://doi.org/10.1107/S205698901900070
7
17. Doyle, R.A. MarCCD software manual. 2011. Rayonix LLC, Evanston, IL 60201, USA.
18. Battye T.G., Kontogiannis L., Johnson O., Powell H.R., Leslie A G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM // Acta Crystallographica Section D: Biological Crystallography, 2011, V. 67(4), p. 271-81. https://doi.org/10.1107/S090744491004867 5
19. Sheldrick G.M. SHELXT-Integrated space-group and crystal-structure determination // Acta Crystallographica Section A: Foundations and Advances, 2015, V. 71(1), p. 3-8. https://doi.org/10.1107/S205327331402637 0
20. Sheldrick G.M. Crystal structure refinement with SHELXL // Acta Crystallographica Section C: Structural Chemistry, 2015, V.71(1), p. 3-8.. https://doi.org/10.1107/S205322961402421
8
21. Farrugia L.J. WinGX and ORTEP for Windows: an update // Journal of Applied Crystallography, 2012, V. 45(4), p. 849-54. https://doi.org/10.1107/S002188981202911 1
22. Spek A.L. checkCIF validation ALERTS: what they mean and how to respond // Acta Crystallographica Section E: Crystallographic Communications, 2020, V. 76(1), p.1-10.
4-{2,2-DiXLOR-1-[(E)-(2,4-DiXLORFENiL)DÎAZENiL]ETENiL}-N,N-DiMETiLANiLÎN KRÎSTAL QURULUÇU УЭ HÎRÇFELD SOTH ANALIZI
A.M. Maharramov1, U. F. Osgarova1, N. E. Ohmadova1, A.B. Osgarov2, D.B. Tagiyev3, §.i. Qahramanova3, i.M. Çixaliyeva1, S.H. Muxtarova4, M. Akkurt5
1Baki Dovlst Universiteti, Akademik ZahidXslilov kugssi 23, 1148 Baki, Azsrbaycan, email:[email protected], [email protected]. 2Sumqayit Dovlst Universiteti, Baki kugssi 1, 5008, Sumqayit, Azsrbaycan 3AMEA Kataliz vs Qeyri-uzvi Kimya institutu, H.Cavidpr. 113, AZ1143Baki, Azsrbaycan 4Azsrbaycan Texniki Universiteti, Huseyn Cavidprospekti 25, Baki 1073, Baki, Azsrbaycan 5Erciyes University, Yenidogan, Turhan Baytop Street No:1, 38280 Talas, Kayseri, Turkey
Xulasa: Tadqiq edilan C16H13Cl4N3 birla§masinda, dixlorofenil va dimetilanilin qruplarinin benzol halqalari arasindaki dihedral bucaq 50,85 (13) ° barabardir. Markazi -N=N- fraqmenti E konfiqurasiyasina malikdir. Kristalda molekullar C—H^rc va uz-uza n-n qar§iliqli tasirlar [markazdan markaza masafalar = 4,0538 (17) va 4,0537 (17) A] ila (100) mustavisina paralel tabaqalar amala gatirirlar. Bu tabaqalar kristal qurulu§u sabitla§dirmak u9un Van der Waals qar§iliqli quvvalari ila alaqalanir. Hirshfeld sathinin tahlili gostarir ki, kristal qabla§dirma u9un an muhum tohfalar Cl- H/H -Cl (36,4%), H- H (23,3%) va C- H/H- C (15,2%) alaqalar verir. A?ar sozlar: Molekul qurulu§u, Dichlorodiazadienes, Barmaq izi, Dimetilanilin qrupu, Van der Waals qar§iliqli tasirlari
КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И АНАЛИЗ ПОВЕРХНОСТИ ПО ХИРШФЕЛЬДУ 4-{2,2-ДИХЛОР-1-[(Е)-(2,4-ДИХЛОРФЕНИЛ)ДИАЗЕНИЛ]ЭТЕНИЛ}-
N,N-ДИМЕ ТИЛАНИЛИНА
А.М. Магеррамов1, У.Ф. Аскерова1, Н.Э. Ахмедова1, А.Б. Аскаров2, Д.В. Тагиев3, Ш.Я. Гахраманова3, И.М. Шихалиева1, Ш.Х. Мухтарова4, М. Аккурт5
1 Бакинский государственный университет, ул. Академика Захида Халилова, 23, 1148, Баку,
Азербайджан,
электронная почта: [email protected], [email protected]. 2Сумгаитский государственный университет, ул. Баку, 1, 5008, Сумгаит, Азербайджан 3Институт Катализа и неорганической химии НАНА, пр. Г.Джавида 113, AZ1143Баку, Азербайджан 4Азербайджанский технический университет, проспект Гусейна Джавида, 25, Баку 1073, Баку,
Азербайджан
5Университет Эрджиес, Енидоган, улица Турхан Байтоп №:1, 38280 Талас, Кайсери, Турция
Резюме: В исследуемом соединении C16H13CI4N3 двугранный угол между бензольными кольцами дихлорфенильной и диметиланилиновой групп равен 50,85 (13)°. Центральный блок -N=N- имеет конфигурацию E. В кристалле молекулы образуют слои, параллельные плоскости (100) посредством C—Н-п и встречных п-п [расстояния между центроидами = 4,0538 (17) и 4,0537 (17) Ä] взаимодействий. Эти слои соединены взаимодействиями Ван-дер-Ваальса для стабилизации кристаллической структуры. Анализ поверхности Хиршфельда показывает, что наиболее важный вклад в кристаллическую упаковку вносят Cb H/H -Cl (36,4%), Н- ••Н (23,3%) и C- Н/Н-. С (15,2%) контакты.
Ключевые слова: Молекулярная структура, Дихлордиазадиены, Отпечаток пальца, Диметиланилиновая группа, Ван-дер-Ваальсовые взаимодействия