Научная статья на тему 'Composite hydrogel gellan gum-based materials with CaCO3 vaterite particles'

Composite hydrogel gellan gum-based materials with CaCO3 vaterite particles Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
66
12
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
composite hydrogel / vaterite / gellan gum / mineralization / композитный гидрогель / ватерит / геллановая камедь / минерализация

Аннотация научной статьи по биотехнологиям в медицине, автор научной работы — Mariia S. Saveleva, Polina A. Demina

Background and Objectives: Hydrogels are cross-linked three-dimensional polymeric structures containing a large amount of water. Hydrogel materials based on natural and/or synthetic biocompatible polymers are capable of imitating the structure and properties of the extracellular matrix of living tissues. Therefore, hydrogel-based materials are widely studied and developed as functional materials in various fields of biology and medicine, including the creation of biomaterials for transplantation and tissue engineering. However, hydrogels have a number of disadvantages, such as a low biomineralization capacity, low biomechanical properties, and weak ability to form biointerface with hard tissues. These properties make hydrogel-based materials unsuitable for hard tissue engineering, particularly, bone regeneration. Currently, approaches to overcome these limitations, in particular, to improve the biological activity and biomineralization of hydrogels are currently being widely developed. Materials and Methods: This study reports an efficient approach of hydrogels mineralization based on the ultrasound-assisted synthesis of calcium carbonate CaCO3 in the gellan gum hydrogel material. Results: The composite hydrogel materials based on the gellan gum with CaCO3 micron-sized particles in the vaterite polymorph, uniformly distributed within the hydrogel matrix, have been obtained. The fraction of CaCO3 in the hydrogel can easily be controlled by the number of ultrasound treatment procedures. The morphology and structure of the obtained hydrogel materials, especially the structure and distribution of the inorganic phase CaCO3, have been studied by scanning electron microscopy and X-ray diffraction. Conclusion: The proposed strategy for the hydrogel mineralization allows for to create functional composite materials with the potential for application for the tissue engineering, especially bone regeneration.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Композитные гидрогелевые материалы на основе геллановой камеди и частиц ватерита CaCO3

Гидрогели представляют собой трехмерные полимерные связанные структуры, содержащие большое количество воды. Материалы на основе гидрогелей широко используются для тканевой инженерии. Однако низкая степень минерализации, слабые биомеханические свойства и слабая способность образовывать связь с костной тканью делают гидрогели непригодными для применения в качестве имплантов для регенерации костей. В настоящее время активно разрабатываются подходы к повышению биологической активности гидрогелей и их способности к минерализации. В данном исследовании описывается эффективный метод минерализации гидрогелей, основанном на синтезе карбоната кальция в гидрогелевой матрице при обработке ультразвуком. Были сформированы гидрогели на основе геллановой камеди с микрочастицами CaCO3 в полиморфной модификации ватерита, равномерно распределенными в матрице гидрогеля. Содержание CaCO3 в гидрогеле возможно контролировать количеством процедур при обработке ультразвуком. Таким образом, предложенная стратегия минерализации гидрогеля позволяет создавать функциональные композиционные материалы, перспективные для применения в инженерии костной ткани.

Текст научной работы на тему «Composite hydrogel gellan gum-based materials with CaCO3 vaterite particles»

Известия Саратовского университета. Новая серия. Серия: Физика. 2023. Т. 23, вып. 3. С. 245-253 Izvestiya of Saratov University. Physics, 2023, vol. 23, iss. 3, pp. 245-253

https://fizika.sgu.ru https://doi.org/10.18500/1817-3020-2023-23-3-245-253, EDN: NGCWHC

Composite hydrogel gellan gum-based materials with CaCO3 vaterite particles

M. S. Saveleva0, P. A. Demina

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia

Mariia S. Saveleva, [email protected], https://orcid.org/0000-0003-2021-0462 Polina A. Demina, [email protected], https://orcid.org/0000-0002-9203-582X

Abstract. Background and Objectives: Hydrogels are cross-linked three-dimensional polymeric structures containing a large amount of water. Hydrogel materials based on natural and/or synthetic biocompatible polymers are capable of imitating the structure and properties of the extracellular matrix of living tissues. Therefore, hydrogel-based materials are widely studied and developed as functional materials in various fields of biology and medicine, including the creation of biomaterials for transplantation and tissue engineering. However, hydrogels have a number of disadvantages, such as a low biomineralization capacity, low biomechanical properties, and weak ability to form biointerface with hard tissues. These properties make hydrogel-based materials unsuitable for hard tissue engineering, particularly, bone regeneration. Currently, approaches to overcome these limitations, in particular, to improve the biological activity and biomineralization of hydrogels are currently being widely developed. Materials and Methods: This study reports an efficient approach of hydrogels mineralization based on the ultrasound-assisted synthesis of calcium carbonate CaCO3 in the gellan gum hydrogel material. Results: The composite hydrogel materials based on the gellan gum with CaCO3 micron-sized particles in the vaterite polymorph, uniformly distributed within the hydrogel matrix, have been obtained. The fraction of CaCO3 in the hydrogel can easily be controlled by the number of ultrasound treatment procedures. The morphology and structure of the obtained hydrogel materials, especially the structure and distribution of the inorganic phase CaCO3, have been studied by scanning electron microscopy and X-ray diffraction. Conclusion: The proposed strategy for the hydrogel mineralization allows for to create functional composite materials with the potential for application for the tissue engineering, especially bone regeneration. Keywords: composite hydrogel, vaterite, gellan gum, mineralization

Acknowledgements: This work was supported by the scholarship of the President of the Russian Federation (No. SP-727.2022.4). Authors thank Bogdan V. Parakhonskiy (Ghent University, Ghent, Belgium) and Timothy E. L. Douglas (Lancaster University, Lancaster, UK) for the assistance and support.

For citation: Saveleva M. S., Demina P. A. Composite hydrogel gellan gum-based materials with CaCO3 vaterite particles. Izvestiya of Saratov University. Physics, 2023, vol. 23, iss. 3, pp. 245-253. https://doi.org/10.18500/1817-3020-2023-23-3-245-253, EDN: NGCWHC This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC0-BY 4.0)

Научная статья УДК 54

Композитные гидрогелевые материалы на основе геллановой камеди и частиц ватерита CaCO3 М. С. Савельева0, П. А. Демина

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, Россия, 410012, г. Саратов, ул. Астраханская, д. 83

Савельева Мария Сергеевна, младший научный сотрудниклаборатории «Дистанционно управляемые системы для тераностики» Научного медицинского центра, [email protected], https://orcid.org/0000-0003-2021-0462

Демина Полина Анатольевна, кандидат химических наук, старший научный сотрудниклаборатории «Дистанционно управляемые системы для тераностики» Научного медицинского центра, [email protected], https://orcid.org/0000-0002-9203-582X

Аннотация. Гидрогели представляют собой трехмерные полимерные связанные структуры, содержащие большое количество воды. Материалы на основе гидрогелей широко используются для тканевой инженерии. Однако низкая степень минерализации, слабые биомеханические свойства и слабая способность образовывать связь с костной тканью делают гидрогели непригодными для применения в качестве имплантов для регенерации костей. В настоящее время активно разрабатываются подходы к повышению биологической активности гидрогелей и их способности к минерализации. В данном исследовании описывается эффективный метод минерализации гидрогелей, основанном на синтезе карбоната кальция в гидрогелевой матрице при обработке ультразвуком. Были сформированы гидрогели на основе геллановой камеди с микрочастицами CaCO3 в полиморфной модификации ватерита, равномерно распределенными в матрице гидрогеля. Содержание CaCO3 в гидрогеле возможно контролировать количеством процедур при обработке ультразвуком. Та-

ким образом, предложенная стратегия минерализации гидрогеля позволяет создавать функциональные композиционные материалы,

перспективные для применения в инженерии костной ткани.

Ключевые слова: композитный гидрогель, ватерит, геллановая камедь, минерализация

Благодарности: Работа выполнена при финансовой поддержке стипендии Президента Российской Федерации (№ СП-727.2022.4). Авторы выражают благодарность Богдану Владиславовичу Парахонскому (Гентский университет, Гент, Бельгия) и Тимоти Дугласу (Ланкастерский университет, Ланкастер, Великобритания) за помощь в проведении исследования.

Для цитирования: Савельева М. С., Демина П. А. Композитные гидрогелевые материалы на основе геллановой камеди и частиц ватерита CaCO3 // Известия Саратовского университета. Новая серия. Серия: Физика. 2023. Т. 23, вып. 3. С. 245-253. https://doi.org/10.18500/1817-3020-2023-23-3-245-253, EDN: NGCWHC

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0)

Introduction

Biocompatible hydrogels are among the most intensely research topics in the biomaterials development and tissue engineering due to their unique properties including structural resemblance to natural extracellular matrices [1], adjustable physical-chemical properties [2], and the fact that hydrogels can be easily incorporated by functional additives (such as inorganic materials, biomolecules and drugs) due to the high amount of water [3,4]. However, hydrogels have the low ability to mineralize, and, therefore, do not support the formation of interfacial bonds with hard tissues such as bone. Mineralization of hydrogels with appropriate inorganic minerals will enhance their bioactivity, osteoconductivity and mechanical properties [5]. Many examples of hydrogel mineralization have been reported so far, including mineralization with calcium phosphate [6], calcium carbonate and magnesium carbonate [7-9].

Among various inorganic materials, vaterite, the metastable CaCO3 polymorph, is of particular interest due to its ability to be an efficient source of calcium ions Ca2+ [10], rapid degradability [11], and high drug loading capacity for the various range of drugs and biologically active molecules [12, 13]. Moreover, vaterite promotes hydroxyapatite formation upon incubation in simulated body fluid (SBF) [14]. Also it is osteoconductive and supports osteogenesis, along with widely used hydroxyap-atite [15].

The gellan gum (GG) is a green naturally-derived biopolymer which is able to form water-swollen hydrogels with multivalent cations [16]. Ability to absorb and retain significant volume of aqueous phase allows for efficient encapsulation of drugs. Therefore, GG hydrogels are extensively used in pharmaceutics and cosmetics as carrier and suspending agent [16], as well as biomaterial in the soft tissue engineering [17].

As a result, the composites based on the combination of biopolymer GG hydrogels with the CaCO3

vaterite is potentially interesting materials for bone regeneration. At the moment, there are several protocols for such systems formation [9, 18, 19] which can be generally summarized in the following approaches: (i) mixing pre-synthesized particles into a GG solution, and (ii) particles in situ synthesis during GG hydrogel incubation in solution containing Ca2+ and CO3- ions, including physical stimuli such as the ultrasonic (US)-assisted technique [20]. This work presents the first comparative study of these various approaches to GG hydrogel mineralization and revealing of the most effective one. In the current study, the US-assisted treatment is demonstrated as a suitable and efficient technique for obtaining the composite hydrogel materials aimed at the biomedical applications.

1. Materials and methods

1.1. Materials

Gellan gum (GG, Gelzan™ CM, molecular weight 200-300 kDa), CaCl2 and Na2CO3 were purchased from Sigma-Aldrich and used as received. Milli-Q water (specific resistivity higher than 18.2 M^ cm-1) was obtained from a Millipore filtration system and used in all experiments.

1.2. Composite hydrogels preparation

For preparation the blank GG hydrogel, the GG aqueous solution (0.8 % wt.) was prepared as described in Ref. [21]. The GG gelation was carried out by mixing of the GG and CaCl2 (0.02 M) aqueous solutions for 30 sec at vigorous agitation and heating at +70°C. After that, the obtained mixture was cooled down to the room temperature (+22°C) and, thus, the gelation procedure was completed.

For preparation a composite GG/CaCO3 hydro-gel, the three approaches were used. (i) Addition of preliminarily synthesized CaCO3 vaterite microparticles to the GG solution in course of the gelation.

The CaCO3 vaterite microparticles prepared as described previously in Ref. [22] were added to the

GG aqueous solution under the vigorous agitation and heating at +70°C. The agitation of obtained mixture was continued to 1 min until the homogenous distribution of CaCO3 microparticles in the GG solution. After that, the obtained mixture was cooled down to the room temperature (+22°C).

(ii) Synthesis of CaCO3 microparticles in situ in

the GG solution in course of the gelation.

At the first step, an aqueous Na2CO3 solution (0.33 M) was added to the GG solution under the vigorous agitation and heating at +70°C. After that, an aqueous CaCl2 solution (0.33 M) was added to this mixture. The agitation of mixture was continued to 1 min until the completion of CaCO3 crystallization. Then, the obtained mixture was cooled down to the room temperature (+22°C).

(iii) Ultrasonic-assisted mineralization of the GG

hydrogel in solutions saturated with Ca2+ and

CO^ ions.

The GG hydrogel mineralization was performed using the technique of US-assisted CaCO3 synthesis as described in the previous study [20]. Hydrogel samples were immersed in an aqueous CaCl2 solution (0.33 M) in a tube which was then placed in the ultrasonic bath. The hydro-gel sample was pretreated with an ultrasound (US) (working frequency 35 kHz and radiation intensity 0.64 W/cm2) in a CaCl2 solution for 1 min. Then, an aqueous Na2CO3 solution (0.33 M) was added to the CaCl2 solution under continuous US treatment. The synthesis of CaCO3 particles in the GG hydro-gel was carried out for 1 min in the presence of US treatment.

All the obtained GG hydrogel materials were stored in a refrigerator at the temperature of +5°C.

1.3. Characterization methods

The surface morphology of hydrogel materials was studied by the scanning electron microscopy (SEM) with using a Tescan MIRA II LMU setup (Tescan, Czech Republic). The hydrogel mass was monitored with a Sartorius Quintix 35-18 (Germany) microbalance prior to US-assisted mineralization treatment, after each mineralization procedure, and after following drying in a drying oven for 4 hours, at +60°C in air. Powder X-ray diffraction analysis of the preliminary dried and grinded samples was performed with a Rigaku Minilex-600 diffractometer (Rigaku Corporation, Tokyo, Japan) using Cu-K« radiation (40 kV, 15 mA, Ni-Kp filter) in the 20 range 5-60° at a scan speed 1°/min. The XRD data obtained were

compared with the literature crystallographic data for vaterite [23] and calcite [24].

The average diameter of CaCO3 particles and the filling factor of CaCO3 in composite GG hydrogels were measured by analyzing SEM images with the use of the Image J software (https://imagej.nih.gov/ij/index.html). The areas occupied with CaCO3 were extracted from the total area of the hydrogel cross-section by the area selection function. Then, the filling factor was calculated as the ratio of the CaCO3-filled area to the total area [25].

2. Results and discussion

Hydrogel matrices based on anionic polysac-charide gellan gum were prepared by GG ionotropic gelation with the divalent calcium ions Ca2+ as a cross-linking agent, which is promote the site binding of carboxylate groups of GG polysaccha-ride helical chains [26]. Moreover, the addition of calcium ions lowers the negative charge of the GG helical chains and, thus, facilitate their electrostatic internal interaction and leading to gelation as well [26, 27]. In this way, a three-dimensional network of a water-insoluble GG polysaccharide hy-drogel is formed. Photo and SEM images of the resulting GG hydrogel are shown in Fig. 1, a, b and c, respectively.

The modification of GG hydrogels by CaCO3 microparticles was performed using three different approaches. A comparison study of these approaches allows to optimize the method of hydrogels mineralization, and, thus, to obtain composite hydrogel materials with the most optimal structural and functional characteristics, particularly, with CaCO3 in the vaterite polymorph. Vaterite is able to provide the required functionality of a composite material, including Ca2+ release capacity [10] and high drug loading efficiency [13], which is significantly important for biomedical applications, especially for bone tissue engineering [28].

In the first approach, CaCO3 microparticles were added to GG aqueous solution under rapid ho-mogenization of the mixture (Fig. 1, d). In this case, the presence of water environment initiates the process of partial dissolution of CaCO3. Therefore, an amount of free Ca2+ ions are occurred in the solution near the surface of the CaCO3 particles, which promotes the ionotropic gelation of GG. Thus, the addition of CaCl2 for gelation is not required in this case. It can be observed that the CaCO3 microparti-cles in the hydrogel have the form of cubic crystals, which indicates that the vaterite has recrystallized

Fig. 1. a - photo of the blank GG hydrogel, b and c - SEM images of the blank GG hydrogel; d - photo of the composite GG hydrogel in a petri dish, prepared by the addition of preliminarily synthesized CaCO3 microparticles to the GG solution, e and f - SEM images of this composite GG hydrogel; g - photo of the composite GG hydrogel in a petri dish, prepared by the in situ synthesis of CaCO3 microparticles in the GG solution in course of the gelification, h and i - SEM images of this composite GG hydrogel; j - photo of the composite GG hydrogel, prepared by the ultrasonic-assisted mineralization of the GG hydrogel in solution saturated with Ca2+ and CO3" ions, k and l - SEM images of this composite GG hydrogel (color online)

into calcite [29] (Fig. 1, e, f) because of the dissolution process. The CaCO3 particles are distributed in the hydrogel in the form of agglomerates.

In the second approach, a Na2CO3 aqueous solution was added to GG solution for providing carbonate CO3" ions which are necessary for the growth of CaCO3 microparticles. Further, the following addition of Ca2+ ions to the mixture initiates two parallel processes. First, the electrostatic and site binding of GG molecular chains by calcium ions is resulting in the gelation of GG. Second, the interaction with carbonate ions is resulting in the formation of CaCO3 particles in GG hydrogel. In this way, the "embedding" of CaCO3 inorganic particles into the GG hydrogel matrix occurs during its gelation and results in the formation of a composite material. One can observe the inhomogeneous distribution of the CaCO3 inorganic phase in the hydrogel (Fig. 1, g). The CaCO3 exhibits cubic crystals characteristic for calcite polymorph [29] as well as an amorphous [30] phase (Fig. 1, h, i).

In the third approach, the pre-formed GG hy-drogel was pretreated in a CaCl2 solution under ultrasound irradiation, which initiates the diffusion of Ca2+ ions from solution into the hydrogel network. The following addition of carbonate CO3" ions initiates the US-assisted growth of CaCO3 in the GG hydrogel. The scheme of US-assisted process of hydrogel modification is shown in the Fig. 2. The spherical particles with a porous surface morphology, which is typical for vaterite polymorph, as well as a uniform distribution of particles in the hydrogel can be observed (Fig. 1, j, k, l).

Thus, a comparison of the structure of composite GG hydrogel materials formed by different methods allows us to conclude that the US-assisted mineralization provides the most optimal structure of a composite material with respect to the polymorphic modification of CaCO3 microparticles and their distribution in the material. In terms of functionality, CaCO3 in the polymorphic modification of vaterite is preferable to calcite, since it has a higher bioactivity, osteogenic potential [28], and a higher capacity for immobilization of biologically active moieties [13].

Further, to study the effect of the US-assisted CaCO3 synthesis on the composite material structure, three procedures of the such US treatment of GG hydrogels were carried out. On SEM images of hydrogel samples after 1st, 2nd, and 3rd US treatment procedures (Fig. 3, a), it can be observed that as a result of an increase in the number of procedures, the size and amount of CaCO3 particles in the material increase as well (Fig. 4, a, b). The statistically significant increase in average diameter of CaCO3 particles occurs after 3rd US treatment procedure, while filling factor drastically increases already after 2nd procedure. After the third procedure, the cubic calcite microparticles are observed in the hy-drogel. The weight of samples (both wet and dried) showed that the water content in the hydrogels increased (Fig. 4, c) along the statistically significant decrease of dry mass (Fig. 4, d) after the 1st US treatment procedure. It is worth noting that there is no statistically significant difference in changing of dry mass amount for samples after 1st, 2nd and 3rd US treatment procedures. Also, the following

Fig. 2. Scheme of the process of ultrasonic mineralization of GG hydrogel by CaCO3 vaterite particles (color online)

Fig. 3. a - photo and corresponding SEM images of initial GG hydrogels, and composite GG hydrogels after one, two and three US-assisted CaCO3 mineralization procedures, b - diffraction patterns of composite GG hydrogels after one, two and three

US-assisted CaCO3 mineralization procedures (color online)

Fig. 4. a - average diameters of CaCO3 particles and b - filling factor of CaCO3 particles in composite GG hydrogel samples after one, two and three US-assisted CaCO3 mineralization procedures; c - mass measurements of wet GG hydrogel samples (initial and after different number of US-assisted CaCO3 mineralization procedures) and corresponding water content in hydrogels; d -the ratio of dry mass to total mass of initial GG hydrogel and composite GG hydrogels after one, two and three US-assisted

CaCO3 mineralization procedures (color online)

(2nd and 3rd) treatment procedures did not cause any statistically significant change in the water content in the hydrogels. The diffraction patterns of these samples (Fig. 3, c) show peaks characteristic of vaterite, which confirm the presence of CaCO3 in the vaterite polymorph in the composite material. The diffraction patterns for samples after second and third procedures show the presence of calcite peaks as well.

Thus, one can conclude that a consistent increase in the number of US treatment procedures of GG hydrogel initiate the process of recrystallization of vaterite particles into calcite. Therefore, the two US treatment procedures were considered as opti-

mal for the formation of a stable CaCO3 phase in composite GG hydrogel, from the point of view of the vaterite polymorph of CaCO3 and particles distribution in the hydrogel matrix.

Conclusions

In the presented study, gellan gum hydrogels have been functionalized with CaCO3 microparti-cles in the porous vaterite polymorphic form. The comparative study of three approaches to the formation of a composite material based on gellan gum hydrogel and CaCO3 microparticles has been performed. The structure, polymorphic modification of CaCO3 particles, as well as their distribution in

the hydrogel matrix depend on the conditions of their synthesis. It has been shown that the most efficient approach of hydrogel mineralization is the ultrasonic (US)-assisted treatment of GG hydro-gel in Ca2+ and CO3- containing solutions. The US treatment stimulates penetration of these ions into the polymeric hydrogel network and facilitates porous vaterite microparticles formation inside the hydrogel. It has been found that the presence of ultrasonic treatment during the CaCO3 particles synthesis allows to obtain particles with the necessary polymorph (vaterite) and a uniform distribution in the GG hydrogel. The effect of the US treatment procedures number on the structure of the composite GG hydrogel has also been studied, and it has been shown that the two procedures are optimal in terms of the structure and distribution of CaCO3 particles in the hydrogel matrix. Composite GG hydrogels functionalized with vaterite can be promising for application as the implantable materials for bone tissue regeneration.

References

1. Radulescu D.-M., Neacsu I. A., Grumezescu A.-M., Andronescu E. New Insights of Scaffolds Based on Hydrogels in Tissue Engineering. Polymers (Basel), 2022, vol. 14, iss. 4, article no. 799. https://doi.org/10.3390/ polym14040799

2. Chauhan N., Saxena K., Jain U. Hydrogel based materials: A progressive approach towards advancement in biomedical applications. Mater. Today Commun., 2022, vol. 33, article no. 104369. https://doi.org/10. 1016/j.mtcomm.2022.104369

3. Hoffman A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2012, vol. 64, pp. 18-23. https://doi.org/10.1016/jj.addr.2012.09.010

4. Kailasa S. K., Joshi D. J., Kateshiya M. R., Koduru J. R., Malek N. I. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Mater. Today Chem., 2022, vol. 23, article no. 100746. https:// doi.org/10.1016/j.mtchem.2021.100746

5. Gkioni K., Leeuwenburgh S. C. G. G., Douglas T. E. L. L., Mikos A. G., Jansen J. A. Mineralization of Hydrogels for Bone Regeneration. Tissue Eng. Part B. Rev., 2010, vol. 16, pp. 577-585. https://doi.org/10. 1089/ten.teb.2010.0462

6. Douglas T., Wlodarczyk M., Pamula E., Declercq H., Mulder E. de, Bucko M., Balcaen L., Vanhaecke F., Cornelissen R., Dubruel P., Jansen J., Leeuwenburgh S. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine. J. Tissue Eng. Regen. Med., 2014, vol. 8, pp. 906-918. https://doi.org/10.1002/term. 1616

7. Lopez-Heredia M. A., Lapa A., Mendes A. C., Bal-caen L., Samal S. K., Chai F., Voort P. Van der,

Stevens C. V., Parakhonskiy B. V., Chronakis I. S., Vanhaecke F., Blanchemain N., Pamuia E., Skirtach A. G., Douglas T. E. L. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate. Mater. Lett., 2017, vol. 190, iss. 1, pp. 13-16. https://doi.org/10.10167j.matlet.2016. 12.122

8. Schroder R., Pohlit H., Schuler T., Panthofer M., Unger R. E., Frey H., Tremel W. Transformation of vaterite nanoparticles to hydroxycarbonate apatite in a hydrogel scaffold: Relevance to bone formation. J. Mater. Chem. B, 2015, vol. 3, pp. 7079-7089. https://doi.org/10.1039/C5TB01032B

9. Abalymov A., Lengert E., Meeren L. Van der, Savel-eva M., Ivanova A., Douglas T. E. L., Skirtach A. G., Volodkin D., Parakhonskiy B. The influence of Ca/Mg ratio on autogelation of hydrogel biomaterials with bio-ceramic compounds. Mater. Sci. Eng. C, 2022, vol. 133, article no. 112632. https://doi.org/10.1016/j. msec.2021.112632

10. Tolba E., Müller W. E. G. Abd El-Hady B. M., Neufurth M., Wurm F., Wang S., Schröder H. C., Wang X. High biocompatibility and improved osteogenic potential of amorphous calcium carbonate/vaterite. J. Mater. Chem. B, 2016, vol. 4, pp. 376-386. https://doi.org/10. 1039/C5TB02228B

11. Campbell J., Ferreira A. M., Bowker L., Hunt J., Volodkin D., Vikulina A. Dextran and Its Derivatives: Biopolymer Additives for the Modulation of Vaterite CaCO3 Crystal Morphology and Adhesion to Cells. Adv. Mater. Interfaces, 2022, vol. 9, article no. 2201196. https://doi.org/10.1002/admi.202201196

12. Trushina D. B., Bukreeva T. V., Kovalchuk M. V., Antipina M. N. CaCO3 vaterite microparticles for biomedical and personal care applications. Mater. Sci. Eng. C, 2014, vol. 45, pp. 644-658. https://doi.org/10. 1016/j.msec.2014.04.050

13. Svenskaya Y. I., Fattah H., Zakharevich A. M., Gorin D. A., Sukhorukov G. B., Parakhonskiy B. V. Ul-trasonically assisted fabrication of vaterite submicron-sized carriers. Adv. Powder Technol., 2016, vol. 27, iss. 2, pp. 618-624. https://doi.org/10.1016/j.apt.2016. 02.014

14. Maeda H., Maquet V., Kasuga T., Chen Q. Z., Roether J. A., Boccaccini A. R. Vaterite deposition on biodegradable polymer foam scaffolds for inducing bone-like hydroxycarbonate apatite coatings. J. Mater. Sci. Mater. Med., 2007, vol. 18, pp. 2269-2273. https:// doi.org/10.1007/s10856- 007-3108- 4

15. Vuola J., Göransson H., Böhling T., Asko-Seljavaara S. Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials, 1996, vol. 17, iss. 18, pp. 1761-1766. https://doi.org/10.1016/ 0142-9612(95)00351-7

16. Das M., Giri T. K. Hydrogels based on gellan gum in cell delivery and drug delivery. J. Drug Deliv. Sci. Technol., 2020, vol. 56, article no. 101586. https://doi. org/10.1016/j.jddst.2020.101586

17. Stevens L. R., Gilmore K. J., Wallace G. G., in het Pan-huis M. Tissue engineering with gellan gum. Biomater.

Sci., 2016, vol. 4, pp. 1276-1290. https://doi.org/10. 1039/C6BM00322B

18. Lopez-Heredia M. A., Lapa A., Reczynska K., PietrygaK., BalcaenL., Mendes A. C., Schaubroeck D., Voort P. Van Der, Dokupil A., Plis A., Stevens C. V., Parakhonskiy B. V., Samal S. K., Vanhaecke F., Chai F., Chronakis I. S., Blanchemain N., Pamuia E., Skir-tach A. G., Douglas T. E. L. Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking in solutions of calcium/magnesium and carbonate ion solutions. J. Tissue Eng. Regen. Med., 2018, vol. 12, pp. 1825-1834. https://doi.org/10. 1002/term.2675

19. Abalymov A., Meeren L. Van der, Skirtach A. G., Parakhonskiy B. V. Identification and Analysis of Key Parameters for the Ossification on Particle Functional-ized Composites Hydrogel Materials. ACSAppl. Mater. Interfaces, 2020, vol. 12, iss. 35, pp. 38862-38872. https://doi.org/10.1021/acsami.0c06641

20. Savelyeva M. S., Abalymov A. A., Lyubun G. P., Vidya-sheva I. V., Yashchenok A. M., Douglas T. E. L., Gorin D. A., Parakhonskiy B. V. Vaterite coatings on electrospun polymeric fibers for biomedical applications. J. Biomed. Mater. Res. Part A, 2017, vol. 105, pp. 94-103. https://doi.org/10.1002/jbm.a.35870

21. Douglas T. E. L., Piwowarczyk W., Pamula E., Liskova J., Schaubroeck D., Leeuwenburgh S. C. G., Brackman G., Balcaen L., Detsch R., Declercq H., Cholewa-Kowalska K., Dokupil A., Cuijpers V. M. J. I., Vanhaecke F., Cornelissen R., Coenye T., Boccac-cini A. R., Dubruel P. Injectable self-gelling composites for bone tissue engineering based on gellan gum hydro-gel enriched with different bioglasses. Biomed. Mater., 2014, vol. 9, article no. 045014. https://doi.org/10.1088/ 1748-6041/9/4/045014

22. Parakhonskiy B. V., Haase A., Antolini R. Sub-Micrometer Vaterite Containers: Synthesis, Substance Loading, and Release. Angew. Chemie, 2012, vol. 124, pp. 12211223. https://doi.org/10.1002/ange.201104316

23. Bail A. Le, Ouhenia S., Chateigner D. Microtwinning hypothesis for a more ordered vaterite model. Powder Diffr., 2012, vol. 26, iss. 1, pp. 16-21. https://doi.org/ 10.1154/1.3552994

24. Sitepu H. Texture and structural refinement using neutron diffraction data from molybdite (MoO3) and calcite

(CaCO3) powders and a Ni-rich Ni50.7Ti49 30 alloy. Powder Diffr., 2009, vol. 24, iss. 4, pp. 315-326. https:// doi.org/10.1154/1.3257906

25. Saveleva M., Prikhozhdenko E., Gorin D., Skir-tach A. G., Yashchenok A., Parakhonskiy B. Polycapro-lactone-Based, Porous CaCO3 and Ag Nanoparticle Modified Scaffolds as a SERS Platform With Molecule-Specific Adsorption. Front. Chem., 2020, vol. 7, pp. 111. https://doi.org/10.3389/fchem.2019.00888

26. Bellini D., Cencetti C., Meraner J., Stoppoloni D., D'Abusco A. S., Matricardi P. An in situ gelling system for bone regeneration of osteochondral defects. Eur. Polym. J., 2015, vol. 72, pp. 642-650. https://doi.org/ 10.1016/j.eurpolymj.2015.02.043

27. Robinson G., Manning C. E., Morris E. R. Conformation and Physical Properties of the Bacterial Polysaccharides Gellan, Welan, and Rhamsan. In: Dickinson E., ed. Food Polymers, Gels and Colloids. Woodhead Publ., 1991, pp. 22-33. https://doi.org/10. 1533/9781845698331.22

28. Saveleva M. S., Ivanov A. N., Chibrikova J. A., Abalymov A. A., Surmeneva M. A., Surmenev R. A., Parakhonskiy B. V., Lomova M. V., Skirtach A. G., Norkin I. A. Osteogenic Capability of Vaterite-Coated Nonwoven Polycaprolactone Scaffolds for In Vivo Bone Tissue Regeneration. Macromol. Biosci., 2021, vol. 21, article no. 2100266. https://doi.org/10.1002/mabi. 202100266

29. Svenskaya Y. I., Navolokin N. A., Bucharskaya A. B., Terentyuk G. S., Kuz'mina A. O., Burashnikova M. M., Maslyakova G. N., Lukyanets E. A., Gorin D. A. Calcium carbonate microparticles containing a photosen-sitizer photosens: Preparation, ultrasound stimulated dye release, and in vivo application. Nanotechnologies Russ., 2014, vol. 9, pp. 398-409. https://doi.org/10. 1134/S1995078014040181

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

30. Saveleva M. S., Lengert E. V., Verkhovskii R. A., Abalymov A. A., Pavlov A. M., Ermakov A. V., Prikhozhdenko E. S., Shtykov S. N., Svenskaya Y. I. CaCO3-based carriers with prolonged release properties for antifungal drug delivery to hair follicles. Biomater. Sci., 2022, vol. 10, pp. 3323-3345. https://doi.org/10. 1039/D2BM00539E

Поступила в редакцию 20.03.2023; одобрена после рецензирования 02.05.2023; принята к публикации 15.06.2023 The article was submitted 20.03.2023; approved after reviewing 02.05.2023; accepted for publication 15.06.2023

i Надоели баннеры? Вы всегда можете отключить рекламу.