УДК 004.65
© Содоо Чадраабал, Капил Обераи, Шива Редди Создание базы данных для приложения HealthGIS
В настоящее время сетевая географическая информационная система все чаще используется организациями здравоохранения и различными сервисами, оказывающими социальные и медицинские услуги, эта система наглядно демонстрирует необходимость создания данных для здравоохранения в тесной связи с географическими данными. С развитием общественной информации и проблемами, возникающими в системе сетей наблюдения, очень актуальным становится вопрос предоставления информации людям, которые реально нуждаются в этом. У людей должен быть прямой доступ к информации о различных медицинских учреждениях и оборудованию при помощи выхода в интернет, через мобильный телефон и прочих устройств. Это поможет им экономить время, кроме того будет экономить транспортные расходы. Географическая информационная система (ГИС) и вэбГИС будут служить инструментом, способствующим достижению этой цели.
Данный проект содержит в себе создание базы данных ГИС Здоровье для CHSS (Contributory Health Service Scheme) с использованием открытых источников. Это приложение будет обеспечивать сотрудников HRS информацией о специалистах, докторах и т.д. больниц, лабораторий, и на панели CHSS будет возможность поиска местоположения пользователя.
Основные задачи проекта:
Сбор данных
Сбор недостающих данных о местоположении больниц, лабораторий, специалистов, докторов и т. д.
Организация данных о существующих (из предыдущего проекта) CHSS больниц, лабораторий и т.д. в базе данных.
Ключевые слова: GPS, PostgreSQL, PostGIS, QGIS.
Ch. Sodoo, Mr. Kapil Oberai, Mr. K. Shiva Reddy Creating Database for HealthGIS Application
Nowadays web-based GIS is being increasingly utilized by health organizations and social health services to share and visualize geo-referenced health data through the Web. In the development of a public information and disease surveillance network, issues ofprovid-ing information to people who really need it are important concerns. People should have instant access to the information of the health facilities by using internet connection from mobile and desktop devices. This will help them in saving time and will be economical to approach the facilities. Geographical Information system (GIS) and webGIS provides the tools for achieving all these things.
This project work involves creating HealthGIS application database for CHSS (Contributory Health Service Scheme) of IIRS by using open source tools. This application will provide IIRS employees information related to the AMO/specialists, doctors, etc. hospitals/pathology labs under the CHSS panel and searching capabilities based on user location. The major objectives of this project are:
Data collection:
Collecting missing location data of specialist doctors, hospitals, pathology labs, etc.
Ch. Sodool, Mr. Kapil Obérai, Mr. K. Shiva Reddy. Создание базы данных для приложения HealthGIS
Organizing data about existing (from past project) CHSS beneficiaries, AMOs, hospitals, pathology labs, etc. in spatial database.
Keyword: GPS, PostgreSQL, PostGIS, QGIS.
Geographic information system is combination of software system and hardware systems which allow users to capture, store, analyze and manage spatially referenced data. Web based GIS is been increasingly utilized by health organizations and social health services to share and visualize geo-referenced health data through the Web. In the development of a public information and disease surveillance network, issues of providing information to people who really need it are important concerns. People should have instant access to the information of the health facilities. Internet serves as the best means of providing such information which could be accessed via mobile or desktop devices. Such instant access to health GIS information will help users in saving time and money to reach the facilities. Geographical Information system (GIS) and WebGIS provides the tools for achieving all these things.
This project work involves creating health application database for WebGIS application for CHSS (Contributory Health Service Scheme) beneficiaries of IIRS by using open source tools. This application will provide IIRS employees and students (including CSSTEAP students) information related to the AMO/specialists doctors and medical facilities.
Introduction
Background
Nowadays computers have become the most important tool in many aspects of human life. People should have instant access to the information of the health facilities. Internet serves as the best means of providing such information which could be accessed via mobile or desktop devices. Such instant access to health GIS information will help users in saving time and money to reach the facilities. Geographical Information system (GIS) and WebGIS provides the tools for achieving all these things.
Aim of this project is to develop WebGIS based application for CHSS (Contributory Health Service Scheme) of IIRS by using open source tools. Such open source tools are already developed and it's freely available on internet.
This application will provide IIRS employees and students information related to the AMO/specialists doctors, hospitals/pathology labs in the CHSS panel and searching capabilities based on user location.
Objectives
The main objective of this project is to provide the staff of IIRS with the required information about the health facilities that can serve their needs whenever required by using WebGIS based application. In this paper we only assume how to create database for this WebGIS based application. The objectives are:
Data collection:
Collecting missing Spatial data of specialist doctors, hospitals and pathology labs.
Organizing collected data (new and existing) of CHSS beneficiaries AMOs, doctors, hospitals, pathology labs, etc. in spatial database.
Literature Review
GIS can be used to support health care policy development, analyze public health care parameters, provide critical information in a timely manner, coordinate medical response measures, monitor climatic events, and educate decision makers and general public. The data used in these applications cover the health, environmental, and social economic sources [1]. Common data include hospital and emergency room admissions, ambulance databases, patient's location at the time of incidents, cumulative ambient concentrations obtained from air-monitoring and weather stations, questionnaire survey and interview data, hospital staff data, remote sensing images which were used to extract land cover, groundwater-surface water hydrologic fluxes and water quality data, demographic statistics, and economic vectors. The main types of health GIS applications are discussed in the following subsections.[2]
Health Facility Distribution
GIS provides with the abilities to describe the spatial organization of health care (numbers, types, and locations), examine the changing spatial distribution of health care systems, and explore improvements of health care delivery [3; 4]. The population (age, income, gender, race), access cost (time, distance), health facility capacities have been taken into consideration in health facility planning and distribution evaluation [5; 6]. GIS can be used to identify population segments vulnerable to varied geographical access to critical medical treatment, provide optimal routes for emergency responses, assess resource allocations, Lwasa [7] carried out a study to show the capability of GIS technologies in the provision of information required for the planning of health facilities in Uganda, with the ability to increase access to the public as well as the understanding of spatial distribution of facilities. The use of GIS in health care applications can help stakeholders and policy makers in effectively distributing health care resources to overcome geographical inequalities in accessing health care among different population groups.
Health Care and Education
GIS and the internet technology have brought a new possibility for the general public to visualize and analyze health data. They facilitate public access, awareness, and participation in health decision making. Maps can be created to the general public for alerting them to the distribution of disease agents. Using utilization of maps, it is easier to explain the geographical variation of health exposure. People can be informed about the environmental hazards which are surrounding them and prepare themselves for outbreak of disease. GIS also helps the public for efficiently locating the nearest health facilities. GIS programs and its courses are applied in many medical schools and health associations.
Data Collection
This project work involves collecting data about IIRS CHSS Beneficiaries (both serving and retired), AMOs, Specialist doctors and various medical facilities. Existing spatial and non-spatial data from the past IIRS student project work [8] about CHSS beneficiaries, AMOs, Specialist doctors and various medical facilities were used as the base data for the project.
Ch. Sodool, Mr. Kapil Obérai, Mr. K. Shiva Reddy. Создание базы данных для приложения HealthGIS
Subsequently this data set was cross check with the official list of authorized AMOs, specialist doctors and medical facilities taken from the IIRS administration section.
List of Recognized /Revalidated AMOs ! Specialist / Investigation Centres / Patbology Labs/Hospital etc. uuder CHSS.
AUTHORISED MEDICAL OFFICERS {AMOs)
1. Dr. (Sqn. Ldr) Arnn Jeet Dhir Astlev Hall. Dehradim
EfeiSS^ © 2653631
57, Araghar, Dehradun. (® 2671863. ®
2. Dr. (Mrs.) Naresh Bhandari, D.L. Raod. Dehradun. Phone : 2741271
New CanttEjoad, Hathibarkala. Dehradim.
3. Dr. Rakesh Minal,
43, Tagore Villa. Dehradim.
Phone : £ 2715650, ® 2621598, 2629670.
SPECIALIST DOCTORS
Ear. Xose & Throat:
1. Dr. 3. Kumar Clinic,
13 2 New Rûad (Opp. MKP College), Dehradun.
Phone: © 2656600. ® 2654730.
Dr. Ashv-ing Garg, Garg Ear Nose Throat Clinic, Amba Complex, 112, .Qiahrata.Road, Near Krishan Nagar Chowt, Dehradim Phone: 2531188.
Figure 1. Partial List of Authorized AMOs, specialist doctors and medical facilities obtained from the IIRS administration section
It was observed that specialist doctor's data was not available. Moreover data on 16 medical facilities were missing from the total of 37 authorized medical facilities.
All missing location of medical facilities and doctors were collected using GPS device. Number of collected locations of medical facilities and doctors were shown below:
16 medical facilities (Hospitals, Clinics, Medical lab, etc.)
14 specialist doctors (Dentil, Child, Skin, Gynecologist & Dermatologist, Neurosurgery & Neurology, Psychiatry Specialist, etc.)
Organizing data
The data collected about CHSS Beneficiaries, AMOs, Specialist Doctors and Medical facilities was initially stored in the excel file and later the data was converted into spatial format (shapefile) using QGIS software. The data was properly organised in shapefile using the below ER diagram.
Figure 2. ER Diagram
The point location data (longitude, latitude) of above three datasets were initially in DD:MM:SS format, so they were converted into decimal degrees using excel software by using the following formula:
DD=Degree+(Minute+Second/60)/60
Id Lat(Office) Long(Office) Name Type Office_Address Phone_Office
DR001 30.3174833 78.0432625 Dr. B. Kumar Clinic Specialist Doctor Dr. B. Kumar Clinic, 13/2 New Road (Opp. MKP Col 2656600
DR002 30.33251 78.0278094 Dr. Ashwing Garg Specialist Doctor Dr. Ashwing Garg, Garg Ear Nose Throat Clinic, Am 2531188
DR003 30.3168028 78.0470489 Dr. Mukesh Danda Specialist Doctor Dr. Mukesh Danda, 20/2, New Road, Dehradun 2654445
DR004 30.3167436 78.0430603 Dr. Naveen Sardana Specialist Doctor Dr. Naveen Sardana, 1, Paltan Bazar, Ghoshi Gali, [2653493,265766!
DR005 30.3369167 78.0561778 Dr. Sachin Rastogi Specialist Doctor Dr. Sachin Rastogi, Rastogi Dental Clinic, ChanakyaTower, Dilaram Ba;
DR006 30.2966667 78.0551694 Dr. Nitish Kamboj Specialist Doctor Dr. Nitisli Kamboj, Luxmi Dental Care & Implant Ce 3201049
DR007 30.3264803 78.0351111 Dr. B.S. Judge Specialist Doctor Dr. B.S. Judge, Tagore Villa, Dehradun 2657902
DR008 30.3256806 78.0166694 Dr. (Mrs.) Neelam Tiwari Specialist Doctor Dr. (Mrs.) NeelamTiwari, 6,Tilak Road, Dehradun 2629395
DR008 30.3267019 78.0316928 Dr. (Mrs.) Neelam, Tiwari Specialist Doctor Dr. (Mrs.) Neelam, Tiwari Nursing Home, 3, Chakrata Road, Near Bind
DR009 30.3194139 78.0429306 Dr. (Mrs.) Latika Joshi Specialist Doctor Dr. (Mrs.) LatikaJoshi, 1, New Road, Dehradun 2653902
DR009 30.3171111 78.0492167 Dr. (Mrs.) LatikaJoshi Specialist Doctor Dr. (Mrs.) Latika Joshi Nursing home, 44, E.C road, Dehradun
DR010 30.3288889 78.0495222 Dr. Shashendera Saxena Specialist Doctor Dr. Shashendera Saxena, 30/13-A, Subhash Road, 2740497
DR011 30.3146097 78.03563 Dr. P.K. Gupta Specialist Doctor Dr. P K Gupta, Gandhi Road, NearJain Dharamsha 2621343
DR012 30.3281944 78.0465944 Dr. Bhushan Kumar Specialist Doctor Dr. Bhushan Kumar, 15, Astley Hall, Rajpur Road, [ 2658054
Figure 3. Data (location and attribute) collected about Specialist doctors under CHSS panel in excel format
Later the non-spatial information details were also added as fields in the excel sheet. For example the figure below shows the list of Specialist doctors with non-spatial data like name, office address, phone numbers etc. added to the excel file as shown below
The above steps were repeated for all the three datasets.
Creation of Layers
Ch. Sodool, Mr. Kapil Obérai, Mr. K. Shiva Reddy. Создание базы данных для приложения HealthGIS
The prepared tabular data in excel format of AMOs&doctors, CHSS Beneficiaries and medical facilities were converted into shapefile by using QuantumGIS. The steps involved are:
Open the spreadsheet in Microsoft Excel. Save as a delimited text file. Commas are chosen to use as the delimiter.
Choosing Create layers ("Create a layer from delimited Text file") option in QGIS to convert tabular data containing spatial information into shapefile.
Figure 4. Creating shapefile from excel sheet in QGIS
The figure below shows the output of running the "Create a layer from delimited Text file" option in QGIS on AMOs & Specialists doctors and medical facilities dataset.
Eit Urr ^ bb ГШ** Pnxsss*, \и>
Ш в H ВДВ S - Ci % 1 Is-C a ' »'
iiit
Figure 5. Shapefile of doctors and medical facilities datasets Shapefile of CHSS beneficiaries was similarly created. The figure below shows the CHSS beneficiaries dataset converted into shapefile in QGIS.
Figure 6. Shapefile of CHSS beneficiaries in QGIS
The figure below shows the map composition with all the three layers overlaid on the Dehradun ward map.
IIRS CHSS Beneficiaries
€ 1,000 2,000
4,000 Meters _I
Legend
Doctors & AMOs
+ AMOs ф Specialist Doctor
О Medical Facilities CHSS_beneficiaries
A Retired A V&rking
Dehradun Ward
Figure 7. Dehradun ward map with overlaid layer of IIRS Beneficiaries, Doctors & AMOS & Medical facilities.
Ch. Sodoo1, Mr. Kapil Oberai, Mr. K. Shiva Reddy. Создание базы данных для приложения HealthGIS
DataBase Creation
The above created shapefiles were organised and stored in PostGIS databases. For the same OpenGeoSuite[8] was used, which provide all the ingridient including simple interface for creating geo-spatial web based application. It integrates all the major software like Postgresql& PostGIS, geoserver and openlayers in one single pacakge instead of installing and configuring them seperately.
PostGIS along with PostgreSQL was used as backend spatial database. PostGIS is a spatial database extender for PostgreSQL object-relational database. It adds support for geographic objects allowing location queries to be run in SQL. PostGIS Shapefile Import/Exporter tool was used to dump the shapefiles into the backend database.
Figure 8. OpenGeo Suite software
Figure 9. Importing Shapefile into PostGIS
Similarly all the othetr layers including dehradun ward map was stored in post-
gis.
Figure 10. IIRS's CHSS spatial database containing the data on doctors and medical facilities
Conclusions
During Creation of this database for CHSS beneficiaries, it is observed that webmaping is one of the best methods for representing spatial data and location based information. Also there are many open source and already prepared tools which can be used for developing own webGIS application. Number and capability of these tools are improving day by day related to its popularity and needs.
This project involves creating database of WebGIS based application for CHSS (Contributory Health Service Scheme) beneficiaries of IIRS by using open source tools. This application provides IIRS employees and students (including CSSTEAP students) instant access to information related to the AMO/specialists doctors and medical facilities.
Reference
1. Sheng Gao. "Advanced Health Information Sharing with Web based GIS" 2010, Ph.D. dissertation, Department of Geodesy and Geomatics Engineering, Technical Report No. 272, University of New Brunswick, Fredericton, New Brunswick, Canada, 188 pp.
2. Conte, A., P. Colangeli, C. Ippoliti, C. Paladini, M. Ambrosini, L. Savini, F. Dall'Acqua, and P. Calistri (2005). "The use of a Web-based interactive Geograph-
И. А. Маланов. О работе социального педагога с семьями находящимися в социально-опасном положении в современных социально-экономических условиях
3. ical Information System for the surveillance of bluetongue in Italy." OIE Revue Scientifique Et Technique, 24(3), pp. 857-868.
4. Fortney, J., K. Rost, M. Zhang, and J. Warren (1999). "The impact of geographic accessibility on the intensity and quality of depression treatment." Medical Care, 37(9), pp. 884-893.
5. McLafferty, S. L. (2003). «GIS and health care» Annual Review of Public Health, 24(1), pp. 25-42.
6. Messina, J. P., A. M. Shortridge, R. E. Groop, P. Varnakovida, and M. J. Finn (2006). «Evaluating Michigan's community hospital access: Spatial methods for decision support». International Journal of Health Geographics, 5:42. Available at: http://www.ij-healthgeographics.com/content/5/1/42, DOI: 10.1186/1476-072X-5-42.
7. Lwasa, S. (2006). «Planning for Health Infrastructure in Uganda: Where is the need?» GIS Development.
8. OpenGeo Suite, http://boundlessgeo.com/solutions/opengeo-suite/, last accessed 2/Feb/2014.
Содоо Чадраабал, ученый-инженер Института Информатики Академия наук Монголии (Монголия, Улан-Батор). E-mail: [email protected]
Капил Обераи, ученый-инженер факультета геоинформатики Индийского института дистанционного зондирования (Индия, Дехрадун).
Шива Редди, ученый-инженер факультета геоинформатики Индийскго института дистанционного зондирования (Индия, Дехрадун)
Sodoo Chadraabal, scientist/engineer, Institute of Informatics, Mongolian Academy of Science, Ulaanbaatar, Mongolia. E-mail: [email protected]
Kapil Oberai, scientist/engineer, Geo-Informatics Department, Indian Institute of Remote Sensing, Dehradun, India.
Shiva Reddy, scientist/engineer, Geo-Informatics Department, Indian Institute of Remote Sensing, Dehradun, India.
УДК 37.013.42
© И. А. Маланов
О работе социального педагога с семьями, находящимися в социально опасном положении в современных социально-экономических условиях
В статье автор рассматривает состояние семьи в современных социально-экономических условиях, анализирует факторы, влияющие на развитие института семьи, выявляются особенности семей, находящихся в социально-опасном положении, раскрывается содержание социально-педагогической работы с такими семьями.
Ключевые слова: семья; функции семьи; типология семьи; семья, находящаяся в социально опасном положении, социализация личности, семейное воспитание, социальный педагог.