Научная статья на тему 'Confinement of laser-matter interaction with shaped femtosecond pulses in dielectrics'

Confinement of laser-matter interaction with shaped femtosecond pulses in dielectrics Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
44
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Confinement of laser-matter interaction with shaped femtosecond pulses in dielectrics»

LM-I-24

Confinement of laser-matter interaction with shaped femtosecond

pulses in dielectrics

Francois Courvoisier1, M. Hassan1,K Ardaneh1, B. Morel1,

J. Hoyo1, R. Meyer1, L. Furfaro1, C. Billet , L. Froehly1, R. Giust1, C. Xie1,2

1 FEMTO-STInstitute, Univ. Bourgogne Franche-Comté, CNRS, 15B Avenue des Montboucons, 25030,

Besançon Cedex, France

Ultrafast Laser Laboratory,

2 Key Laboratory of Opto-electronic Information Technology of Ministry of Education,

School of Precision Instruments and Opto-electronics Engineering,

Tianjin University, 300072 Tianjin, China

franco is. courvoisier@femto -st._ fr

Ultrashort infrared laser pulses are enabling tools to process transparent materials in the three dimensions. The laser-matter interaction inside the bulk of condensed matter has opened new frontiers in the physics and technology of material treatment at micro or nanoscale. At the intensities of 1013 to 1014 W/cm2, plasmas can be generated which lead to refractive index change, nanograting formation, or, depending on the conditions, to the formation of voids inside the bulk. Promising routes have been shown when femtosecond laser-induced microexplosions reach extreme conditions where new material phases can be generated.

Void formation with single shot Bessel beams has been demonstrated using both femtosecond and picosecond pulse durations [1]. In the femtosecond case, voids could be formed even with pulses down to typ ~50 fs, where avalanche would be expected to be quite inefficient [2]. The physics of energy deposition by ultrashort pulses shaped as Bessel beams is therefore questionable.

In this presentation, we will report on several experimental and numerical results of femtosecond pulse interaction with Bessel beams. Our simulations will provide insights into the dynamics of plasma generation. We report that high energy density is achieved inside the bulk of dielectrics using Bessel beams. We demonstrate, using double pulse illumination and the analysis of absorption dynamics, that warm dense matter can be created in the bulk of dielectrics. We will report on the specificity of Bessel beams in comparison with Gaussian ones to reach energy densities in the order of 10 MJ/kg [3].

Our results open up new opportunities for technological applications in terms of laser processing of glass and other dielectrics such as sapphire or diamond. New opportunities become also possible for nano-plasma physics and high-energy density physics inside materials with relatively low pulse energies, over volumes that are, for the first time, non-negligible since high energy density channels can be generated up to 1 cm length [4].

This research has received funding from H2020 European Research Council (ERC) under grant agreement 682032-PULSAR. This work was granted access to HPC resources PRACE (PULSARPIC PRA19 4980 and RA5614), TGCC(A0070511001 and A0090511001), and Mesocentre de Calcul de Franche-Comte.

References

[1] M. K. Bhuyan et al, Appl. Phys. Lett, 97, 081102 (2010).

[2] M.K. Bhuyan et al, Optica 4, 951 (2017)

[3] J. Hoyo et al, Nanophotonics, 10, 1089-1097 (2021).

[4] R. Meyer, et al, Appl. Phys. Lett., 114, 201105 (2019).

i Надоели баннеры? Вы всегда можете отключить рекламу.