COLLOIDAL-CHEMICAL FEATURES OF SURFACTANTS AND ADDITIVES INTO LOW OCTANE GASOLINES TO IMPROVE THEIR QUALITY Makhmudov M.J.1, Akhmedov U-К.2 (Republic of Uzbekistan)
1Makhmudov Mukhtor Jamolovich - Doctor of Philosophy (PhD), Associate Professor, DEPARTMENT OF TECHNOLOGY OF OIL REFINING, BUKHARA ENGINEERING-TECHNOLOGICAL INSTITUTE, BUKHARA;
2Akhmedov Ulug Karimovich - Doctor of Chemical Sciences, Professor, Head of the Laboratory,
LABORATORY SURFACTANT, INSTITUTE OF GENERAL AND INORGANIC CHEMISTRY ACADEMY OF SCIENCES OF THE REPUBLIC OF UZBEKISTAN, TASHKENT, REPUBLIC OF UZBEKISTAN
Abstract: the paper outlines the main problems facing the oil refining and petrochemical industry in the world in obtaining environmentally friendly and high-quality components of automotive fuels. One of the ways to improve the environmental performance of motor gasolines is to reduce the content of aromatic hydrocarbons in them, including benzene (the lowest boiling point among aromatic hydrocarbons), which is especially toxic. In order to search for the optimal method for their reduction in AI-80 gasoline, a set of classical and modern research methods has been used to determine the physical, physico-chemical characteristics, functional composition, study the processes that occur in the original automobile gasoline and in gasoline subjected to various processes refinement, in particular, dearomatization, and also to establish chemical compositions, structure, chemical nature and their stability. The benzene-containing fraction of low-octane gasoline has been determined. The optimal parameters of the hydroisomerization process in the presence of catalysts based on nickel and tungsten have been determined. A technique for modifying low-octane gasoline produced by the oil refining industry is presented to improve the environmental situation and reduce the amount of aromatic hydrocarbons in motor gasolines.
Keywords: gasoline, aromatic hydrocarbons, benzene, hydroisomerization, antiknock additive, neonol, compounding.
КОЛЛОИДНО-ХИМИЧЕСКИЕ ОСОБЕННОСТИ ВВЕДЕНИЯ ПАВ И ПРИСАДОК В НИЗКООКТАНОВЫЕ БЕНЗИНЫ
ДЛЯ ПОВЫШЕНИЯ ИХ КАЧЕСТВА Махмудов М.Ж.1, Ахмедов У.К.2 (Республика Узбекистан)
Махмудов Мухтор Жамолович - доктор философии (PhD), доцент, кафедра технологий нефтепереработки, Бухарский инженерно-технологический институт, г. Бухара;
2Ахмедов Улуг Каримович - доктор химических наук, профессор, заведующий лабораторией, лаборатория поверхностно-активных веществ, Институт общей и неорганической химии Академия наук Республики Узбекистан, г. Ташкент, Республика Узбекистан
Аннотация: в работе изложены основные проблемы, стоящие перед нефтеперерабатыващей и нефтехимический отраслями мира, по получению экологически чистых и качественных компонентов автомобильных топлив. Одним из путей улучшения экологических показателей автомобильных бензинов является снижение содержания в них ароматических углеводородов и в том числе бензола (самый легкокипящий среди ароматических углеводородов), который является особенно токсичным, с целью поиска оптимального метода их снижения в бензине АИ-80. В работе использован комплекс классических и современных методов исследования, позволяющих определить физические, физико-химические характеристики, функциональный состав, изучить процессы, протекающие в исходном автомобильном бензине и в бензине, подвергнутом различным процессам облагораживания, в частности, деароматизации, а также установить химические составы, структуру, химическую природу и их стабильность. Определена бензолсодержащая фракция низкооктанового бензина. Установлены оптимальные параметры процесса гидроизомеризации в присутствии катализаторов на основе никеля и вольфрама. Представлена методика модификации низкооктанового бензина, производимого нефтеперерабатывающей отраслью для улучшения экологической обстановки окружающей среды и снижения количества ароматических углеводородов в автомобильных бензинах.
Ключевые слова: бензин, ароматические углеводороды, бензол, гидроизомеризация, антидетонационная присадка, неонол, компаундирования.
Today, fuel oil plays an important role in all spheres of life in the world [1]. As the population grows and their lifestyles improve, so does the need for high-quality, clean energy to fuel vehicles. The increase in demand for motor fuels, especially gasoline, will lead to an increase in the amount of toxic gases released into the atmosphere. Therefore,
the development of modern technologies to improve the environmental quality of produced petroleum products and improve the qualitative and quantitative indicators of fuel using additives obtained from other natural resources is one of the urgent problems of our time [2].
As the object of the study, we used AI-80 motor gasoline, produced by the Bukhara oil refinery, which fully complies with the UzSMT 01.164.0678712 product certificate dated 11.22.07 year [3].
At this stage of our research, we have focused mainly on reducing the amount of aromatic hydrocarbons in gasoline, in particular benzene, and thereby improving its environmental properties. Therefore, to determine the benzene-containing fraction, the object of investigation was dispersed into several fractions.
Gasoline fractionation was carried out from the beginning of the boiling point to 130°C. Although the boiling point of benzene is 80.1°C, we took a relatively wider boiling range, taking into account the fact that due to the action of intermolecular gravity, benzene molecules are found even at relatively high temperatures.
To determine the benzene content in the gasoline fractions, we used the method of gas-liquid chromatography. The results are shown in the table below.
Table 1. Material balance of AI-80 gasoline fractionation and benzene content in fractions
No. Fraction Quantity, ml Benzene content%, vol.
1. AI-80 gasoline 100 8,11
2. start to boil - 80oC 28,5 17,4
3. 80oC - 90oC 9,7 15,5
4. 90oC - 100oC 11,2 11,35
5. 100oC - 110oC 2,4 7,8
6. 110oC - 120oC 7,5 4,7
7. 120oC - 130oC 8,4 0,04
8. 130oC - end of boil 32,3 0,00
Table 2. Physical properties and content of hydrocarbons in motor gasoline AI-80 and its fractions
No. Name of samples Volume, ml Refractive index Density, g/cm3 Content of hydrocarbons, % wt. The amount of benzene, in %. about
aromatic n-parafflnic isoparaffinic + naphthenic
1 Gasoline AI-80 100 1,4631 0,770 48,24 15,3 36,46 8,11
2 start to boil - 100°C 49,4 1,4455 0,740 42,12 12,2 45,68 13
3 100°C - end of boil 50,6 1,4850 0,790 55,32 6,89 37,79 0,03
The results of the study, presented in the table, show that the main amount of benzene in gasoline is contained in the fraction boiling over in the temperature range from the beginning of boiling to 100°C. Based on these results, the benzene-containing fraction of n.c. gasoline was chosen as a feedstock for the hydroisomerization process. - 100°C.
Heavy gasoline fraction and hydroisomerate were mixed in the following proportions: hydroisomerate - 49.4 ml, heavy gasoline fraction - 50.6 ml. Thus, the percentage ratio of % hydroisomerate, heavy gasoline fraction, EMB additive and AF-9-6 neonol is as follows: hydroisomerate - 47%, heavy gasoline fraction - 48%, EMB oxygenate -4.8%, surfactant - 0.2%.
Table 3. Hydrocarbon composition of hydroisomerizates obtained in the presence of nickel-tungsten catalysts of various
compositions
No. Catalyst Process temperature, 0C Process pressure, MPa Aromatic hydrocarbons, amount, % wt. n-paraffinic hydrocarbons, amount, % wt. iso-paraffinic and naphthenic hydrocarbons, amount, wt%
1 AlNiW-F 200 5 18,7 2,2 79,1
2 AlNiWCu-F 200 5 16,1 1,4 82,5
3 AlNiWMo-F 200 5 22 3,15 74,85
4 AlNiWCo-F 240 5 21,4 7,5 71,1
The physicochemical properties of a sample of gasoline obtained on the basis of a hydroisomerate obtained using an aluminum-nickel-tungsten-fluorine catalyst are shown in the table below.
From the data presented in the table, it can be seen that motor gasoline IONX-1 fully complies with the requirements of the European specifications for hydrocarbon composition, benzene content and octane number. When mixing the hydroisomerate and the heavy gasoline fraction, the octane number was 86.4 points according to I.M. EMB oxygenate increased the octane rating of this gasoline by almost 9 points.
The physicochemical properties of a sample of gasoline obtained on the basis of a hydroisomerate obtained using an aluminum-nickel-tungsten-fluorine catalyst are shown in table 4.
Table 4. Physicochemical properties of a gasoline sample (IONX-1) obtained using an aluminum-nickel-tungsten-fluoride catalyst by compounding the hydroisomerate + heavy fraction ofgasoline + neonol AF-9-6 and + oxygenate EMB
No. Characteristics Indicators
1 Color Light yellow, pure, transparent
2 Octane number by the research method 95,2
3 Density at 20°C, g/cm3 0,755
4 20 Refractive index, n d 1,4380
5 Copper strip test withstands
6 Content of mechanical impurities absence
7 Content of actual resins, mg/100 cm3 absence
Hydrocarbon composition, % wt.: aromatic hydrocarbons 32,25
8 n-paraffinic hydrocarbons 4,35
isoparaffinic + naphthenic 63,4
9 Benzene content, % vol. 0,55
At the next stage of compounding, a new sample of gasoline was obtained by mixing a hydroisomerate obtained using an aluminum-nickel-tungsten-copper-fluoride catalyst, a heavy gasoline fraction, an EMB additive and neonol AF-9-6. This gasoline was conventionally named IONX-2, and its physicochemical characteristics are shown in the table below.
Table 5. Physicochemical characteristics of the IONX-2 gasoline composition
No. Characteristics Indicators
1 Color Light yellow, pure, transparent
2 Octane number by the research method 95,8
3 Density at 20°C, g/cm3 0,760
4 n 20 Refractive index, D 1,4370
5 Copper strip test withstands
6 Content of mechanical impurities absence
7 Content of actual resins, mg/100 cm3 absence
8 Hydrocarbon composition, % wt .: aromatic hydrocarbons 30,12
n-paraffinic hydrocarbons 3,44
isoparaffinic + naphthenic 66,44
9 Benzene content,% vol. 0,32
We can see that the benzene content in the composition of the IONX-2 gasoline has decreased to 0.32% by volume. At the same time, in this gasoline composition, we see that the amount of aromatic and paraffinic hydrocarbons is also reduced in comparison with the aluminum-nickel-tungsten-fluoride catalyst. By reducing the amount of paraffinic hydrocarbons, we see that the octane number of this sample of gasoline increased to 95.8 points.
Thus, using the components of domestic low-octane gasoline and various oxygenates in the form of raw materials, a technological scheme for the production of commercial high-octane motor gasoline that meets modern European requirements was developed, tested on a pilot plant in laboratory conditions, and positive results were obtained.
References / Список литературы
1. SmithM.T., ZhangL, Wang Y. et al. // Cancer Res., 1998. V. 58. № 10. P. 2176-2181.
2. Snyder R. // Drug and Chem. Toxicol., 2000. V. 23. № 1. P. 13-25.
3. Makhmudov M.J., Axmedov U.K. Modern methods of reducing the content of aromatic hydrocarbons in gasoline // «Austrian Journal of Technical and Natural Sciences». Vienna, 2020. № 5-6. 281-284 р.