Научная статья на тему 'Cryometry data in the binary systems bis-adduct of C60 and indispensable aminoacids - lysine, threonine, oxyproline'

Cryometry data in the binary systems bis-adduct of C60 and indispensable aminoacids - lysine, threonine, oxyproline Текст научной статьи по специальности «Химические науки»

CC BY
187
70
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
FULLERENES / AMINOACIDS / CRYOMETRY

Аннотация научной статьи по химическим наукам, автор научной работы — Safyannikov N.M., Charykov N.A., Garamova P.V., Semenov K.N., Keskinov V.A.

The article continues the development of the investigations, presented in particular in the cycle of articles, devoted to the synthesis, identification and investigation of physical-chemical properties of water soluble derivatives of light fullerene C60, such as: complex esters of dicarboxylic acids (malonates, oxalates); poly-hydroxylated forms (fullerenols); amino-acid derivatives (argenine, alanine). The investigation of the excess thermodynamic functions, to the best of our knowledge, has, until now, not been provided, except for two original works [Matuzenko M.Yu., Tyurin D.P., et al. (2015); Matuzenko M.Yu., Shestopalova A.A., et al. (2015)].

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Safyannikov N.M., Charykov N.A., Garamova P.V., Semenov K.N., Keskinov V.A.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Cryometry data in the binary systems bis-adduct of C60 and indispensable aminoacids - lysine, threonine, oxyproline»

NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2018, 9 (1), P. 46-48

Cryometry data in the binary systems bis-adduct of C60 and indispensable aminoacids -

lysine, threonine, oxyproline

N.M. Safyannikov1, N. A. Charykov1, P. V. Garamova2, K.N. Semenov2, V. A. Keskinov2, A. V. Kurilenko2, I.A. Cherepcova2, D.P. Tyurin2, V.V. Klepikov2, M. Yu. Matuzenko2, N.A. Kulenova3, A.A. Zolotarev2

1St. Petersburg Electrotechnical University "LETI", St. Petersburg, Russia 2 St. Petersburg State Technological Institute (Technical University), Department of Physical Chemistry,

St. Petersburg, Russia

3D. Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan

keskinov@mail.ru

DOI 10.17586/2220-8054-2018-9-1-46-48

The article continues the development of the investigations, presented in particular in the cycle of articles, devoted to the synthesis, identification and investigation of physical-chemical properties of water soluble derivatives of light fullerene C60, such as: complex esters of dicarboxylic acids (malonates, oxalates); poly-hydroxylated forms (fullerenols); amino-acid derivatives (argenine, alanine). The investigation of the excess thermodynamic functions, to the best of our knowledge, has, until now, not been provided, except for two original works [Matuzenko M.Yu., Tyurin D.P., et al. (2015); Matuzenko M.Yu., Shestopalova A.A., et al. (2015)]. Keywords: fullerenes, aminoacids, cryometry. Received: 20 June 2017 Revised: 30 September 2017

1. Introduction

Previous articles [1-9] were devoted to the investigation of the physical-chemical properties of light fullerenes adducts with amino-acids and their solutions. Cryometry investigation in the binary systems C60(C6Hi3N2O2)2-H2O, C60(C4H8NO3)2-H2O, C60(C5H9NO3)2-H2O at 273.15 - 272.50 K was used for determination of the concentration dependencies of the temperatures corresponding to beginning of ice crystallization from the solution (liquidus temperatures). Solution concentrations (in molar fraction) vary in the wide range Xbis-adduct = 6x10-6 -2 x 10-4 rel .un. Liquidus temperatures were determined with the help of Beckman thermometer with the linear resolution of the device scale AT/Ah « 0.01 K/mm (h - height of Hg capillary raising). Cytometry data AT(Xbis-adduct) in Fig. 1 (typical example for the system with oxyproline bis-adduct C60(C5H9NO3)2-H2O). The dependencies AT(Xbis-adduct) are sharply nonlinear, which prove high solution non-ideality for all solutions, even very dilute ones. In Fig. 1, for comparison by the arrow, the values ATid for the ideal non-electrolyte solution are presented. As we can see, the experimental AT exceeds ATid one-two orders of magnitude (for comparable concentrated and dilute solutions). Thus, one should expect probably gigantic positive deviations of the solution from ideality in the thermodynamic sense.

For the calculation of water activity, we have used well-known equation, obtained from the equality of the chemical H2O potentials in pure solid ice and non-ideal liquid solution [10,11]:

-A#f AT - ACp AT2 R(Tf - AT)Tf

= ln <lH2O, (1)

where: A#f = 5990 J/mole, ACP = -38.893 J/mole-K, Tf = 273.15 K are heat, temperature of ice fusion and change of heat capacity in the process of ice fusion, correspondingly. Eq. (1) was obtained in the symmetrical normalization scale for thermodynamic functions for both components:

o>h2O (XH2O = 1) = YH2O (XH2O = 1) = 1, (2.1)

anabis-adduct (Xbis-adduct 1) Ybis-adduct (Xbis-adduct 1) 11, (2.2)

where: Xi and ai, - molar fraction, activity and activity coefficient of i-th component. Authors [10,11] calculated concentration dependencies ln YH2O, derivatives dln YH2O/dXbis-adduct (numerically). Then authors [10,11] calculated the dependencies dln Ybis-adduct/dXbis-adduct, (according to classical differential Gibbs-Duhem differential equation) and at the end by numerical integration the dependencies lnYnabis-adduct(Xbis-adduct) were calculated. As a result, as was expected earlier, gigantic positive deviations of the solution from ideality for the functions ln Ybis-adduct were obtained ln ius-adduct ~ n(102) (in Fig. 2 typical example for the system with

Cryometry data in the binary systems bis-adduct of C60 and indispensable aminoacids

47

V a|ï -

<4-1 0 p g 0,12 -

"cS 5 a. H < 0,1 ci»

S H aj 0 is N 0,08 -

<4-4 0 u s к-и It® - 0,0:4.-

0 aj

0,02 -1,00 -

Molar fraction С, (С H NO) - *r ^ (« u 1

0.00000 0.00002 0.M04 0,00006 O.OOOOS 0.00010 ШооЙ

Fig. 1. Liquidus temperature decrease in the system C6o(C5H9NO3)2-H2O (example)

0,00000 0,00002 0.00004 0,00006 0.00003 0,00010 0.00012

Molar fraction C (C H NO ) -X ,,.„.. (a.u.)

Fig. 2. Logarithm activity coefficient of bis-adduct in the system C6o(C5H9NO3)2-H2O: dots -experiment, line - calculation according VSAD model

oxyproline bis-adduct - C60(C5H9NO3)2-H2O is represented). Naturally, no existing thermodynamic model can describe such nontrivial behavior of nanocluster thermodynamic functions.

For the thermodynamic description of our systems, we have elaborated original semi-empirical model VD-AS (Virial Decomposition Asymmetric Model), based on the virial decomposition of molar Gibbs energy on the component molar fractions in the solution. This reception was often used previously for the description of binary and multicomponent solutions with different natures: electrolyte solutions [12-15], non-electrolyte melts [16-18], equivalent replacement solid solutions. The main equations of VD-AS model for the binary system are the following:

In YaHS2SO « E ^XHs-aMuct, (3.1)

i=2

ln Ibis-adduct « (1 — i)AiXbis-adduct, (3.2)

i=2

where: ln 7?s s - logarithm of activity coefficient of i-th solution component in asymmetrical normalization scale

(ln 7H2O = 0 YH2 O bis-adduct ^ 0) = yH2o = 1 ln Ybis-adduct = 0, 7bis-adduct{Xbis-adduct ^ 0) = l), Ai -

consolidated i-th virial coefficient of the decomposition.

Preliminary calculations show that three-coefficients VD-AS model (i.e. i = 2, 3, 4) is enough to describe our systems with high accuracy (see, for example, Fig. 2 for ln 7^ss-adduct):

ln 7 H2O « 2A2 Xbis - adduct + 3A3Xbis-adduct + ^^bis-adducti (4.1)

ln 7bis-adduct « -2A2Xbis-adduct — 2A3Xbis-adduct — 3A4Xbis-adduct. (4.2)

48

N.M. Safyannikov, N.A. Charykov, P. V. Garamova, et al

The VD-AS model also excellently describes pre-delamination or micro-heterogeneous-structure formation in solution (see Fig. 3). This calculation is confirmed by Dynamic Light Scattering data (ZetaSizer).

ft "20

0,00000 0,00002 0,00004 0,00006 0,00008 0,00010 0,00012

* MdarfictionCfi0(eäH,NQ35ä -X,„ ^(a.u.)

Fig. 3. Delamination board in the system C6 o(C5H9NO3)2-H2O (example)

Acknowledgements

Investigations were supported by Russian Foundation for Basic Research RFBR (Projects No. 16-08-01206, 18-08-00143).

References

[1] Semenov K.N., Charykov N.A., et al. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials. Rus. Chem. Rev., 2016, 85 (1), P. 38-59.

[2] Semenov K.N., Charykov N.A., Murin I.V., Pukharenko Yu.V. Physico-Chemical Properties of C60-tris-malonic-derivative Water Solutions. J. Mol. Liq., 2015, 202, P. 50-58.

[3] Semenov K.N., Charykov N.A., Murin I.V., Pukharenko Yu.V. Physico-chemical properties of the fullerenol-70 water solutions. J. Mol. Liq., 2015, 202, P. 1-8.

[4] Manyakina O.S., Semenov K.N., et al. Physico-chemical properties of the water-soluble C70-tris-malonic solutions. J. Mol. Liq., 2015, 211, P. 487-493.

[5] Semenov K.N., Charykov N.A., Arapov O.V., Alekseyev N.I. Solubility of light fullerenes in styrene. J. Chem. Eng. Data, 2009, 54 (3), P. 756-761.

[6] Semenov K.N., Charykov N.A., Keskinov V.A. Fullerenol synthesis and identification. Properties of the fullerenol water solutions. J. Chem. Eng. Data, 2011, 56, P. 230-239.

[7] Lushin A.I., Charykov N.A., et al. Impact resistance of cement and gypsum plaster nanomodified by water-soluble fullerenols. Ind. Eng. Chem. Res., 2013, 52, P. 14583-14591.

[8] Semenov K.N., Keskinov V.A., et al. Fullerenol-d solubility in fullerenol-d-inorganic salt-water ternary systems at 25 °C. Ind. Eng. Chem. Res., 2013, 52, P. 16095-16100.

[9] Shestopalova A.A., Semenov K.N., et al. Physico-chemical properties of the C60-arginine water solutions. J. Mol. Liq., 2015, 211, P. 301307.

[10] Matuzenko M.Yu., Tyurin D.P., et al. Cryometry and excess functions of fullerenols and trismalonates of light fullerenes - C6o(OH)24±2 and C70[=C(COOH)2]3 aqueous solutions. Nanosystems: Phys., Chem., Math., 2015, 6 (4), . 704-714.

[11] Matuzenko M.Yu., Shestopalova A.A., et al. Cryometry and excess functions of the adduct of light fullerene C60 and arginine -C6o(C6Hi2NAN4O2)8H8 aqueous solutions. Nanosystems: Phys., Chem., Math., 2015, 6 (5), P. 715-725.

[12] Pitzer K.S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem., 1973, 77 (2), P. 268-277.

[13] Pitzer K.S., Kim J.J. Activity and osmotic coefficients for mixed electrolytes. J. Amer. Chem. Soc., 1974, 96 (18), P. 5701-5707.

[14] Filippov V.K., Charykov N.A., Rumyantsev A.V. Calculation of phase equilibriums of a solution-solid in three-component water-salt systems. Rep. Rus. Acad. Sci., 1983, 273 (2), P. 393-396 (In Russian).

[15] Charykova M.V., Charykov N.A. Thermodynamic modelling of the process of evaporate sedimentation. St. Petersburg, Nauka, 2003.

[16] Charykov N.A., Litvak A.M., et al. Solid solution InxGai_xAsySbzPi—y—z: a new material for infrared optoelectronics. I. Thermodynamic analysis of the conditions for obtaining solid solutions, isoperiodic to inas and gasb substrates, by liquid-phase epitaxy. Semiconductors, 1997, 31 (4), P. 344-349.

[17] Litvak A.M., Charykov N.A. New thermodynamic method of calculation of melt-solid phase equilibria (for the example of A3B5 systems). Rus. J. Phys. Chem., 1990, 64 (9), P. 2331-2335.

[18] Baranov A.N., Guseinov A.A., et al. Obtaining the GaInAsSb solid solutions lattice-matched to GaSb in the vicinity of immiscibility gap. Tech. Phys. Lett., 1990, 16 (5), P. 33-36.

i Надоели баннеры? Вы всегда можете отключить рекламу.