Научная статья на тему 'Creation of export-oriented network of grain elevators in Ukraine'

Creation of export-oriented network of grain elevators in Ukraine Текст научной статьи по специальности «Сельское хозяйство, лесное хозяйство, рыбное хозяйство»

CC BY
342
42
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
GRAIN EXPORT / ELEVATORS / RAIL TRANSPORTATION / SHIPPER ROUTING / LOADING CONCENTRATION / ЕКСПОРТ ЗЕРНА / ЕЛЕВАТОРИ / ЗАЛіЗНИЧНі ПЕРЕВЕЗЕННЯ / ВіДПРАВНИЦЬКА МАРШРУТИЗАЦіЯ / КОНЦЕНТРАЦіЯ НАВАНТАЖЕННЯ / ЭКСПОРТ ЗЕРНА / ЭЛЕВАТОРЫ / ЖЕЛЕЗНОДОРОЖНЫЕ ПЕРЕВОЗКИ / ОТПРАВИТЕЛЬСКАЯ МАРШРУТИЗАЦИЯ / КОНЦЕНТРАЦИЯ ПОГРУЗКИ

Аннотация научной статьи по сельскому хозяйству, лесному хозяйству, рыбному хозяйству, автор научной работы — Kozachenko D.M., Vernigora R.V., Rustamov R.S.

Purpose. The scientific paper highlights improving the efficiency of export rail transportation of grain cargoes in Ukraine by introducing shipper routing and concentration of loading at the terminal grain elevators. Methodology. According to the experience of the USA and Canada, one of the most effective ways to reduce costs in the grain to-port supply chain is a shipper routing of the rail traffic. Shipper routing for transportation of grain cargoes involves the concentration of their loading on the multiple junctions. The junctions are proposed to be selected with the use of cluster analysis methods. For the formation of the grain loading concentration areas the authors used methods of set theory and multi-criteria optimization. Findings. Based on agglomerative cluster analysis algorithm, the junctions on a network of Ukrainian railways are selected and the areas of possible concentration of grain loading are formed. DSU-algorithm allowed distinguishing the overlapping and non-overlapping areas of concentration. The problem of selecting non-overlapping areas of the grain loading concentration is formalized as the problem of multiobjective integer programming with boolean variables. The solution of this problem by a modified simplex algorithm allows selecting on the railway network of Ukraine 24 districts of possible grain loading concentration, which cover 70 stations and at minimal additional cost provide routing of about 7.5 million tons of grain per year. Originality. The originality of the work lies in the fact that the authors developed the mathematical procedure for selection of junctions and concentration areas of grain loading at the Ukrainian railway network, taking into account the economic efficiency of the process. Practical value. Application of the developed method of grain loading concentration for the formation of unit trains will significantly reduce the logistics costs in the supply chain of grain to Ukrainian ports for export and, consequently, increase its competitiveness in foreign markets.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Creation of export-oriented network of grain elevators in Ukraine»

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 2 (68)

UDC 656.225

D. M. KOZACHENKO1*, R. V. VERNIGORA2*, R. S. RUSTAMOV3*

1 Research Department, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 51 09, e-mail kozachenko@upp.diit.edu.ua, ORCID 0000-0003-2611-1350

2*Dep. «Stations and Nodes», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 12, e-mail rv.vernigora@gmail.com, (ORCID 0000-0001-7618-4617

3*The Regional Branch of the «Odesa Railroad» PJSC «Ukrzaliznytsia», Panteleymonivska St., 19, Odesa, Ukraine, tel. +38 (048) 727 30 96, e-mail rustamovrsh@gmail.com, ORCID 0000-0002-5860-1840

CREATION OF EXPORT-ORIENTED NETWORK OF GRAIN ELEVATORS IN UKRAINE

Purpose. The scientific paper highlights improving the efficiency of export rail transportation of grain cargoes in Ukraine by introducing shipper routing and concentration of loading at the terminal grain elevators. Methodology. According to the experience of the USA and Canada, one of the most effective ways to reduce costs in the grain to-port supply chain is a shipper routing of the rail traffic. Shipper routing for transportation of grain cargoes involves the concentration of their loading on the multiple junctions. The junctions are proposed to be selected with the use of cluster analysis methods. For the formation of the grain loading concentration areas the authors used methods of set theory and multi-criteria optimization. Findings. Based on agglomerative cluster analysis algorithm, the junctions on a network of Ukrainian railways are selected and the areas of possible concentration of grain loading are formed. DSU-algorithm allowed distinguishing the overlapping and non-overlapping areas of concentration. The problem of selecting non-overlapping areas of the grain loading concentration is formalized as the problem of multiobjective integer programming with boolean variables. The solution of this problem by a modified simplex algorithm allows selecting on the railway network of Ukraine 24 districts of possible grain loading concentration, which cover 70 stations and at minimal additional cost provide routing of about 7.5 million tons of grain per year. Originality. The originality of the work lies in the fact that the authors developed the mathematical procedure for selection of junctions and concentration areas of grain loading at the Ukrainian railway network, taking into account the economic efficiency of the process. Practical value. Application of the developed method of grain loading concentration for the formation of unit trains will significantly reduce the logistics costs in the supply chain of grain to Ukrainian ports for export and, consequently, increase its competitiveness in foreign markets.

Keywords: grain export; elevators; rail transportation; shipper routing; loading concentration

Introduction

Grain is one of the main export goods of Ukraine. Over the period from 2006 to 2016, the share of its value in the total value of goods exported from Ukraine increased from 3.5 to 16.5%. In 2015/2016 marketing year among grain exporters, Ukraine, with an indicator of 38.7 million tons, took the third place, behind the United States (78.5 million tons) and the European Union (52.2 million tons). Significant volumes of grain were exported by Argentina (36.2 million tons), the Russian Federation (34.6 million tons), Canada (27.7 million tons) and other countries [14]. One of the ways to increase the competitiveness of domestic grain in the world market is to build an effective logistics system. For Ukraine, this task is espe-

cially important, as the share of logistics costs in the cost of domestic grain is about 35%; for comparison, the share of logistics costs in the grain cost in the European Union is 12 - 16%, the United States - 9 % [10].

In 2016 in Ukraine, about 97% of grain exports were made through seaports, while 63% of grain cargo was delivered to sea ports by rail. Therefore, increasing the efficiency of grain cargo transporting by rail and water transportation is one of the key tasks that must be addressed to reduce logistics costs. The need to develop logistic schemes for the grain delivery to ports with the participation of rail transport is also conditioned by the need to increase Ukraine's energy independence. The railway

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 2 (68)

transport of Ukraine performs about 90% of the turnover of electric power with the use of domestic energy carriers. On the contrary, 72% of oil products consumed in Ukraine are used for the needs of motor transport; while 80% of oil products are imported by Ukraine [4].

Significant progress in reducing the cost of grain transportation was achieved in the US and Canada in the late 20th, early 21st century.

Changes in grain logistics in the United States began in 1972-1973 in response to a sharp increase in demand for grain in the world market [25]. These changes led to a change in the number, capacity and location of elevators throughout the country, improvement of the technology of grain transportation by railways and their tariff systems. Similar changes have occurred since the 1980s in Canada.

Prior to the reform process, the logistics system for grain delivery by the North American railways was similar to that operating on the Ukrainian railways. Empty carriages for the transportation of grain were sent to technical stations, where from the groups of 1 to 25 wagons were approached to the loading stations. After loading, the wagons were sent to technical stations for making up of trains according to the composition plan. In 1965, the USA began to use technology to transport grain for export to seaports by route shipments [23]. The efficiency of grain transportation by routes is connected with a reduction of station costs, the more rational use of the capacity of wagons and the throughput and carrying capacity of railways. At the same time, this technology requires the development of access roads and loading capacity of elevators [20].

Further technical and technological innovations, state policy aimed at market development led to a change in the volume, quality and cost of railroad services associated with the transportation of grain. The end of the 1970s - the beginning of the 1980s was the period of economic deregulation of the railway transport. The US Congress adopted a number of documents, the most important of which were: "Railroad Revitalization and Regulatory Reform Act" of 1976 [24] and "Staggers Rail Act" of 1980 [28]. These laws significantly simplified for the railways the procedure for closing inactive areas and also gave considerable freedom in the for-

mation of tariff policy. As a result, inactive areas, which constituted about 20% of the network, were closed, in addition a significant number of low-activity sections were converted into railways, independent of the 1st class railways [29]. Tariff policy of railways has also undergone significant changes. The railways switched from tariffing of freight in proportion to the ton of cargo to single-car rate, multiple-car rates, unit train and multiple origin unit train rates, stimulating shippers, on the one hand, to the maximum loading of wagons, and, on the other hand, to the concentration of grain traffic. In the 1990s, the Burlington Northern railway (BNSF after 1996) introduced the technology of grain transportation by shuttle train [22]. This technology implies the use of a special tariff, which is lower than that for the transportation of grain by group shipments by 46-52%. At the same time, the shipper must be able to ensure loading of the train of 75-120 cars during the limited time (about 15 hours) [27]. Trains move between the points of loading and unloading according to a rigid schedule in accordance with the contract for 6-9 months, without remarshaling and uncoupling of train locomotives at the loading station [26]. In response to changes in grain transportation conditions in the United States, there were significant changes in grain production and storage systems. Between 1980 and 1998, the number of agricultural enterprises decreased by 15%, while their size increased by 11%. The total number of elevators decreased due to a significant reduction in the number of country elevators, while the number of terminal elevators increased, and the number of terminal elevators increased, ensuring the shipment of grain to the railway transport in lots sufficient for the formation of routes [21]. Technical specifications for elevators that provide shipment of grain lots for the formation of routes are presented in [25]. The average distance of to-elevator grain delivery by farmers increased from 19 to 51.5 km [22].

In general, despite the fact that the cost of grain production in the USA, as a rule, is higher than in the main competing countries, the effective logistics system ensures its competitiveness in world markets.

The logistic system of grain transportation in Canada underwent similar changes. In response to discounts provided by railways when increasing

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 2 (68)

the amount of shipment, there occurred a consolidation of elevators. Between 1994 and 2003, the number of grain elevators decreased by 62%, while their total loading capacity decreased by only 8%.

The domestic logistics system for the export of grain cargo is characterized by the dispersion of the grain loading over a large number of railway stations. So, at present in Ukraine grain loading is carried out at 630 stations, however, as the analysis of statistical data showed, for about 420 stations (67%) the volumes of average daily grain loading do not exceed 1 wagon. In addition, the loading at some stations is extremely uneven: for example, only 24 stations (4%) conducted the grain loading on more than half of the days a year, while 50% of the stations spent no more than 34 days a year for grain loading [9, 15].

The negative result of this is a significant turnover of wagons, which in 2016 was about 9.9 days [17], inefficient use of locomotive traction at the initial and final stages of transportation, significant operating costs associated with car servicing at stations. The existence of such a logistics system is possible because of the absence in Ukraine of differentiated tariff rates for wagon, group and route shipments, as well as the availability of stand-by grain hoppers in the 2000s. However, the combination of such factors as sharp increase in grain production, critical wear of grain carriers and stiffer competition in the world grain markets make it necessary to improve the logistics infrastructure and technologies for grain transportation. In these conditions, the experience of the USA and Canada can be used in Ukraine, which consists in increasing the loading capacity of elevators, on the one hand, and using routes for the grain transportation with special tariffs, on the other hand.

Purpose of the study

The purpose of the study is to develop a methodology for the formation of a network of grain loading concentration areas to ensure the shipper routing of rail transportation of grain to the seaports of Ukraine for export.

Methodology

The choice of terminal elevators (junctions) and grain loading concentration areas is a very complex multivariate and multifactor optimization task.

At the same time, it is necessary to take into account the existing infrastructure of the junctions and the possibilities for its development, the volumes of grain loading at the stations, the additional costs associated with storing grain, unit train loading, delivering grain to junctions by road and the costs of transporting grain by rail to ports.

Formulation and formalization of the problem. The task of determining the areas of possible grain loading concentration and the corresponding junctions, where the grain will be loaded in unit trains, can be formulated as follows.

There are a lot of S grain loading stations on the railway range S = (si, s2, - si sz), where z -is the total number of grain loading stations. The distances lj between each pair of stations si and Sj (si, Sj e S) can be represented by the distance matrix L [16]:

0 l12... l1 j... l1z '21 0— l2j... l2z

L =

li к

k ••• 4

L

/,••• l ...

0

Each element of the set S (station) is characterized by a number of parameters and can be represented by the structure:

= {I, N, c, q, p, Т,К},

(1)

where I -station identifier (ECP code) [16]; N -station name [16]; c - station class; q -average annual volume of grain loading, wag.; p -capacity of the elevator facility for one-time storage of grain, ths. tons; T - vector characterizing the distance from the station to the main seaports; K - vector characterizing the volume of additional capital investments for the development of the station infrastructure when loading grain unit trains.

Each element of the vector T is the number of the tariff zone corresponding to the distance from the given station si (si e S ) to one of the seaports where grain is transshipped for export [7]:

T ={'1, t

t \

2,----ni

Each element of the vector K corresponds to a certain amount of additional capital investments

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 2 (68)

that are required for the development of the station (elevator and railway) infrastructure with the weekly loading of 1, 2 and 3 unit trains, respectively:

Ki = {k1, k2 , k3 } •

Average annual volumes of grain loading qi for each station are determined on the basis of statistical processing of the data obtained from UFACS-UZ-E (Unified Freight Automated Control System of UZ). Data on the class of each station and the capacity of its elevator facility can be obtained from TIS of the stations using AWS TIS.

On the basis of the indicated initial data it is necessary:

- from the set S to select a subset S* (S* c S) of the junctions su (su eS , u=1, 2, ..., m), where grain loading of unit trains will be carried out;

- for each junction su (type U) to determine the loading concentration area Ru (u=1, 2,...,m), i.e. a set of stations sv e S (type V), from which the delivery of grain by road to the junction su will be organized:

R ={ir, Qr

, Sv sf\

\S.

where Ir - identifier of the concentration area; Qr - total annual grain loading at all stations of the area, wag.

When forming loading concentration areas, it is necessary to observe the following conditions:

- the distance from testation su of the area Ru to any V-station of the area sv (sv e Ru) must not exceed the maximum specified value /max (when solving this task it is assumed that /max=30 km):

(Vsv e Ru)(Vs* e Ru)(lw < U), v = 1,2,...,fu, u = 1,2,...,m

- the total annual volume of the grain shipped at the concentration area stations Ru must be not less than the minimum specified value Qmin (when solving this task, it is assumed that Qmin=3000 wag/ year, which ensures the shipment of at least 1 unit train with grain per week):

(VRu)(Qr > Qmin), u = 1,2,...,m

(2)

And, finally, the solution of the task of selecting junctions and areas of grain loading concentra-

tion should ensure minimum total costs associated with the routing of grain transportation for export to ports. In aggregate, these costs can be represented as

m m m

I Eroad +1 Eu +1К

u =1 u =1 u =1 m m

+I Et +I ^ min

(3)

u =1

u =1

where ETuoad - additional costs for transportation of grain to the junction of the area Ru by road, mln. UAH; E^ - additional costs for grain storage at the junction of the area Ru for making up a unit train, mln. UAH; Euutr - costs for transportation of grain to ports by unit trains from a junction of the area Ru, mln. UAH; E^- costs for carload transportation of grain to ports from the stations of the area Ru, mln. UAH; E^f - additional reduced costs associated with the development of elevator and rail infrastructure of the junction of the area Ru, mln. UAH.

The article describes the developed methodology for solving this problem, which is based on the methods of cluster analysis, set theory and multi-criteria optimization.

Findings

Determination of junctions for loading of unit trains based on the cluster analysis. The solution of this problem involves the separation of the initial set of grain loading stations S into two subsets - S*, which includes junctions of possible loading concentration (^-stations), and S', which includes stations where the loading of grain routes is impractical. Considering the significant number of grain loading stations (more than 600), cluster analysis methods can be used effectively to obtain these subsets [6, 13].

Cluster analysis is a method of grouping (classifying) multidimensional objects, based on the representation of the results of individual observations by points of a suitable geometric space with the subsequent allocation of clusters of these points. The task of cluster analysis methods is to select such homogeneous spaces in the original multidimensional data that the objects within the

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 2 (68)

cluster are "similar" in a certain sense to each other, and objects from different clusters are "not similar".

To select the set of junctions S*, an agglomerate algorithm of direct classification was used [6]. In agglomeration algorithms, unlike divisive algorithms, each classifiable object in the beginning is a separate cluster. At each step of the algorithm, the two closest clusters are combined. This happens until the number of clusters reaches the certain, in most cases, the predetermined value (in our case, two clusters). It is advisable to use divisive algorithms when the initial population must be divided into a sufficiently large number of clusters (more than 10) [13], which does not correspond to the conditions of the problem of grain loading station classification.

An important factor in the effectiveness of cluster analysis is the choice of parameters by which the classification of objects (in this case, railway stations) is performed. As noted in [6], with the increase in the number of indicators used to classify objects, its quality is reduced. In this connection, from the set of parameters characterizing the freight station (2), based on the methods of dispersion analysis and Sheffe multiple comparisons [1], and taking into account the expert estimates, the following informative parameters were singled out: station class - c, annual volume of grain loading -q, available capacity of elevator infrastructure - p, additional costs for the development of elevator and railway infrastructure to ensure the loading of grain unit trains - k1, k2, k3. It should be noted that obtaining of specific values of the vector k1, k2, k3 in monetary terms for each station is a very laborious task. In this connection, the authors used parameterized dimensionless values k1, k2, k3 in the range [0; 1]; while kj=0 means that additional funds are not required for the station infrastructure development to form j of grain unit trains per week, and kj=1 -formation of j of grain unit trains per week at a given station is impractical due to the need for significant investments in infrastructure, in the rest of the cases - 0 < kj<1. The specific values of the parameters k1, k2, k3 for each station are determined expertly on the basis of the analysis of its infrastructure.

Since the information parameters of the stations selected for classification are measured in different

units and have different ranges of values, we carried out their standardization. For this purpose, the effectiveness of several methods for standardizing data considered in [3, 13, 19] was researched. Herewith, the "reference" classification was performed expertly, during which a set of 35 grain loading stations were divided into two clusters: U-stations and F-stations. The effectiveness of each of the standardization methods was evaluated according to two criteria: probability of erroneous classification - Per (as compared to a "reference") and value of the total intragroup dispersion - Dgr. The studies performed on a computer with the help of the "Statistica" package showed that the best results (Per= 4-7 %) were obtained with the standardization of data by maximum and by range, the worst results were obtained with standardization by dispersion.

During classification, an important role is also played by the choice of the distance between the individual objects. The distance between the two objects a and b is the value of the distance dab, which is the greater, the less similar are the objects a and b. When choosing the method of classification to obtain the training sample, we compared 6 distances in order to determine the most suitable for the solution of the problem posed [6, 13, 19]: the Euclidean distance, the Manhattan distance, the Brey-Curtis distance, the Chebyshev distance, the Canberra distance, the power distance.

To select the most effective distance with the help of the "Statistica" package, their comparative analysis was performed while classifying the "reference" set of stations. The effectiveness of each distance was also assessed by the indicators Per and Dgr. The study of the distance effectiveness showed that the best quality of the classification of grain loading stations was obtained using the "Canberra" distance (Per=3-5 %). The worst results were obtained using the Chebyshev distance (Per=30-35%).

At each step of the agglomeration algorithm of the cluster analysis, two clusters are combined, the distance between which is minimal. This raises the problem of determining the distances between individual clusters. The method of calculating this distance is determined by the adopted cluster strategy. When determining the most effective classification algorithm, we studied seven cluster methods

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2017, № 2 (68)

[3, 6, 19]: "nearest neighbor", "furthest neighbor", "group mean", "centroid", "quadratic", "flexible", Ward's method. The comparative analysis of the application of these methods for the classification of the "reference" set of grain loading stations, performed with the help of the "Statistica" package, showed that the closest results to the "reference" classification were obtained using the "flexible" unification method and Ward's method (Per = 57%). The worst results were obtained using the methods of "nearest" and "furthest" neighbor (Per = 25-35%).

Thus, using the agglomeration cluster analysis method based on the "flexible" unification method and the "Canberra" distance between objects, the initial set of grain loading stations S was divided into two subsets - S*, which includes the junctions of possible loading concentration (U- Station) - 43 stations in total, and S' , which includes the stations where the loading of grain unit trains is not relevant - 587 stations in total.

Determination of areas of possible grain load-

ing concentration. Based on the found subset of junction stations S* the areas of possible grain loading concentration Ru (5) are formed, according to the territorial proximity of V-stations to the junction U-station (6). For each junction station su* at the first step of the formation procedure of the corresponding area Ru (5): Qr=qu, f = 0, (QreRu, feRu, quesu). Next, the i-th row of the distance matrix L (1) corresponding to the station su* is analyzed and those stations sjeS j=1, 2,-z), for which the condition lj < lmax (6) is true, are included in the set Ru. At the same time for the area Ru the following parameters are recalculated:

Qr = Qr + q}, f = f+1, (q} e s}.).

With the help of this procedure, the set R = (Ri, R2,..., Ru,..., Rm} was formed, which includes 43 areas (m=43) of the possible grain loading concentration (Table 1).

Table 1

Areas of possible grain loading concentration

No. Region . * Junction station su Total loading, wag / year Loading at station su , wag / year Stations of loading concentration area Ru

1 2 3 4 5 6

1 Chernihiv Linovitsyi 9831 2288 Priluki, Piryatin

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2 Cherkasy Drabovo-Baryat. 8897 2905 Palmira, Maryanovka, Grebenka

3 Chernihiv Priluki 8496 5675 Linovitsyi, Galka

4 Poltava Grebenka 8325 365 Drabovo-Baryatinskaya, Maryanovka, Piryatin, Lazorki

5 Poltava Yuskovtsyi 8175 1077 Sula, Belovodyi, Andreyashevka, Lokhvitsa

6 Cherkasy Uman 8148 1151 Hristinovka, Potash

7 Cherkasy Palmira 8119 3089 Drabovo-Baryatinskaya, Zolotonosha-1

8 Poltava Romodan 7895 3110 Mirgorod, Horol, Sencha

9 Poltava Piryatin 7708 1868 Maryanovka, Linovitsy, Lazorki, Grebenka

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2017, № 2 (68)

Continuation of table 1

10 Cherkasy Maryanovka 7676 2538 Drabovo-Baryatinskaya, Piryatin, Grebenka

11 Cherkasy Nosovka 7353 2426 Nezhin, Bobrovitsyi

12 Sumy Toropilovka 7121 5016 Sumy, Syrovatka, Basyi, Golovashevka

13 Sumy Sumy 7121 1047 Toropilovka, Syrovatka, Basyi, Golovashevka

14 Sumy Syrovatka 7010 590 Basyi, Toropilovka, Sumy, Boromlya

15 Cherkasy Hristinovka 6876 5134 Uman, Monastyrishche

16 Poltava Mirgorod 6813 3273 Romodan, Gogolevo, Melashenkovo

17 Poltava Sula 6744 4417 Yuskovtsyi, Andreyashevka Lohvitsa, Sencha

18 Kirovohrad Aleksandriya 5875 732 Koristovka, Korolevka, Pantaevka, Schastlivaya

19 Cherkasy Monastyrishche 5725 591 Hristinovka

20 Kirovohrad Korolevka 5632 708 Schastlivaya, Koristovka, Aleksandriya

21 Sumy Belovodyi 5495 1835 Romnyi, Yuskovtsyi, Andreyashevka

22 Cherkasy Zolotonosha 1 5214 2125 Zolotonosha 1, Palmira

23 Poltava Horol 4768 1108 Romodan, Veselyiy Podol, Petrovka

24 Sumy Romnyi 4418 2154 Belovodyi, Andreyashevka

25 Kirovohrad Novoukrainka 4221 1537 Pomoshnaya, Kapustino, Pletenyiy Tashlyik

26 Kiev Ustinovka 4106 866 Fastov-1, Belaya Tserkov

27 Poltava Seleshchina 4105 1683 Karlovka, Bozhkov

28 Poltava Karlovka 4020 2251 Seleschina, Lannaya

29 Kiev Yagotin 3911 3911 -

30 Cherkasy Gorodishche 3823 418 Korsun, Signaevka, Tsvetkovo

31 Kirovohrad Koristovka 3758 2075 Aleksandriya, Korolevka, Pantaevka

32 Vinnytsia Kryzhopol 3640 1197 Vapnyarka, Knyazhevo, Popelyuhi

33 Lugansk Starobelsk 3570 3570 -

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 2 (68)

End of the table 1

34 Kirovohrad Pomoshnaya 3498 1563 Novoukrainka, Lyudmilovka

35 Poltava Reshetilovka 3494 3064 Fedunka, Sagaydak, Brateshki, Umantsevka

36 Vinnytsia Vapnyarka 3423 1494 Knyazhevo, Kryizhopol

37 Vinnytsia Knyazhevo 3423 732 Vapnyarka, Kryizhopol

38 Khmelnitsky Kamenets-Podol. 3248 3248 -

39 Kharkiv Savintsy 3163 1955 Zakomelskaya, Balakleya

40 Kharkiv Zakomel'skaya 3149 824 Savintsyi, Izyum

41 Poltava Globino 3108 2237 Veselyiy Podol, Rublevka

42 Cherkasy Kamenka 2948 880 Im. Tarasa Shevchenko, Fundukleevka

43 Kirovohrad Kapitanovka 2833 350 Signaevka, Novomirgorod, Serdyukovka

In total m=43 areas included n=82 stations: 43 junction (U-stations) and 39 non-junction (V- stations). The condition (6) is not fulfilled for the remaining non-junction stations, i.e. they are located from the nearest junction station at a distance greater than lmax.

For each formed concentration area Ru (Ru c R) the condition (7) is checked i.e. the sufficiency of the total annual volume of grain loading at the stations of the area for sending of at least one grain unit train per week from the corresponding junction station su*. If the condition (7) is not fulfilled, then this area is excluded from further calculations. As can be seen from Table 1, the total volumes of annual grain loading in concentration areas on the basis of Kamenka and Kapitanovka stations are less than Qmin=3000 wag/year; therefore, the areas R42 and R43 are excluded. Thus, in the list of m=41 area there are n=76 stations (41 junction U-station and 35 non-junction V-stations). It should also be noted that some areas include only junction stations: R29 (Yagotin), R33 (Starobelsk) and R38 (Kamenets-Podolskiy), own grain loading at which exceeds Qmm.

Selection of effective areas of grain loading concentration. Analysis of Table 1 shows that the majority of the obtained sets Ru (u=1, 2,., 41) are overlapping, i.e. one or several elements (stations) of one set (area) are simultaneously elements of

other sets (areas). For example, Lazorka non-junction station belongs to the areas R4 (Grebenka) and R9 (Piryatin), while Linovitsyi junction, in addition to the R1 area, is also part of the areas R3 (Priluki) and R9 (Piryatin). At the same time, there are several disjoint sets, the elements of which are part of only one set, for example, R11 (Nosovka), R29 (Yagotin).

Thus, in the resulting set R it is necessary to select the subset R*, all of m* elements of which (loading concentration areas Ru, u=1, 2,., m ) are mutually disjoint sets. Herewith, the total volume of grain loading in the final subset R* must be the maximum, and the total amount of costs associated with the concentration of grain loading and the making up of grain unit trains must be minimal (3),

i.e.:

|Q( R*) \E (R*)

► max • min

^ max

I Qr o-) i=1 m

IE- ^ min

(4)

i=1

The required subset R* c R is the union of disjoint sets R* (u=1, 2,., m*), for which the objective function (4) reaches an extremum.

To solve this problem, the following procedure was developed. Initially, disjoint and overlapping

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 2 (68)

subsets Ru (uu=1, 2,..., m) are distinguished in the original set R (Table l). For this purpose, one of the DSU (disjoint set union) algorithms can be used [2, 12]. The result of this algorithm is the matrix G = jguvj (u=1, 2,..., m; v=1, 2,..., m), where each row u and column v correspond to a certain set (concentration area) Ru and Rv, respectively (Table 1), and each element of the matrix guv is a list of stations si (si e S), which are simultaneously included in the areas (sets) of Ru and Rv. In case if guv= {0}, the sets Ru and Rv are disjoint and are included in the resulting subset R c R. If guv^ {0}, then the sets Ru and Rv are overlapping; herewith the following options are possible:

- common elements of the sets Ru and Rv are only junction U-stations (for example, areas of concentration R32 -Kryzhopol, R36 -Vapnyarka, R37 - Knyazhevo);

- common elements of the sets Ru and Rv are only non-junction F-stations (for example, An-dreashevka station for the areas R17 -Sula and R24 -Romnyi);

- common elements of the sets Ru and Rv are both junction and non-junction stations (for example, the areas R12 -Toropilovka and R24 - Sumy).

It is necessary to redistribute common elements for all pairs of overlapping sets Ru and on their basis to form such sets R*, that the objective function (4) reaches an extremum. The above problem (4) can be solved by methods of the optimal set partitioning theory [8]; however, these methods are rather laborious and require a considerable amount of computation. The specificity of this problem allows us to obtain a solution by more simple methods.

We transform the matrix G into the matrix X=|xut| (u=1, 2,., m; t=1, 2,., n), in which each row u corresponds to a certain set (area) Ru (Table 1), and each column t - to a definite U-station or F-station. Each element of the matrix is the Boolean variable xut = {0; 1}, which takes the values xut = 1, if the station st can be included in the concentration area Ru (ste Ru), and xut = 0 otherwise (stg Ru). Each station st corresponds to a certain value of the average annual amount of grain loading qt (1), as well as a certain parameter eut, which characterizes the value of additional costs when the station st is included in the loading concentration area Ru. st Ru. The objective function

(4) in this case takes the following form:

m n

Y^qxt ^ max

u=1 t=1 m n

f m n \

I&Xut

u=1 t=1

Y^eutxut ^ min

u=1 t=1

-He

V u =1 t=1

^ max

(5)

It should be noted that determining the values of the parameter eut for each grain loading station directly in monetary terms is a very complex and time-consuming task. In this connection we accepted the parameterized scale of values eut {1; 10}, when eut = 1 corresponds to the minimum level of additional costs when including station st into the concentration area R*, and eut = 10 - to the maximum. The specific values of eut for each station at the stage of preliminary calculations are determined expertly.

Let us state the constraints of the problem:

(Vst)(£xut < 1), t = 1,2,...,/

(VR'XJqtxut > Qmn qtxut = 0),u = 1,2,...

(6)

m

(7)

(Vst i Ru)(xut = 0), u = 1,2,...,m; t = 1,2,...,n (8)

The constraint (6) means that each station st can be included in not more than one concentration

area R*, but it can be included in no area. The constraint (7) determines that the total volume of loading for each concentration area Ru* must not be less than Qmin (2), otherwise this region is excluded, and the stations included in it are redistributed among other areas. The constraint (8) excludes the possibility of adding the station st to the area R*, if this is not provided in the original set R (see Table 1).

The problem (5)-(8) in the above formulation is a multi-criteria (vector) optimization problem [18]; herewith, the peculiarities of the problem make it possible to assign it to problems of integer-linear programming with Boolean variables [11], for the solution of which it is expedient to transfer to a one-criterion optimization problem. For this purpose, we used the method of linear convolution with the standardization of criteria [5]; the objec-

u =1

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2017, № 2 (68)

tive function (11) in this case takes the following form:

m n m n

(wq Z Z qt xut We Z Z eutxut) ^ max ,

u=1 t=1

u=1 t=1

where qt0, e°ut - normalized values of the parameters of grain loading stations; wq, we - weight coefficients of the optimization criteria, the specific

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

values of which (in the range [0; 1]) are determined expertly

The resulting problem was solved with the help of the simplex method, modified for problems with Boolean variables [11]. As a result, the subset R , was formed, which is a union of disjoint sets Ru* ; each such set Ru* corresponds to a certain area, where the grain loading concentration is the most effective (Table 2).

Table 2

Effective areas of grain loading concentration

No. Multiple junction sU D* Stations of loading concentration area Ru Total loading, wag/year

1 Drabovo-Baryatinskaya Maryanovka, Grebenka 5808

2 Priluki Galka 6208

3 Uman Potash 3014

4 Romodan Horol, Sencha 4622

5 Piryatin Linovitsyi, Lazorki 4805

6 Nosovka Nezhin, Bobrovitsyi 7353

7 Toropilovka Sumy, Syirovatka, Basyi, Golovashevka 7121

8 Hristinovka Monastyirische 5725

9 Mirgorod Gogolevo, Melashenkovo 3703

10 Sula Yuskovtsyi, Lohvitsa 5911

11 Aleksandriya Koristovka, Korolevka, Pantaevka, Schastlivaya 5875

12 Zolotonosha 1 Zolotonosha-1, Palmira 5214

13 Romnyi Belovodyi, Andreyashevka 4418

14 Ustinovka Fastov-1, Belaya Tserkov 4106

15 Karlovka Seleschina, Lannaya 4020

16 Yagotin - 3911

17 Gorodishche Korsun, Signaevka, Tsvetkovo 3823

18 Kryzhopol Vapnyarka, Knyazhevo, Popelyuhi 3640

19 Starobelsk - 3570

20 Pomoshnaya Novoukrainka, Lyudmilovka 3498

21 Reshetilovka Fedunka, Sagaydak, Brateshki, Umantsevka 3494

22 Kamenets-Podolskiy - 3248

23 Zakomel'skaya Savintsyi, Izyum 3149

24 Globino Veselyiy Podol, Rublevka 3108

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 2 (68)

In the final solution, 70 stations are included in 24 grain loading concentration areas, which, with minimal additional costs, provides the maximum total volume of grain loading by unit trains with 109344 wag. per year.

Originality and practical value

The originality of the work lies in the fact that the authors, based on the modern mathematical apparatus of cluster analysis, set theory and multi-criteria optimization, developed the methodology for the formation of grain loading concentration areas on the Ukrainian railways network that takes into account both infrastructure-technological and economic factors.

Application of the developed method of grain loading concentration for the formation of unit trains will significantly reduce the logistics costs in the supply chain of grain to Ukrainian ports for export and, consequently, increase its competitiveness in foreign markets.

Conclusions

The performed researches allow drawing the following conclusions.

1. Ukraine is one of the world's largest grain exporters. At the same time, one of the main problems in the export of Ukrainian grain is a high

share of logistics costs, which reaches 35% of the final cost of production.

2. More than 95% of the grain is exported through the seaports of Ukraine, whereto the delivery is carried out mainly by rail transport by carload. One of the ways to reduce costs in the logistics chain of grain delivery to ports is the routing of rail traffic. The experience of the USA and Canada shows that the introduction of grain unit trains allows reducing the share of logistics costs up to 9%.

3. To organize the shipper routing of grain transportation by rail it is necessary to form a network of terminal elevators for grain loading concentration. Delivery of grain from linear to terminal elevators can be carried out by road.

4. The selection of junction stations and grain loading concentration areas is a complex task, which is proposed to be solved on the basis of cluster analysis, set theory and multi-criteria optimization.

5. Using the developed methodology, there are selected 24 areas of possible grain loading concentration on the Ukrainian rail network, which cover 70 stations and, with a minimum additional cost, provide for about 110,000 ths. wag. per year of unit trains (more than 7 million tons of grain).

LIST OF REFERENCE LINKS

1. Алгоритмы: построение и анализ / Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн. - Москва : ООО «И. Д. Вильямс», 2013. - 1328 с.

2. Андерсон, Т. В. Введение в многомерный статистический анализ / Т. В. Андерсон. - Москва : Физматгиз, 1963. - 360 с.

3. Ахо, А. Построение и анализ вычислительных алгоритмов / А. Ахо, Дж. Хопкрофт, Дж. Ульман. -Москва : Мир, 1979. - 536 с.

4. Вернигора, Р. В. Оценка уровня профессиональной подготовки дежурных по станции с использованием компьютерных тренажеров / Р. В. Вернигора, В. В. Малашкин // Транспортш системи i технологи перевезень : зб. наук. пр. Дшпропетр. нац. ун-ту залiзн. трансп. iм. акад. В. Лазаряна. - Дншропетровськ, 2015. - Вип. 10. - С. 29-37.

5. Дюран, Б. Кластерный анализ / Б. Дюран, П. Оделл. - Москва : Книга по требованию, 2012. - 128 с.

6. Енергетичний баланс Укра1ни за 2015 рш [Electronic resource] / Державна служба статистики Украши. -Available at: http://ukrstat.gov.ua/operativ/operativ2016/energ/en_bal/Bal_2015_u.zip. - Title from the screen. - Accessed : 03.03.2017.

7. Зак, Ю. А. Прикладные задачи многокритериальной оптимизации / Ю. А. Зак. - Москва : Экономика, 2014. - 455 с.

8. Збiрник тарифiв на перевезення вантаж1в залiзничним транспортом у межах Украши та повязаш з ними послуги. - Кшв : ТОВ «1нпрес», 2009. - 200 с.

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 2 (68)

9. Киселева, Е. М. Модели и методы решения непрерывных задач оптимального разбиения множеств: линейные, нелинейные, динамические задачи : монография / Е. М. Киселева, Л. С. Коряшкина. - Киев : Наук. думка, 2013. - 607 с.

10. Козаченко, Д. М. Удосконалення техшчного забезпечення та технологш експортних перевезень зернових вантаж1в в УкраМ / Д. М. Козаченко, Р. Г. Коробйова, Р. Ш. Рустамов // Вкн. Дшпропетр. держ. аграрно-економ. ун-ту. - 2015. - № 4. - С. 121-127.

11. Колодшчук, В. А. Ефектившсть лопстики зерна та продуклв його переробки : монографiя /

B. А. Колодшчук. - Львiв : Укр. бестселер, 2015. - 574 с.

12. Корбут, А. А. Дискретное программирование / А. А. Корбут, Ю. Ю. Финкельштейн. - Москва : Наука, 1969. - 368 с.

13. Мандель, И. А. Кластерный анализ / И. А. Мандель. - Москва : Финансы и статистика, 1988. - 215 с.

14. Обзор рынка зерновых [Electronic resource]. - Available at: http://www.igc.int/downloads/gmrsummary/gmrsummr.pdf. - Title from the screen. - Accessed : 03.03.2017.

15. Рустамов, Р. Ш. Оценка перспектив развития зерновой логистики в Украине / Р. Ш. Рустамов // Транспортш системи i технологи перевезень : зб. наук. пр. Дшпропетр. нац. ун-ту залiзн. трансп. iм. акад. В. Лазаряна. - Дншропетровськ, 2014. - Вип. 8. - С. 127-133.

16. Тарифное руководство № 4 железных дорог Украины. - Киев : Логос, 2001. - 403 с.

17. Укрзализныця оценивает дефицит зерновозов в 500-1000 вагонов ежесуточно [Electronic resource]. -Available at: http://cfts.org.ua/news/2016/10/06/ukrzaliznytsya_otsenivaet_defitsit_zernovozov_v_500_1000_ vagonov_ezhesutochno_36864. - Title from the screen. - Accessed : 03.03.2017.

18. Штойер, Р. Многокритериальная оптимизация. Теория, вычисления и приложения / Р. Штойер. -Москва : Радио и связь, 1992. - 504 с.

19. Энслейн, К. Статические методы для ЭВМ / К. Энслейн. - Москва : Наука, 1986. - 464 с.

20. Hauser, R. J. Implicit Values of Multiple Car Grain Loading Facilities in Iowa and Nebraska / R. J. Hauser, J. Beaulieu, C. P. Baumel // North Central J. of Agricultural Economics. - 1984. - Vol. 6. - Iss. 2. - Р. 80-90. doi: 10.2307/1349253.

21. Hyland, M. Analytical models of rail transportation service in the grain supply chain: Deconstructing the operational and economic advantages of shuttle train service / M. Hyland, H. Mahmassani, L. Mjahed // Transportation Research, Part E: Logistics and Transportation Review. - 2016. - Vol. 93. - Р. 294-315. doi: 10.1016/j.tre.2016.06.008.

22. Ndembe, E. Hard Red Spring Wheat Marketing: Effects of Increased Shuttle Train Movements on Railroad Pricing in the Northern Plains / E. Ndembe // J. of the Transportation Research Forum. - 2015. - Vol. 54, No. 2. - Р. 101-115.

23. Nightengale, E. A. Some Effects of Recent Changes in the Railway Grain-Rate Structure on Interregional Competition and Regional Development / E. A. Nightengale, J. Davidson, H. Ottoson // Transportation Problems and Policies in the Trans-Missouri West. - Lincoln : University of Nebraska Press, 1967. -Р. 77-102.

24. Railroad Revitalization and Regulatory Reform Act of 1976 [Electronic resource] : Public Law 94-210, § 801. - Available at: http://www.legisworks.org/GP0/STATUTE-90-Pg31.pdf. - Title from the screen. - Accessed : 03.03.2017.

25. Sarmiento, C. Spatial Modeling in Technology Adoption Decisions: The Case of Shuttle Train Elevators /

C. Sarmiento, W. Wilson // American J. of Agricultural Economics. - 2005. - Vol. 87. - Iss. 4. -Р. 1034-1045. doi: 10.1111/j.1467-8276.2005.00786.x.

26. Schnake, L. D. Inland grain elevator operating costs and capital requirements [Electronic resource] / L. D. Schnake, C. Jr. Stevensю // Kansas Agricultural Experiment Station. - 1983. - Bulletin 644. - P. 1-32. -Available at: https://www.ksre.k-state.edu/historicpublications/pubs/SB644.pdf. - Title from the screen. -Accessed : 03.03.2017.

27. Sparger, A. A comprehensive rail rate index for grain [Electronic resource] / A. Sparger, M. Prater. -Available at: http://ageconsearch.umn.edu/bitstream/147348/2/Rail%20Rate%20Index.pdf. - Title from the screen. - Accessed : 03.03.2017.

28. Staggers Rail Act of 1980 [Electronic resource] : Public Law 96-448. - Available at: https://www.gpo.gov/fdsys/pkg/STATUTE-94/pdf/STATUTE-94-Pg1895.pdf. - Title from the screen. - Accessed : 03.03.2017.

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 2 (68)

29. Wilson, W. U.S. grain handling and transportation system: factors contributing to the dynamic changes in the 1980s and 1990s [Electronic resource] / W. Wilson ; Dept. of Agricultural Economics, Agricultural Experiment Station, North Dakota State University. - Fargo, North Dakota, 1998. - 27 p. - Available at: http://ageconsearch.umn.edu/bitstream/23081/1/ae98004.pdf. - Title from the screen. - Accessed : 03.03.2017.

Д. М. КОЗАЧЕНКО1*, P. В. ВЕРНИГОРА2*, Р. Ш. РУСТАМОВ3*

1 Науково-дослдаа частина, Дтпропетровський нацюнальний ушверситет з^зничного транспорту iMeHi академжа В. Лазаряна, вул. Лазаряна, 2, Дншро, Украша, 49010, тел. +38 (056) 373 51 09, ел. пошта kozachenko@upp.diit.edu.ua, ORCID 0000-0003-2611-1350

2*Каф. «Станци та вузли», Дтпропетровський нацюнальний ушверситет залiзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Дншро, Украша, 49010, тел. +38 (056) 373 15 12, ел. пошта rv.vernigora@gmail.com, ORCID 0000-0001-7618-4617

3*Регюнальна фшя «Одеська залiзниця ПАТ «Укрзатзниця», вул. Пантелеймонiвська, 19, Одеса, Укра1на, 65012, тел. +38 (048) 727 30 96, ел. пошта rustamovrsh@gmail.com, ORCID 0000-0002-5860-1840

СТВОРЕННЯ ЕКСПОРТНО-ОР1еНТОВАНО1 МЕРЕЖ1 ЕЛЕВАТОР1В В УКРА1Н1

Мета. В науковш роботi необхiдно дослщити питання шдвищення ефективностi експортних залiзничних перевезень зернових вантажiв в Укрш'т за рахунок впровадження в1дправницько1 маршрутизаци та концен-трацii навантаження зерна на вузлових елеваторах. Методика. Як сввдчить досвiд США й Канади, одним iз ефективних напрямкiв зниження витрат у логiстичному ланцюзi доставки зерна в порти е ввдправницька маршрутизация залiзничних перевезень. Вiдправницька маршрутизащя перевезень зернових вантажiв перед-бачае концентращю 1х навантаження на вузлових станциях. Вибiр вузлових станцiй пропонуеться здшснюва-ти з використанням методiв кластерного аналiзу. Для формування райошв концентрацii навантаження зерна використанi методи теори множин i багатокритерiальноi оптишзаци. Результата. На основi агломеративно-го алгоритму кластерного аналiзу на мережi залiзниць Украши видiленi вузловi станци та сформованi райо-ни можливо! концентрацii навантаження зерна. З використанням DSU-алгоритму видiленi пересiчнi й непе-ресiчнi райони концентрацii. Задача вибору непересчних районiв концентрацii навантаження зерна формалiзована як задача багатокритерiального цшочислового програмування з булевими змiнними. У результат розв'язання цiеi задачi за допомогою модифжованого симплекс-методу на мереж залiзниць Укра!ни видiлено 24 райони можливо! концентрацii навантаження зерна, яш охоплюють 70 станцiй та при мшмальних додаткових витратах забезпечують вщправницьку маршрутизацiю близько 7,5 млн т. зерна в рш. Наукова новизна. На основi сучасного математичного апарата авторами розроблена методика вибору вузлових станцш та райошв концентраци навантаження зернових вантажiв на мережi залiзниць Укра!ни з урахуванням економiчноi ефективносп процесу. Практична значимiсть. Застосування розроблено! методики концентрацii навантаження зерна для формування вщправницьких маршрутiв дозволить суттево знизити лопстичш витрати в ланцюзi постачання укра1нського зерна в морсьш порти на експорт i, вщповщно, п^двищити його конкурентоспроможнiсть на зовшшшх ринках.

Ключовi слова: експорт зерна; елеватори; залiзничнi перевезення; в^дправницька маршрутизащя; концентрация навантаження

Д. Н. КОЗАЧЕНКО1*, P. В. ВЕРНИГОРА2*, Р. Ш. РУСТАМОВ3*

1 Научно-исследовательская часть, Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 51 09, эл. почта kozachenko@upp.diit.edu.ua, ORCID 0000-0003-2611-1350

2*Каф. «Станции и узлы», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 15 12, эл. почта rv.vernigora@gmail.com, ORCID 0000-0001-7618-4617

3*Региональный филиал «Одесская железная дорога» ПАО «Укрзализныця», ул. Пантелеймоновская, 19, Одесса, Украина, 65012, тел. +38 (048) 727 30 96, эл. почта rustamovrsh@gmail.com, ORCID 0000-0002-5860-1840

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 2 (68)

ЕКСПЛУАТАЦ1Я ТА РЕМОНТ ЗАСОБ1В ТРАНСПОРТУ

СОЗДАНИЕ ЭКСПОРТНО-ОРИЕНТИРОВАННОЙ СЕТИ ЭЛЕВАТОРОВ В УКРАИНЕ

Цель. В научной работе необходимо рассмотреть вопрос повышения эффективности экспортных железнодорожных перевозок зерновых грузов в Украине за счет внедрения отправительской маршрутизации и концентрации погрузки зерна на узловых элеваторах. Методика. Как свидетельствует опыт США и Канады, одним из эффективных направлений снижения расходов в логистической цепи доставки зерна в порты является отправительская маршрутизация железнодорожных перевозок. Отправительская маршрутизация перевозок зерновых грузов предусматривает концентрацию их погрузки на узловых станциях. Выбор узловых станций предлагается осуществлять с использованием методов кластерного анализа. Для формирования районов концентрации погрузки зерна использованы методы теории множеств и многокритериальной оптимизации. Результаты. На основе агломеративного алгоритма кластерного анализа на сети железных дорог Украины выделены узловые станции и сформированы районы возможной концентрации погрузки зерна. С использованием DSU-алгоритма выделены пересекающиеся и непересекающиеся районы концентрации. Задача выбора непересекающихся районов концентрации погрузки зерна формализована как задача многокритериального целочисленного программирования с булевыми переменными. В результате решения этой задачи с помощью модифицированного симплекс-метода на сети железных дорог Украины выделено 24 района возможной концентрации погрузки зерна, которые охватывают 70 станций и при минимальных дополнительных расходах обеспечивают отправительскую маршрутизацию около 7,5 млн т. зерна в год. Научная новизна. На основе современного математического аппарата авторами разработана методика выбора узловых станций и районов концентрации погрузки зерновых грузов на сети железных дорог Украины с учетом экономической эффективности процесса. Практическая значимость. Применение разработанной методики концентрации погрузки зерна для формирования отправительских маршрутов позволит существенно снизить логистические расходы в цепи поставки украинского зерна в морские порты на экспорт и, соответственно, повысить его конкурентоспособность на внешних рынках.

Ключевые слова: экспорт зерна; элеваторы; железнодорожные перевозки; отправительская маршрутизация; концентрация погрузки

REFERENCES

1. Cormen, T. H., Leiserson, C. E.; Rivest, R. L., & Stein, C. (2013). Introduction to Algorithms (3rd ed.). Moscow: I. D. Vilyams.

2. Anderson, T. V. (1963). Vvedeniye v mnogomernyy statisticheskiy analiz. Moscow: Fizmatgiz.

3. Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1979). The design and analysis of computer algorithms. Moscow: Mir.

4. Vernigora, R. V., & Malashkin, V. V. (2015). Assessment training level of railway dispatchers using computer simulators. Transport Systems and Transportation Technologies, 10, 29-37. doi: 10.15802/tstt2015/57063

5. Duran, B. S., & Odell. P. L. (2012). Cluster Analysis. Moscow: Kniga po trebovaniyu.

6. State Statistics Service of Ukraine. (2016). Energy balance of Ukraine for 2015 year. Retrieved from http://ukrstat.gov.ua/operativ/operativ2016/energ/en_bal/Bal_2015_u.zip

7. Zak, Y. A. (2014). Prikladnyye zadachi mnogokriterialnoy optimizatsii. Moscow: Ekonomika.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

8. Ministry of Infrastructure of Ukraine. (2009). Zbirnyk taryfiv na perevezennia vantazhiv zaliznychnym transportom u mezhakh Ukrainy tapoviazani z nymyposluhy. Kyiv: TOV «Inpres».

9. Kiseleva, Y. M., & Koryashkina, L. S. (2013). Modeli i metody resheniya nepreryvnykh zadach optimalnogo razbieniya mnozhestv: lineynyye, nelineynyye, dinamicheskiye zadachi. Kyiv: Naukova dumka.

10. Kozachenko, D. M., Korobyova, R., & Rustamov, R. (2015). Improving of technical means and technologies of grain transportation for export in Ukraine. Visnyk Dnipropetrovs'kogo derzhavnogo agrarno-economichnogo universytetu, 4, 121-127.

11. Kolodiichuk, V. A. (2015). Efektyvnist lohistyky zerna taproduktivyoho pererobky. Lviv: Ukrainskyi bestseler.

12. Korbut, A. A., & Finkelshteyn, Y. Y. (1969). Diskretnoye programmirovaniye. Moscow: Nauka.

13. Mandel, I. A. (1988). Klasternyy analiz. Moscow: Finansy i statistika.

14. International Grains Council. (2016 November, 24). Obzor rynka zernovykh. Retrieved from http://www.igc.int/downloads/gmrsummary/gmrsummr.pdf

HayKa Ta nporpec TpaHcnopTy. BÍCHHK .OHmponeTpoBCLKoro Ha^oH&ntHoro yHÍBepcHTeTy 3&nÍ3HHHHoro TpaHcnopTy, 2017, № 2 (68)

15. Rustamov, R. (2014). The assessment of the prospects for the development of grain logistics in Ukraine.

Transport Systems and Transportation Technologies, 8, 127-133. doi: 10.15802/tstt2014/38101

16. Ministry of Infrastructure of Ukraine. (2001). Tarifnoye rukovodstvo №4 zheleznykh dorog Ukrainy. Kyiv: Logos.

17. Centre for Transport Strategies. (2016 October, 06). Ukrzaliznytsya otsenivayet defitsit zernovozov v 500-1000 vagonov ezhesutochno. Retrieved from http://cfts.org.ua/news/2016/10/06/ukrzaliznytsya_otsenivaet_defitsit_zernovozov_v_500_1000_vagonov_ezhe sutochno_36864

18. Shtoyer, R. (1992). Mnogokriterialnaya optimizatsiya. Teoriya, vychisleniya i prilozheniya. Moscow: Radio i svyaz.

19. Ensleyn, K. (1986). Staticheskiye metody dlya EVM. Moscow: Nauka.

20. Hauser, R. J., Beaulieu, J., & Baumel, C. P. (1984). Implicit Values of Multiple Car Grain Loading Facilities in Iowa and Nebraska. North Central Journal of Agricultural Economics, 6(2), 80-90. doi: 10.2307/1349253

21. Hyland, M., Mahmassani, H., & Mjahed L. (2016). Analytical models of rail transportation service in the grain supply chain: Deconstructing the operational and economic advantages of shuttle train service. Transportation Research, Part E: Logistics and Transportation Review, 93, 294-315. doi: 10.1016/j.tre.2016.06.008

22. Ndembe, E. (2015). Hard Red Spring Wheat Marketing: Effects of Increased Shuttle Train Movements on Railroad Pricing in the Northern Plains. Journal of the Transportation Research Forum, 54(2), 101-115.

23. Nightengale, E. A., Davidson, J., & Ottoson, H. (1967). Some Effects of Recent Changes in the Railway Grain-Rate Structure on Interregional Competition and Regional Development. Transportation Problems and Policies in the Trans-Missouri West, 77-102.

24. Railroad Revitalization and Regulatory Reform Act, Public Law 94-210, § 801. (1976). Retrieved from http://www.legisworks.org/GP0/STATUTE-90-Pg31 .pdf

25. Sarmiento, C., & Wilson, W. W. (2005). Spatial Modeling in Technology Adoption Decisions: The Case of Shuttle Train Elevators. American Journal of Agricultural Economics, 87(4), 1034-1045. doi: 10.1111/j.1467-8276.2005.00786.x

26. Schnake, L. D., & Stevens, C. A. (1983). Inland grain elevator operating costs and capital requirements. Bulletin: Kansas Agricultural Experiment Station, 644. Retrieved from https://www.ksre.k-state.edu/historicpublications/pubs/SB644.pdf

27. Sparger, A., & Prater M. E. (2013). A comprehensive rail rate index for grain. U.S. Department of Agriculture. doi: 10.9752/TS060.04-2013

28. Staggers Rail Act, Public Law 96-448. (1980). Retrieved from https://www.gpo.gov/fdsys/pkg/STATUTE-94/pdf/STATUTE-94-Pg1895.pdf

29. Wilson, W. W. (1998). U.S. grain handling and transportation system: factors contributing to the dynamic changes in the 1980s and 1990s. Fargo, North Dakota: Department of Agricultural Economics, Agricultural Experiment Station, North Dakota State University. Retrieved from http://ageconsearch.umn.edu/bitstream/23081/1/ae98004.pdf

Prof. V. I. Bobrovskiy, D. Sc. (Tech.), (Ukraine), Prof. O. M. Ogar, D. Sc. (Tech.), (Ukraine) recommended this article to be published

Accessed: Dec. 15, 2016 Received: March 24, 2017

i Надоели баннеры? Вы всегда можете отключить рекламу.