Научная статья на тему 'Clear-cutting effects on components of the carbon balance in a bilberry-type pine forest in southern Karelia'

Clear-cutting effects on components of the carbon balance in a bilberry-type pine forest in southern Karelia Текст научной статьи по специальности «Биологические науки»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Ecosystem Transformation
Область наук
Ключевые слова
logging / natural forest regeneration / СО2 gas exchange in woody plants / СО2 emission from soil surface / podzolic sandy soils / environmental factors / middle taiga / рубки леса / естественное возобновление / СО2-газообмен древесных растений / эмиссия СО2 с поверхности почвы / подзолистые песчаные почвы / факторы внешней среды / средняя тайга

Аннотация научной статьи по биологическим наукам, автор научной работы — Pridacha V.B., Semin D.E.

Photosynthetic carbon flux and soil respiration are major determinants of the carbon balance of terrestrial ecosystems. Components of the carbon exchange of woody plants and soils were estimated in a 10-year-old clear-cut site of mid-boreal bilberry-type pine forest in southern Karelia during the warm season (July–August) in 2017–2019. The control was trees of the same age (10–15 years) and natural soils under the canopy of a mature bilberry pine forest. A comparison of the parameters of CO2 gas exchange in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula Roth), gray alder (Alnus incana (L.) Moench), and aspen (Populus tremula L.) revealed that photosynthetic uptake of CO2 exceeded its release by foliage during dark respiration in all the species more significantly in the regenerating clear-cutting (6–10-fold) than under mature stand canopy (3–6-fold). The rate of photosynthesis in trees of the same age was higher in deciduous species compared to pine both in the clear-cut site (16.6–17.6 and 7.4 μmol/m2·s) and under pine forest canopy (11.2–12.3 and 5.5 μmol/m2·s). The contributions of soil emission to the atmospheric СО2 flux in the regenerating clear-cutting (4.6 μmol/m2 s) and under the stand canopy (5.9 μmol/m2·s) are reported. Intra-seasonal variability of the parameters of carbon exchange in woody plants and soil was high as opposed to the relatively low variation among years in both sample plots.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Влияние сплошной рубки на составляющие углеродного баланса сосняка черничного Южной Карелии

Поглощение растениями СО2 из атмосферы в процессе фотосинтеза и дыхание почвы в наибольшей степени определяют углеродный баланс наземных экосистем. На основе 3-летних наблюдений в теплый период года (июль–август 2017–2019 гг.) проведена оценка составляющих углеродного обмена древесных растений и почвенного покрова на сплошной вырубке 10-летней давности среднетаежного сосняка черничного в условиях Южной Карелии. Контролем послужили одновозрастные деревья (10–15 лет) и естественные почвы под пологом спелого сосняка черничного. Сопоставление показателей СО2-газообмена сосны обыкновенной (Pinus sylvestris L.), березы повислой (Betula pendula Roth), ольхи серой (Alnus incana (L.) Moench)и осины (Populus tremula L.) выявило в условиях сплошной вырубки более интенсивное связывание СО2 в процессе фотосинтеза относительно его выделения листом при темновом дыхании у всех видов (в 6–10 раз) по сравнению с таковыми у деревьев под пологом спелого древостоя (в 3–6 раз). Наибольшая интенсивность фотосинтеза для одновозрастных деревьев отмечена у лиственных видов относительно сосны как в антропогенно трансформированном биоценозе (16.6–17.6 и 7.4 мкмоль/м2 с), так и под пологом сосняка черничного (11.2–12.3 и 5.5 мкмоль/м2 с). Показан вклад почвенной эмиссии в атмосферный поток СО2 на сплошной вырубке (4.6 мкмоль/м2 с) и под пологом древостоя (5.9 мкмоль/м2 с).Отмечено преобладание внутрисезонной вариабельности на фоне схожих среднемноголетних величин показателей углеродного обмена древесных растений и почвы на обоих экспериментальных участках.

Текст научной работы на тему «Clear-cutting effects on components of the carbon balance in a bilberry-type pine forest in southern Karelia»

Транс$0рмацмa SKOCMCTeM ISSN 2619-0931 Online

Ecosystem Transformation

www.ecosysttrans.com

DOI 10.23859/estr-230505 EDN MASNTJ UDC 574.4

Article

Clear-cutting effects on components of the carbon balance in a bilberry-type pine forest in southern Karelia

V.B. Pridacha* , D.E. Semin

Forest Research Institute, Karelian Research Centre, RussianAcademy ofSciences, ul. Pushkinskaya 11, Petrozavodsk, Republic of Karelia, 185910 Russia

*pridacha@krc.karelia.ru

Abstract. Photosynthetic carbon flux and soil respiration are major determinants of the carbon balance of terrestrial ecosystems. Components of the carbon exchange of woody plants and soils were estimated in a 10-year-old clear-cut site of mid-boreal bilberry-type pine forest in southern Karelia during the warm season (July-August) in 2017-2019. The control was trees of the same age (10-15 years) and natural soils under the canopy of a mature bilberry pine forest. A comparison of the parameters of CO2 gas exchange in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula Roth), gray alder (Alnus incana (L.) Moench), and aspen (Populus tremula L.) revealed that photosynthetic uptake of CO2 exceeded its release by foliage during dark respiration in all the species more significantly in the regenerating clear-cutting (6-10-fold) than under mature stand canopy (3-6-fold). The rate of photosynthesis in trees of the same age was higher in deciduous species compared to pine both in the clear-cut site (16.6-17.6 and 7.4 ^mol/m2s) and under pine forest canopy (11.2-12.3 and 5.5 ^mol/m2s). The contributions of soil emission to the atmospheric C02 flux in the regenerating clear-cutting (4.6 ^mol/m2 s) and under the stand canopy (5.9 ^mol/m2s) are reported. Intra-seasonal variability of the parameters of carbon exchange in woody plants and soil was high as opposed to the relatively low variation among years in both sample plots.

Keywords: logging, natural forest regeneration, C02 gas exchange in woody plants, C02 emission from soil surface, podzolic sandy soils, environmental factors, middle taiga

Funding. The research was carried out within the State Task of the Karelian Research Centre RAS (Forest Research Institute KarRC RAS) and with financial support from the Russian Foundation for Basic Research (grant no. 17-04-01087-a). The studies were made using the equipment of the Core Facility of the Karelian Research Centre RAS.

ORCID:

V.B. Pridacha, https://orcid.org/0000-0002-4031-0690

To cite this article: Pridacha, V.B., Semin, D.E., 2024. Clear-cutting effects on components of the carbon balance in a bilberry-type pine forest in southern Karelia. Ecosystem Transformation 7 (3), 6483. https://doi.org/10.23859/estr-230505

Received: 05.05.2023 Accepted: 19.07.2023 Published online: 26.07.2024

DOI 10.23859^Г-230505 EDN MASNTJ УДК 574.4

Научная статья

Влияние сплошной рубки на составляющие углеродного баланса сосняка черничного Южной Карелии

В.Б. Придача* , Д.Е. Семин

Институт леса Карельского научного центра РАН, 185910, Россия, Республика Карелия, г. Петрозаводск, ул. Пушкинская, д. 11

*рпбасЬа@кгс.кагеИа.ги

Аннотация. Поглощение растениями СО2 из атмосферы в процессе фотосинтеза и дыхание почвы в наибольшей степени определяют углеродный баланс наземных экосистем. На основе 3-летних наблюдений в теплый период года (июль-август 2017-2019 гг.) проведена оценка составляющих углеродного обмена древесных растений и почвенного покрова на сплошной вырубке 10-летней давности среднетаежного сосняка черничного в условиях Южной Карелии. Контролем послужили одновозрастные деревья (10-15 лет) и естественные почвы под пологом спелого сосняка черничного. Сопоставление показателей СО2-газообмена сосны обыкновенной (Pinus sylvestris L.), березы повислой (Betula pendula Roth), ольхи серой (Alnus incana (L.) Moench^ осины (Populus tremula L.) выявило в условиях сплошной вырубки более интенсивное связывание СО2 в процессе фотосинтеза относительно его выделения листом при темновом дыхании у всех видов (в 6-10 раз) по сравнению с таковыми у деревьев под пологом спелого древостоя (в 3-6 раз). Наибольшая интенсивность фотосинтеза для одновозрастных деревьев отмечена у лиственных видов относительно сосны как в антропогенно трансформированном биоценозе (16.6-17.6 и 7.4 мкмоль/м2 с), так и под пологом сосняка черничного (11.2-12.3 и 5.5 мкмоль/м2 с). Показан вклад почвенной эмиссии в атмосферный поток СО2 на сплошной вырубке (4.6 мкмоль/м2 с) и под пологом древостоя (5.9 мкмоль/м2 с).Отмечено преобладание внутрисезонной вариабельности на фоне схожих среднемноголетних величин показателей углеродного обмена древесных растений и почвы на обоих экспериментальных участках.

Ключевые слова: рубки леса, естественное возобновление, СО2-газообмен древесных растений, эмиссия СО2 с поверхности почвы, подзолистые песчаные почвы, факторы внешней среды, средняя тайга

Финансирование. Финансовое обеспечение исследований осуществлялось из средств федерального бюджета на выполнение государственного задания КарНЦ РАН (Институт леса КарНЦ РАН) и при финансовой поддержке РФФИ (грант № 17-04-01087-а). Исследования выполнены на научном оборудовании Центра коллективного пользования Федерального исследовательского центра «Карельский научный центр Российской академии наук».

ОКОЮ:

В.Б. Придача, https://orcid.org/0000-0002-4031-0690

Для цитирования: Придача, В.Б., Семин, Д.Е., 2024. Влияние сплошной рубки на составляющие углеродного баланса сосняка черничного Южной Карелии. Трансформация экосистем 7 (3), 64-83. https://doi.org/10.23859/estr-230505

Поступила в редакцию: 05.05.2023 Принята к печати: 19.07.2023 Опубликована онлайн: 26.07.2024

Introduction

Boreal forests are among the key regulators of our planet's climate through matter and energy exchange (Bonan, 2008; Groisman et al., 2017). They store immense amounts of biogenic carbon, comparable to the carbon stock of tropical forests. The current global warming (IPCC, 2013), triggered by air temperature rise, changes in atmospheric gas composition and land surface moisture conditions, can influence the dynamics and rates of biophysical and biochemical processes in plants (Lukac et al., 2010; Niinemets, 2010; Olchev et al., 2013; Price et al., 2013; Sazonova et al., 2019) and in soil (Karelin et al., 2020; Kurganova et al., 2020; Luo and Zhou, 2010; Mukhortova et al., 2021; Wiesmeier et al., 2019). Natural ecosystems are also significantly affected by human impacts, such as pollution of air and soil water, land use changes, or logging (Groisman et al., 2017; Pridacha et al., 2011; Shorohova et al., 2019). To wit, international estimates of the total forest area (FAO, 2020) show that 420 million hectares of forest have been lost globally due to logging since 1990. However, global deforestation has lately (2010-2018) slowed down by 30% (to 8 mln ha per year) versus 2000-2010 (FAO, 2020).

Russian forests constitute one-fifth of global forest resources, including over a half of the planet's boreal forests (FAO, 2020). According to the latest inventory, forests in the Russian Federation are 98.4% made up of natural stands (Filipchuk et al., 2022). Meanwhile, the area of mature and over-mature pine stands in the north-west of the boreal zone of European Russia, in particular in the Republic of Karelia, has declined over the past 60 years (1956-2014) by 51% as a result of large-scale clear-cutting, while the share of deciduous stands has increased (Ananyev and Moshnikov, 2016). Conifer-dominated stands currently account for 87.5% of the forested area in Karelia, including 64.3% of pine-dominated and 23.2% of spruce-dominated stands1.

Logging substantially alters the forest cover and forest soils (Dymov, 2017; Keeman and Kimmins, 1993; Williams et al., 2014), the microclimate, and the water regime of soils, entailing a rapid loss of carbon from the forest ecosystems (Mamkin et al., 2019; Olchev et al., 2017). In this context, some authors report that retention of advance regeneration when logging forests in the European North can ensure 1.5-2-fold higher photosynthetic fixation of C02 by young trees in cut-over sites owing to the photosyn-thetic apparatus adapting to higher illumination upon forest canopy removal (Konovalov and Zarubina, 2019; Tuzhilkina, 2022). At the same time, soil respiration in a recently harvested forest site was shown to depend on the degree of topsoil disturbance, the presence of tree litter and logging residues on the surface (Molchanov et al., 2017). Prevalence of carbon losses to respiration over its photosynthetic fixation can alter the functional role of the terrestrial ecosystem, converting it from a sink to a source of atmospheric carbon (Bobkova and Kuznetsov, 2022; Fatichi et al., 2019; Olchev et al., 2017; Schulze et al., 1999; Valentini et al., 2000). A comprehensive investigation of C02 emission and uptake by a natural ecosystem requires finding the contributions of its individual components to the C02 balance. With this in mind, we made it our aim to comparatively estimate the components of the carbon exchange of trees and soils in a clear-cut bilberry-type pine forest site and under the forest canopy in the middle-taiga subzone of Karelia during three growing seasons.

1 State Report on the Environment in the Republic of Karelia in 2020, 2021

Material and methods

Characteristics of the climate, vegetation, and soils

The study was carried out in the middle taiga subzone of North European Russia, in the Kondopoga District, Republic of Karelia, in July and August 2017-2019. The climate in the study area is of the subarctic type according to the Koppen classification (Peel et al., 2007), with substantial amounts of precipitation during a year (550-750 mm, including 350-400 mm in the period from May through October) and high relative air humidity (75% on average) (Nazarova, 2021). Mean annual air temperature is +3.6 °C; mean monthly temperatures range from +17.1 °C (July) to -8.4 °C (January) (data covering 1991-2020) (Nazarova, 2021). Mean air temperature over the growing season (May-September) is +13 °C. The total radiation balance over the growing season is 1130 MJ/m2. According to data from the Kondopoga weather station2, the temperature regime in the study area in the period from May through September 2017-2019 featured an alternation (1.2 < ATseas < 1.8) of warmer (2018) and colder seasons (2017 and 2019). In 2017-2019, from May through September, the precipitation regime was characterized by an alternation of rainy (349 mm) and drier periods (245 mm): precipitation deficit relative to the normal multi-decadal level was observed in May-June 2017 and 2018 (80-88 and 44-52% of the normal, respectively) and in June 2019 (46% of the normal).

Surveys were done in sample plots (SPs) established in a bilberry pine forest site clear-cut in 2009 (Pridacha et al., 2021) (SP 1) and in the natural environment of a 95-year-old bilberry pine stand (SP 2) (Fig. 1). Clear-cutting of the stand was done in summer, in 12 ha area, in a mechanized manner. The distance between the SPs is less than 1 km. The sites SP 1 (10*20 m) and SP 2 were selected so as to have homogeneous relief, parent rock, and soil hydrological regime (30*50 m) (Table 1).

The young stand formed through natural regeneration in the clear-cut site is made up of regenerating Scots pine Pinus sylvestris L. (70%) mixed with silver birch Betula pendula Roth (30%) and some aspen Populus tremula L. The understory comprises gray alder Alnus incana (L.) Moench, willow Salix sp., rowan Sorbus aucuparia L. The dominants in the ground cover are Chamaenerion angustifolium (20%), Rubus saxatilis (10%), Calamagrostis arundinacea (10%), Avenella flexuosa (3%). The moss-lichen layer is poorly developed, represented by occasional patches of mosses Dicranum sp. and Polytrichum juniperinum Hedw. The soil is an Arenic Albic Podzol (Shishov et al., 2004). The bulk of roots are concentrated within 2-25 cm depth. The groundwater table depth is 1.2 m.

The mature bilberry-type pine stand is dominated by P. sylvestris (90%) mixed with B. pendula (10%). The stand of quality class I has a relative stocking density of 0.6 and 304 m3/ha timber volume. Advance-regeneration P. sylvestris, B. pendula and P. tremula are mostly present in the parent stand canopy gaps. The understory is made up of A. incana, with singular S. aucuparia and juniper Juniperus communis L plants. The ground cover dominants are the subshrubs Vaccinium myrtillus (30%), Melampyrum pratense (3%) and Vaccinium vitis-idaea (3%), and the mosses Pleurozium schreberi (60%) and Hylocomium splendens (4%). The soil is an Arenic Albic Podzol (Shishov et al., 2004). The bulk of roots are concentrated within 2-25 cm. The groundwater table depth is 1.2 m.

Surveys in the clear-cut site and the pine stand included a complete tree count (at least 150 young-generation pine, birch, aspen, and alder trees in each SP), measurements of the trunk diameter (at 1.3 m height) and height of all the trees at 0.01 and 0.1 m accuracy, respectively. Based on these measurements, model trees with the following average height and diameter parameters were selected: not exceeding 4.5 and 3.7 m, 4.3 and 2.9 cm in the clear-cut site and the pine stand, respectively. The young stand composition was derived from the number of trees of different species by enumerating small (up to 0.5 m high), medium (0.51-1.5 m), and large (taller than 1.5 m) regeneration (understory) plants following a procedure commonly accepted in Russia (Osnovy lesnoi taksatsii..., 2021). A more detailed description of the vegetation and soils of both SPs can be found in our previous paper (Pridacha et al., 2021).

Indices of C02 exchange in plants

Field data on the leaf gas exchange were obtained for an even-aged young stand (10-15 years old) of Scots pine, silver birch, gray alder, and aspen growing in a clear-cut site and under the canopy of a mature bilberry-type pine stand. The study sites were selected in view of the distribution of Karelian forests by the prevalent tree species3.

2 Weather schedule. Web page. URL: https://rp5.ru/ (accessed: 16.04.2024).

3 State Report on the Environment in the Republic of Karelia in 2020, 2021.

Fig. 1. Locations (red asterisks) of the clear-cut site (1) and the bilberry-type pine stand (2) in the study area.

The rates of leaf photosynthesis (A, ^mol/m2s) and dark respiration (Rd, ^mol/m2s) in birch, alder, and aspen and in one-year-old pine needles in the clear-cut site and under pine forest canopy were measured in July 2017-2019 during daytime, from 10:00 a.m. to 04:00 p.m., in undetached mid-crown leaves using portable photosynthesis system LI-6400XT (LI-COR Inc., USA). The measurements were always done on fully formed leaves without visible damage, following a standard protocol (Pridacha et al., 2021) in a standard leaf chamber illuminated by LI-6400-02BLED (LI-COR Inc., USA) at 1600 or 0 ^mol/m2s to measure the rates of photosynthesis and dark respiration, respectively, at C02 concentration of 400 ^mol/mol, air temperature of 23 °C, and air flow rate of 400 ^mol/s. Leaf C02 gas exchange measurements were taken in three replications for each tree and in 5 replications for each species in both SPs five times a month. The average duration of leaf accommodation to the leaf chamber was 15 minutes. To avoid stomatal closure during measurements, relative air humidity in the measuring chamber was kept within 50-70% (Busch, 2018).

Meteorological measurements in each SP were done using automated temperature and relative humidity loggers TRV-2 (Engineering Technologies, Russia). The rate of incident photosynthetically active radiation (PAR) in each SP was measured using LI-6400XT system (LI-COR Inc., USA).

Soil respiration

The C02 flux from soil surface in the clear-cut site and the bilberry pine forest site was studied in the last third of July - first third of August of 2017-2019 from 12:00 to 16:00 h on clear days without rainfall (Metody issledovanii..., 2005). The measurements were done by a closed (opaque) chamber method using portable infrared gas analyzer LI-8100A (LI-Cor Inc., USA) fitted with sensors of soil temperature (Omega, USA) and volumetric water content ECH20 EC-5 (Decagon Devices Inc., USA). To prepare for the measurements, PVC rings of 20 cm in diameter and 12 cm high were pressed down into the ground to 6 cm depth in both the clear-cut site and in the pine stand, without removing the ground vegetation, 3 hours before the start of observations. The total volume of the measurement system was 6749.8 cm3, including 4843 cm3 of the LI-8100-103 survey chamber (LI-COR Inc., USA) and 1906.8 cm3 of the ring (based on the distance from the soil surface to the top of the ring)4. Emission from soil in cutting blocks and skid trails of the clear-cut site was estimated with a differentiation into three ground vegetation microgroups (herbaceous - SP 11, true-moss - SP 12, fine woody debris - SP 13). All in all, 12 rings were deployed: in the clear-cut site (three in each of SP 11, SP 12, SP 13) and 3 in the bilberry pine stand (SP 2, bilberry-true moss microgroup). In all the sites, rings were positioned between tree crowns,

4

LI-8100A, 2012. Automated soil CO2 flux system. LI-8150 Multiplexer. Instruction manual.

Table 1. Microclimatic and soil conditions in the clear-cut bilberry pine forest site and under undisturbed bilberry pine forest canopy in July 2017-2019 (daytime mean ± standard error). PAR - photosynthetically active radiation; C02air - C02 concentration in the surface air; Tair - air temperature; VPD - water vapor pressure deficit; Tsoil - soil temperature (0-20 cm layer); VWC - volumetric water content (0-20 cm layer); Ctot 1 - total carbon content in the top organic horizon of soil (0-3/0-4 cm); Ctot 2 - total carbon content in the soil mineral horizon (3-24/4-27 cm); Ntot 1 - total nitrogen content in the top organic horizon of soil (0-3/0-4 cm); Ntot 2 - total nitrogen content in the soil mineral horizon (3-24/4-27 cm); pHKCl - salt-displaceable acidity. Letter indexes indicate significantly different means for the clear-cut site and the bilberry pine forest (p < 0.05).

Parameter Clear-cut site Bilberry pine stand

Coordinates N 62°10'28.1" E 33°59'58.8" N 62°10'10.8" E 34W05.4'

PAR, ^molm-2s-1 1216.8 ± 23.4a 239.2 ± 15.1b

C02air, ^molmol-1 389.8 ± 0.7a 391.2 ± 0.8a

Ti, 0C air' 27.1 ± 0.2a 22.4 ± 0.2b

VPD, KPa 2.2 ± 0.04a 1.3 ± 0.02b

T .,, 0C soil' 15.8 ± 0.2a 12.9 ± 0.2b

VWC, % vol. 11.2 ± 0.1a 15.8 ± 0.1b

Cot V % 24.1 ± 0.7a 38.6 ± 0.2b

Cot 2 % 0.1 ± 0.0a 0.3 ± 0.0b

Not v % 0.4 ± 0.1a 0.9 ± 0.1b

Not 2 % 0.1 ± 0.0a 0.1 ± 0.0a

pHkci 4.7 ± 0.1a 3.8 ± 0.1b

Soil Albic Podzol (Arenic)a Albic Podzol (Arenic)a

Tree stand age, years 10a 95b

among plants of the herb-subshrub layer. The distance between rings was 2-3 m. Measurements of C02 flux from soil surface in both SPs were taken during 90 seconds with 30 second intervals, according to the system's standard configuration, in three replications for each ring, every 10 days. Soil temperature and volumetric water content were measured in the 0-20 cm layer at each ring.

Statistical analysis

The data were statistically processed with Statistica 13.3 (TIBCO Software Inc., USA). Differences were considered significant at p < 0.05. The survey year effect being insignificant (p > 0.05), we pooled together the datasets on tree and soil characteristics over the 3 years of observations. The annual total numbers of measurements of leaf photosynthesis and dark respiration rates and C02 flux from soil surface were 600, 600, and 144, respectively. The variability of a trait was quantified by the coefficient of variation (CV, %). Significant differences between means were estimated by the Tukey's test.

Results

C02 gas exchange in plants

The photosynthesis rates of the leaf and one-year-old needles in the advance regeneration of deciduous species and pine were the highest in the clear-cut site (Fig. 2). Their values under the forest canopy were significantly lower: by 36, 28, 27, and 25% for birch, alder, aspen, and pine, respectively. At the same time, the leaf dark respiration rate was highly stable in all the deciduous species, irrespective of the phytocoenotic environment. Dark respiration in pine, on the contrary, was 40% higher under the forest canopy versus the clear-cut site. Furthermore, pine compared to deciduous species had lower rates of both photosynthesis (2.3 times lower in both sample plots), and respiration - 1.7 and 1.2 times lower in the clear-cut site and in the pine stand, respectively.

Analysis of the data on the foliar uptake (photosynthesis) and emission of C02 (respiration) by young plants showed that leaves of birch, alder and aspen in the clear-cut site can fix 8-10 times more C02 than they release through dark respiration. Needles of pine trees in the clear-cut site metabolize assimilates less sparingly than deciduous species, assimilating only 6 times as much carbon dioxide as is released through respiration. This tendency for more economical photosynthesis in deciduous species compared to pine persists under the forest canopy (6:1 and 3:1, respectively).

Another noteworthy fact is that in the three years of observations, within-season variability (date-specific) of the investigated indices of C02 exchange in woody plants in the clear-cut site and under the bilberry pine forest canopy was high while variation among years was low (p > 0.05). The variability (CV, %) of the photosynthesis rate in all tree species in the clear-cut site and under the forest canopy was 27-33 and 28-45%, respectively, and that of foliar dark respiration was 23-30% in both sample plots.

Soil respiration

According to our data, the microgroup with fine woody debris SP 13 featured 6% higher soil temperatures than the other two microgroups in the clear-cut site (Fig. 3). Soil temperature in the bilberry pine stand SP 2 was 21% lower than in the clear-cut site because of lower mean daytime illumination and surface air temperature (Table 1). At the same time, SP 2 in the mature tree stand had a 58% higher soil water content compared to the clear-cutting's microgroups with true-moss-dominated ground vegetation SP 12 and with fine woody debris SP 13. These features of the soil hydrothermal regime in the surveyed sites may be responsible for the 30% higher C02 flux from soil surface in the bilberry pine stand versus the clear-cut site. On the other hand, C02 flux from the soil surface in the undisturbed forest site was somewhat less variable over the 3-year study period (CV = 18%) compared to that in the clear-cut site (CV = 23%). Importantly, 10 years after clear-cutting, the different microgroups of ground vegetation (herbaceous SP 11 and true-moss-dominated SP 12) or its absence (fine woody debris SP 13) had no significant effect on the level of C02 emission from soil surface in the site.

Discussion

Plant photosynthesis and soil respiration largely govern the carbon balance of terrestrial ecosystems (Kudeyarov et al., 2007; Olchev et al., 2017). Major removal of photosynthesizing biomass from the forest ecosystem during clear-cutting has profound effects on the ecological, meteorological, and hydrological conditions in the ecosystem (Dymov, 2017; Keeman and Kimmins, 1993; Olchev et al., 2009). We demonstrated (Table 1) that during the survey period the microclimate of the clear-cut site featured higher mean daytime PAR (5-fold), vapor pressure deficit (1.7-fold), air and soil temperatures (1.2-fold) compared to the undisturbed pine forest site. Previously, we have also observed the change in the ecological conditions upon clear-cutting to entail a notable decline in the percentage cover of typical forest species in the herb-subshrub layer (Convallaria majalis, Melampyrum pratense, Vaccinium myrtil-lus) coupled with an obvious degradation of the moss-lichen layer and, on the contrary, a 10-20-fold increase in the abundance of species that are usually suppressed under forest canopy (Calamagrostis arundinacea and Chamaenerion angustifolium) (Pridacha et al., 2021).

C02 gas exchange in plants

The light dependence of C02 gas exchange in plants is species-specific and variable at daily, seasonal, and annual scales (Lambers and Oliveira, 2019; Larcher, 2003; Sazonova et al., 2011; Suvorova, 2009; Tselniker et al., 1993), reflecting the high plasticity of this process in general. Inter-species differences in photosynthesis parameters are determined by the specific features of the leaf mesostructure and ontogeny in different species. The rise in the rate of photosynthesis observed in pine and deciduous trees (Fig. 2) growing in open clear-cut areas with sufficient light is possibly due to the formation of thicker leaves containing more nitrogen per unit leaf area (Poorter et al., 2019; Utkin et al., 2008). This assumption was corroborated by our previous findings that the specific content of nutrients in leaves was the highest and specific leaf area (SLA), on the contrary, was the lowest in all plant species in the clear-cut site versus closed-canopy forest site (Pridacha et al., 2021). Such structural and functional transformations in plants are adaptive in nature, since an increase in leaf area in response to poor illumination under forest canopy, vice versa, serves to stabilize biomass increment (Niinemets, 2010; Tselniker et al., 1993).

Fig. 2. Rates of photosynthesis (A) and dark respiration (B) of a leaf in Betula pendula (Bp), Alnus incana (Ai), Populus tremula (Pt) and one-year-old needles of Pinus sylvestris (Ps) in the clear-cut site and under forest canopy in July 2017-2019 (showing means and their standard errors). Different lowercase letters (a, b) indicate significant (p < 0.05) within-species differences in the means between the two SPs, and different uppercase letters (A, B, C) indicate significant (p < 0.05) inter-species differences in the means within each SP.

Fig. 3. Mean daytime values of C02 flux from soil surface (A), soil temperature (B), and volumetric water content in the 0-20 cm soil layer (C) in July and August 2017-2019 (showing means and their standard errors). SP 11 2 3- a clear-cut site with account for ground vegetation microgroups (herbaceous, true-moss, fine woody debris, respectively), SP 2 - bilberry-type pine stand. Different lowercase letters (a, b) indicate significant differences between the means across microgroups in the sample plot (p< 0.05).

The elevated level of dark respiration in pine under forest canopy compared to the clear-cut site, which is not found in deciduous species, can be explained by their different shade adaptation capacities (Sazonova et al., 2011; Suvorova, 2009; Tselniker et al., 1993), as well as by differences in the ontogenesis of gymnosperm needles and angiosperm leaves, in particular the different formation rates and duration (Kishchenko, 2000; Kishchenko and Vantenkova, 2013). On the other hand, the lower pho-tosynthetic productivity of pine versus deciduous species is apparently associated with the functional characteristics of plants belonging to different phylogenetic groups, namely the leaf life span (Shiklo-manov et al., 2020; Vasfilov, 2015). As compared to deciduous trees, the prolonged duration of active photosynthesis in conifers slows down the rate at which the leaf photosynthetic potential is realized.

A likely explanation of the similarity of the multiannual means of C02 gas exchange indices between trees in the clear-cut site and under the bilberry pine forest canopy is the narrow range of variation of hydrothermal conditions in the 2017-2019 growing seasons and the absence in the study period of extreme weather events (heat, drought, flood, etc.), which could have significantly influenced the investigated parameters.

Soil respiration

It is especially interesting to study the spatial heterogeneity of soil respiration and the factors behind it. We have previously noted the high acidity and the poor nutrient status of soils in both the clear-cut site and the undisturbed bilberry pine forest (Pridacha et al., 2021), which is in agreement with known data on the low fertility of forest soils in Karelia (Morozova and Fedorets, 1992). The relatively high C/N ratio in the top organic horizon of soils in the clear-cut site (65) and the pine stand (44) is also indicative of the tense nitrogen nutrition regime in both communities and the generally low rate of organic matter mineralization. Meanwhile, the higher rate of soil respiration in the natural stand in our study (Fig. 3) can apparently be attributed to the contribution of the forest floor (Chi et al., 2021; Morén and Lindroth, 2000) and higher contribution of autotrophic respiration due to greater root biomass in mature trees which is evenly distributed in mineral horizons (Pridacha et al., 2021), as well as to a higher soil water content compared to the clear-cut site (Pumpanen et al., 2008). It also appears probable that heterotrophic respiration contributes more to total C02 emission from the soil surface in the bilberry pine stand versus the clear-cut site due to higher rhizomicrobial respiration (Baldrian, 2017; Luo and Zhou, 2010).

The lower volumetric water content of soil in the clear-cut site is obviously associated with the higher mean diurnal illumination and vapor pressure deficit (Table 1), as well as the higher stomatal conductance and leaf transpiration rate in trees growing in the clear-cut site versus the undisturbed forest stand (Pridacha et al., 2021), as previously stated in (Olchev et al., 2009; Radler et al., 2010; Williams et al., 2014). The fact that soil temperatures were the highest in the microgroup with fine woody debris in the clear-cut site can be explained by the higher activity of the microbial community during the decomposition of plant residues (Baldrian, 2017; Luo and Zhou, 2010). At the same time, the lower variability of the C02 flux from soil surface in the bilberry pine stand versus the clear-cut site is in conformance with our data regarding more homogenous ground vegetation in the natural stand, which comprised 37 taxa of mosses, lichens, and vascular plants versus 56 taxa in the clear-cut site (Pridacha et al., 2021).

An important note is that in spite of the highly motley and mosaic soil cover and heterogeneous soil respiration (Kudeyarov et al., 2007; Luo and Zhou, 2010; Mukhortova et al., 2021), our own data on C02 emission from soil in the clear-cut site and the mature bilberry pine stand in southern Karelia are quite comparable to the soil respiration levels reported for middle-aged pine stands in Finland (Niinisto et al., 2011) and Middle Siberia (Makhnykina et al., 2020). Assessments of the seasonal patterns in C02 fluxes from the soil surface in boreal pine stands revealed soil emission to be the highest in the period from mid-July until late August (Makhnykina et al., 2020; ; Morén and Lindroth, 2000; Osipov, 2015; Yalynskaya, 1999), which is attributed to the effect of the seasonal dynamics of soil temperatures on the functional activity of autotrophic and heterotrophic organisms (Kurganova et al., 2020; Laganiere et al., 2012; Yuste et al., 2003). This fact provides the ground to regard the reported levels of C02 flux from the soil surface in the regenerating clear-cutting of a bilberry pine stand and in the undisturbed forest site as the reference levels for the warm period of the year in the given biogeocoenotic settings.

Thus, based on the analysis of 3-year averages for the components of the carbon exchange of woody plants and soils in a 10-year-old clear-cut site and under bilberry-type pine forest canopy in the warm time of the year in southern Karelia, we can infer that photosynthetic C02 uptake by trees prevails over its release through soil respiration in both sample plots. This appears to be an important result, considering the lack of common understanding regarding the temporal dimension of the clear-cutting

effect on the capacity of forest ecosystem to sequester or release CO2 (Amiro et al., 2010; Mamkin et al., 2019; Vestin et al., 2020; Williams et al., 2014; Zha et al., 2009). The results of our previous field studies of the components of C02/H20 exchange in coniferous and deciduous trees on automorphic sandy soils in southern Karelia (Pridacha et al., 2019) have been used for parametrization of the rates of photosynthesis, respiration, and stomatal conductance of pine and birch in the MixFor-SVAT model (Olchev et al., 2017) and to calculate possible changes in CO2 and H2O fluxes in Karelian pine forest ecosystems under future climate change. Modeling suggests the integral CO2 exchange and evapotranspiration of Karelian pine forests will tend to grow (by 39 and 5%, respectively) under the climate scenario (A1B) simulating a moderate rise in mean annual air temperature (by 3.4 °C) in the region by the end of the 21st century (Pridacha et al., 2019).

Conclusions

The reported study demonstrated a significant effect of clear-cutting on components of the carbon balance in the boreal forest ecosystem. We determined the specific values of C02 photosynthetic fixation and its release through dark respiration in the main forest tree species of North European Russia, as well as of C02 emission from the soil surface in a clear-cut site and under the canopy of a bilberry-type pine stand during the warm time of the year. The dominance of C02 fixation through photosynthesis over its release through dark respiration (6-10-fold) was greater in pine and deciduous species in the clear-cut site than under forest canopy (3-6-fold). Soil emission in the 10-year-old clear-cut site was shown to contribute less (1.3-fold) to the atmospheric C02 flux than it does in the mature bilberry pine forest site. We revealed the patterns to be applied to local phytocoenotic and climatic conditions. These results can serve as the basis for predictive assessments of human impact on the carbon exchange of vegetation and soils in forest ecosystems at different spatial and temporal scales.

References

Amiro, B.D., Barr, A.G., Barr, J.G., Black, T.A., Bracho, R. et al., 2010. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research 115(G4). https://doi. org/10.1029/2010JG001390

Ananyev, V.A., Moshnikov, S.A., 2016. Struktura i dinamika lesnogo fonda Respubliki Kareliya [Structure and dynamics of the forest reserves of the Republic of Karelia]. Lesnoy Zhurnal [Russian Forestry Journal] 4, 19-29. (In Russian). https://doi.org/10.17238/issn0536-1036.2016.4.19

Baldrian, P., 2017. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiology reviews 41(2), 109-130. https://doi.org/10.1093/femsre/fuw040

Bobkova, K.S., Kuznetsov, M.A., 2022. Byudzhet ugleroda v ehkosistemakh srednetaezhnykh korennykh el'nikov [Carbon budget in the ecosystems of virgin spruce forests in the middle taiga]. Zhurnal obshchei biologii [Journal of General Biology] 83 (6), 434-449. (In Russian). https://doi. org/10.31857/S0044459622060033

Bonan, G.B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444-1449. https://doi.org/10.1126/science.1155121

Busch, F.A., 2018. Photosynthetic gas exchange in land plants at the leaf level. Photosynthesis. Methods in Molecular Biology 1770. https://doi.org/10.1007/978-1-4939-7786-4_2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Chi, J., Zhao, P., Klosterhalfen, A. Jocher, G., Kljun, N., Nilsson, M.B., Peichlet, M., 2021. Forest floor fluxes drive differences in the carbon balance of contrasting boreal forest stands. Agricultural and Forest Meteorology 306. https://doi.org/10.1016/j.agrformet.2021.108454

Dymov, A.A., 2017. The impact of clear-cutting in boreal forests of Russia on soils: A review. Eurasian Soil Science 50, 780-790. https://doi.org/10.1134/S106422931707002X

FAO, 2020. Global Forest Resources Assessment, 2020 - Key findings. Rome, 16 p. https://doi. org/10.4060/ca8753en

Fatichi, S., Pappas, C., Zscheischler, J., Leuzinger, S., 2019. Modelling carbon sources and sinks in terrestrial vegetation. New Phytologyst 221, 652-668. https://doi.org/10.1111/nph.15451

Filipchuk, A.N., Malysheva, N.V, Zolina, T.A., Fedorov, S.V., Berdov, A.M. et al., 2022. Analiticheskii obzor kolichestvennykh i kachestvennykh kharakteristik lesov Rossiiskoi Federatsii: itogi pervogo tsikla gosudarstvennoi inventarizatsii lesov [Analytical review of the quantitative and qualitative characteristics of forests in the Russian Federation: results of the first cycle of the state forest inventory]. Lesokhozyaistvennaya informatsiya [Forestry Information] 1, 5-34. (In Russian). https:// doi.org/10.24419/LHI.2304-3083.2022.1.01

Groisman, P., Shugart, H., Kicklighter, D., Henebry, G., Tchebakova, N. et al., 2017. Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century. Progress in Earth and Planetary Science 4. https://doi.org/10.1186/s40645-017-0154-5

IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013. Cambridge University Press, Cambridge, UK, 1535 p.

Karelin, D., Goryachkin, S.V., Zazovskaya, E.P., Shishkov, V., Pochikalov, A. et al., 2020. Greenhouse gas emission from the cold soils of Eurasia in natural settings and under human impact: controls on spatial variability. Geoderma Regional 22, 00290. https://doi.org/10.1016/j.geodrs.2020.e00290

Keeman, R.J., Kimmins, J.P., 1993.The ecological effects of clear-cutting. Environmental Reviews 1, 121-144.

Kishchenko, I.T., 2000. Rost i razvitie aborigennykh iintrodutsirovannykh vidov semeistva Pinaceae Lindl. v usloviyakh Karelii [Growth and development of native and introduced species of the Pinaceae Lindl. family in Karelia]. Petrozavodsk State University, Petrozavodsk, Russia, 211 p. (In Russian).

Kishchenko, I.T., Vantenkova, I.V., 2013. Sezonnyi rost listvennykh lesoobrazuyushchikh vidov v taezhnoi zone Rossii (na primere Karelii) [Seasonal growth of deciduous forest-forming species in the taiga zone of Russia (on the example of Karelia)]. Petrozavodsk State University, Petrozavodsk, Russia, 94 p. (In Russian).

Konovalov, V.N., Zarubina, L.V., 2019. Ottok i raspredelenie 14C-assimilyatov u eli pri vyborochnykh rubkakh v severotaezhnykh fitocenozakh [Outflow and distribution of spruce 14C-assimilates after selective felling in the northern taiga phytocenosis]. Lesnoy Zhurnal [Russian Forestry Journal] 2, 40-55. (In Russian). https://doi.org/10.17238/issn0536-1036.2019.2.40

Kudeyarov, V.N., Zavarzin, G.A., Blagodatsky, S.A., Borisov, A.V., Voronin, P.Yu., 2007. Puly i potoki ugleroda v nazemnykh ehkosistemakh Rossii [Carbon pools and fluxes in terrestrial ecosystems of Russia]. Nauka, Moscow, Russia, 315 p. (In Russian).

Kurganova, I.N., Lopes de Gerenyu, V.O., Khoroshaev, D.A., Myakshina, T.N., Sapronov, D.V., Zhmurin, V.A., Kudeyarov, V.N., 2020. Analysis of the long-term soil respiration dynamics in the forest and meadow cenoses of the Prioksko-terrasny biosphere reserve in the perspective of current climate trends. Eurasian Soil Science 53, 1421-1436. https://doi.org/10.1134/S1064229320100117

Laganiere, J., Pare, D., Bergeron, Y., Chen, Y.H., 2012. The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biology and Biochemistry 53, 18-27. https://doi.org/10.1016/j.soilbio.2012.04.024

Lambers, H., Oliveira, R.S., 2019. Plant physiological ecology. Springer, Cham, Switzerland, 736 p.

Larcher, W., 2003. Physiological plant ecology. Springer, Berlin, Germany, 514 p.

Lukac, M., Calfapietra, C., Lagomarsino, A., Loreto, F., 2010. Global climate change and tree nutrition: effects of elevated CO2 and temperature. Tree Physiology 30, 1209-1220. https://doi.org/10.1093/ treephys/tpq040

Luo, Y., Zhou, X., 2010. Soil respiration and the environment.Elsevier, San Diego, USA, 333 p. https:// doi.org/10.1016/B978-0-12-088782-8.X5000-1

Makhnykina, A.V., Prokushkin, A.S., Menyailo, O.V., Verkhovets, S.V., Tychkov, I.I. et al., 2020. The impact of climatic factors on C02 emissions from soils of middle-taiga forests in Central Siberia: emission as a function of soil temperature and moisture. Russian Journal of Ecology 51, 46-56. https://doi.org/10.1134/S1067413620010063

Mamkin, V., Kurbatova, J., Avilov, V., Ivanov, D., Kuricheva, O. et al., 2019. Energy and CO2 exchange in an undisturbed spruce forest and clear-cut in the Southern Taiga. Agricultural and Forest Meteorology 265, 252-268. https://doi.org/10.1016/j.agrformet.2018.11.018

Metody issledovanii organicheskogo veshchestva pochv [Research methods of soil organic matter], 2005. Eskov, A.I. (ed.). Rossel'khozakademiya, Moscow, Russia, 521 p. (In Russian).

Molchanov, A.G., Kurbatova, Yu.A., Olchev, A.V., 2017. Effect of clear-cutting on soil CO2 emission. Biology Bulletin 44 (2), 218-223. https://doi.org/10.1134/S1062359016060121

Moren, A.S., Lindroth, A., 2000. CO2 exchange at the floor of a boreal forest. Agricultural and Forest Meteorology 101, 1-14. https://doi.org/10.1016/S0168-1923(99)00160-4

Morozova, R.M., Fedorets, N.G., 1992. Sovremennye protsessy pochvoobrazovaniya v khvoinykh lesakh Karelii [Modern processes of soil formation in the coniferous forests of Karelia]. Karelian Research Centre RAS, Petrozavodsk, Russia, 284 p. (In Russian).

Mukhortova, L., Schepaschenko, D., Moltchanova, E., Shvidenko, A., Khabarov, N., See, L., 2021. Respiration of Russian soils: climatic drivers and response to climate change. Science of the Total Environment 785, 147314. https://doi.org/10.1016/j.scitotenv.2021.147314

Nazarova, L.E., 2021. Klimaticheskie usloviya na territorii Karelii [Climatic conditions in the Republic of Karelia]. In: Filatov, N.N. (ed.), Sovremennye usloviya vodoemov Severa [Current conditions of water basins in the North]. Karelian Research Centre RAS, Petrozavodsk, Russia, 7-16. (In Russian).

Niinemets, U., 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management 260, 1623-1639. https://doi.org/10.1016/j.foreco.2010.07.054

Niinisto, S.M., Kellomaki, S., Silvola, J., 2011. Seasonality in a boreal forest ecosystem affects the use of soil temperature and moisture as predictors of soil CO2 efflux. Biogeosciences 8, 3169-3186. https://doi.org/10.5194/bg-8-3169-2011

Olchev, A., Radler, K., Sogachev, A., Panferov, O., Gravenhorst, G., 2009. Application of a three-dimensional model for assessing effects of small clear-cuttings on radiation and soil temperature. Ecological Modelling 220, 3046-3056. https://doi.org/10.1016/j.ecolmodel.2009.02.004

Olchev, A.V., Deshcherevskaya, O.A., Kurbatova, Y.A., Molchanov, A.G., Novenko, E.Yu., Pridacha, V.B., Sazonova, T.A., 2013. CO2 and H2O exchange in the forest ecosystems of Southern taiga under climate change. Doklady Biological Sciences 450, 173-176. https://doi.org/10.1134/S0012496613030216

Olchev, A.V., Avilov, V.K., Bazhbar, A.S., Belotelov, N.V., Bolondinsky, V.K. et al., 2017. Lesa evropeiskoy territorii Rossii v usloviyakh menyaushegosya klimata [Forests of European Russia under climate changes]. KMK Scientific Press Ltd., Moscow, Russia, 276 p. (In Russian).

Osipov, A.F., 2015. Ehmissiya dioksida ugleroda s poverkhnosti pochvy spelogo sosnyaka chernichnogo v srednei taige Respubliki Komi [Carbon dioxide emission form the soil surface in mature bilberry pine forest in Middle Taiga of the Komi Republic]. Lesovedenie [Russian Journal of Forest Science] 5, 356-366. (In Russian).

Osnovy lesnoi taksatsii: posobie dlya rabotnikov lesnogo kompleksa[Fundamentals of forest inventory: a manual for forestry workers], 2021. Petrozavodsk, Russia, 28 p. (In Russian).

Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Science 11, 1633-1644. https://doi.org/10.5194/hess-11-1633-2007

Poorter, H., Niinemets, Ü., Ntagkas, N., Siebenkäs, A., Mäenpää, M., Matsubara, S., Pons, T., 2019. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologyst 223, 1073-1105. https://doi.org/10.1111/nph.15754

Price, D.T., Alfaro, R.I., Brown, K.J., Flannigan, M.D., Fleming, R.A. et al., 2013. Anticipating the consequences of climate change for Canada's boreal forest ecosystems. Environmental Reviews 21, 322-365. https://doi.org/10.1139/er-2013-0042

Pridacha, V.B., Sazonova, T.A., Talanova, T.Yu., Olchev, A.V., 2011. Morphophysiological responses of Pinus sylvestris L. and Picea obovata Ledeb. to industrial pollution under conditions of Northwestern Russia. Russian Journal of Ecology 42, 22-29. https://doi.org/10.1134/S1067413611010073

Pridacha, V.B., Olchev, A.V., Sazonova, T.A., Tikhova, G.P., 2019. Parametry CO2/H2O-obmena drevesnykh rastenii kak instrument monitoringa i otsenki sostoyaniya prirodnoi sredy [Parameters of CO2 /H2O-exchange in woody plants as an instrument to monitor and evaluate environmental conditions]. Uspekhi sovremennogo estestvoznaniya [Advances in Current Natural Sciences] 11, 25-30. (In Russian).

Pridacha, V.B., Sazonova, T.A., Novichonok, E.V., Semin, D.E., Tkachenko, Yu.N. et al., 2021. Clear-cutting impacts nutrient, carbon and water exchange parameters in woody plants in an east Fennoscandian pine forest. Plant and Soil 466,317-336. https://doi.org/10.1007/s11104-021-05058-w

Pumpanen, J., Ilvesniemi, H., Kulmala, L., Siivola, E., Laakso, H. et al., 2008. Respiration in boreal forest soil as determined from carbon dioxide concentration profile. Soil Science Society of America Journal 72, 1187-1196. https://doi.org/10.2136/sssaj2007.0199

Radler, K., Oltchev, A., Panferov, O., Klinck, U., Gravenhorst, G., 2010. Radiation and temperature responses to a small clear-cut in a spruce forest. Open Geography Journal 3, 103-114. https://doi. org/10.2174/1874923201003010103

Sazonova, T.A., Bolondinsky, V.K., Pridacha, V.B., 2011. Ekologo-fiziologicheskaya kharakteristika sosny obyknovennoi [Eco-physiological characteristics of Scots pine]. Verso, Petrozavodsk, Russia, 207 p. (In Russian).

Sazonova, T.A., Bolondinsky, V.K., Pridacha, V.B., 2019. Soprotivlenie dvizheniyu vlagi v provodyashchei sisteme sosny obyknovennoi [Resistance to moisture transport in the conductive system of Scots pine]. Lesovedenie [Russian Journal of Forest Science] 6, 556-566. (In Russian). https://doi.org/10.1134/ S0024114819060081

Schulze, E.D., Lloyd, J., Kelliher, F.M., Wirth, C., Rebmann, C. et al., 1999. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis. Global Change Biology 5, 703-722. https://doi.org/10.1046/j.1365-2486.1999.00266.x

Shiklomanov, A.N., Cowdery, E.M., Bahn, M., Byun, C., Jansen, S. et al., 2020. Does the leaf economic spectrum hold within plant functional types? A Bayesian multivariate trait meta-analysis. Ecological Applications 30(3), 1-15. https://doi.org/10.1002/eap.2064

Shishov, L.L., Tonkonogov, V.D., Lebedeva, I.I., Gerasimova, M.I., 2004. Klassifikatsiya i diagnostika pochv Rossii [Classification and diagnostic system of Russian soils]. Oikumena, Smolensk, Russia, 342 p. (In Russian).

Shorohova, E., Sinkevich, S., Kryshen, A., Vanha-Majamaa, I., 2019. Variable retention forestry in European boreal forests in Russia. Ecological Processes 8(34). https://doi.org/10.1186/s13717-019-0183-7

Suvorova, G.G., 2009. Fotosintez khvojnykh derev'ev v usloviyakh Sibiri [Photosynthesis of coniferous trees under Siberian conditions]. GEO, Novosibirsk, Russia, 195 p. (In Russian).

Tselniker, Yu.L., Malkina, I.S., Kovalev, A.G., Chmora, S.N, Mamaev, V.V., Molchanov, A.G., 1993. Rost i gazoobmen CO2 u lesnykh derev'ev [The growth and CO2-exchange in forest trees]. Nauka, Moscow, Russia, 256 p. (In Russian).

Tuzhilkina, V.V., 2022. Funkcional'naya kharakteristika khvoi podrosta eli sibirskoi pod pologom i na vyrubke el'nika chernichnogo v podzone srednei taigi [Functional characteristics of siberian spruce undergrowth needles under the canopy and in the cutting of bilberry spruce forest in the middle taiga subzone]. Lesnoy Zhurnal [Russian Forestry Journal] 6, 107-116. (In Russian). https://doi. org/10.37482/0536-1036-2022-6-107-116

Utkin, A.I., Ermolova, L.S., Utkina, I.A., 2008. Ploshchad' poverkhnosti lesnykh rastenii: sushchnost', parametry, ispol'zovanie [Surface area of forest plants: essence, parameters, use]. Nauka, Moscow, Russia, 292 p. (In Russian).

Valentini, R., Matteucci, G., Dolman, A.,Schulze, E.-D., Rebmann, C. et al., 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404, 861-865. https://doi. org/10.1038/35009084

Vasfilov, S.P., 2016. The effect of photosynthesis parameters on leaf lifespan. Biology Bulletin Reviews 6, 96-112. https://doi.org/10.1134/S2079086416010084

Vestin, P., Molder, M., Kljun, N., Cai, Z., Hasan. A. et al., 2020. Impacts of clear-cutting of a boreal forest on carbon dioxide, methane and nitrous oxide fluxes. Forests 11, 961. https://doi.org/10.3390/ f11090961

Wiesmeier, M., Urbanski, L., Hobley, E.,Lang, B., von Lutzow, M. et al., 2019. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma 333, 149-162. https://doi.org/10.1016/j.geoderma.2018.07.026

Williams, C.A., Vanderhoof, M.K., Khomik, M., Ghimire, B., 2014. Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment. Global Change Biology 20, 992-1007. https://doi.org/10.1111/gcb.12388

Yalynskaya, E.E., 1999. CO2-gazoobmen pochvy i napochvennogo pokrova v sosniake chernichnom [CO2-gas exchange of soil and ground cover in a bilberry-type pine forest]. Ekologiya [Russian Journal of Ecology] 6, 411-415. (In Russian).

Yuste, J.C., Janssens, I.A., Carrara, A., Meiresonne, L., Ceulemans, R., 2003. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiology 23, 1263-1270. https://doi.org/10.1093/treephys/23.18.1263

Zha, T., Barr, A.G., Black, T.A., McCaughey, J.H., Bhatti, J. et al., 2009. Carbon sequestration in boreal jack pine stands following harvesting. Global Change Biology 15, 1475-1487. https://doi.org/10.1111/ j.1365-2486.2008.01817.x

Список литературы

Ананьев, В.А., Мошников, С.А., 2016. Структура и динамика лесного фонда Республики Карелия. Известия высших учебных заведений. Лесной журнал 4, 19-29. https://doi.org/10.17238/ issn0536-1036.2016.4.19

Бобкова, К.С., Кузнецов, М.А., 2022. Бюджет углерода в экосистемах среднетаежных коренных ельников. Журнал общей биологии 83 (6), 434-449. https://doi.org/10.31857/S0044459622060033

Васфилов, С.П., 2015. Влияние параметров фотосинтеза на продолжительность жизни листа. Журнал общей биологии 76 (3), 225-243.

Дымов, А.А., 2017. Влияние сплошных рубок в бореальных лесах России на почвы (обзор). Почвоведение 7, 787-798. https://doi.org/10.7868/S0032180X17070024

Кищенко, И.Т., 2000. Рост и развитие аборигенных и интродуцированных видов семейства Pinaceae Lindl. в условиях Карелии. Издательство ПетрГУ, Петрозаводск, Россия, 211 с.

Кищенко, И.Т., Вантенкова, И.В., 2013. Сезонный рост лиственных лесообразующих видов в таежной зоне России (на примере Карелии). Издательство ПетрГУ, Петрозаводск, Россия, 94 с.

Коновалов, В.Н., Зарубина, Л.В., 2019. Отток и распределение 14С-ассимилятов у ели при выборочных рубках в северотаежных фитоценозах. Известия высших учебных заведений. Лесной журнал 2, 40-55. https://doi.org/10.17238/issn0536-1036.2019.2.40

Кудеяров, В.Н., Заварзин, Г.А., Благодатский, С.А., Борисов, А.В., Воронин, П.Ю., 2007. Пулы и потоки углерода в наземных экосистемах России. Наука, Москва, Россия, 315 с.

Курганова, И.Н., Лопес де Гереню, В.О., Хорошаев, Д.А., Мякшина, Т.Н., Сапронов, Д.В., Жмурин, В.А., Кудеяров, В.Н., 2020. Анализ многолетней динамики дыхания почв в лесном и луговом ценозах Приокско-Террасного биосферного заповедника в свете современных климатических трендов. Почвоведение 10, 1220-1236. https://doi.org/10.31857/S0032180X20100111

Махныкина, А.В., Прокушкин, А.С., Меняйло, О.В., Верховец, С.В., Тычков, И.И., и др., 2020. Влияние климатических факторов на эмиссию СО2 из почв в среднетаежных лесах центральной Сибири: эмиссия как функция температуры и влажности почвы. Экология 1, 51-61. https://doi. org/10.31857/S0367059720010060

Методы исследований органического вещества почв, 2005. Еськов, А.И. (ред.). Россельхоз-академия, Москва, Россия, 521 с.

Молчанов, А.Г., Курбатова, Ю.А., Ольчев, А.В., 2017. Влияние сплошной вырубки леса на эмиссию СО2 с поверхности почвы. Известия Российской академии наук. Серия биологическая 2, 190196. https://doi.org/10.7868/S0002332916060126

Морозова, Р.М., Федорец, Н.Г., 1992. Современные процессы почвообразования в хвойных лесах Карелии. КарНЦ РАН, Петрозаводск, Россия, 284 с.

Назарова, Л.Е., 2021. Климатические условия на территории Карелии. В: Филатов, Н.Н. (ред.), Современные условия водоемов Севера. КарНЦ РАН, Петрозаводск, Россия, 7-16.

Ольчев, А.В., Дещеревская, О.А., Курбатова, Ю.А., Молчанов, А.Г., Новенко, Е.Ю., Придача, В.Б., Сазонова, Т.А., 2013. СО2- и Н2О-обмен в лесных экосистемах южной тайги при климатических изменениях. Доклады Академии наук 450 (6), 731-735. https://doi.org/10.7868/ S0869565213180278

Ольчев, А.В., Авилов, В.К., Байбар, А.С., Белотелов, Н.В., Болондинский, В.К. и др., 2017. Леса Европейской территории России в условиях меняющегося климата. Товарищество научных изданий КМК, Москва, Россия, 276 с.

Осипов, А.Ф., 2015. Эмиссия диоксида углерода с поверхности почвы спелого сосняка черничного в средней тайге Республики Коми. Лесоведение 5, 356-366.

Основы лесной таксации: пособие для работников лесного комплекса, 2021. Петрозаводск, Россия, 28 с.

Придача, В.Б., Сазонова, Т.А., Таланова, Т.Ю., Ольчев, А.В., 2011. Морфофизиологическая реакция Pinus sylvestris L. и Picea obovata Ledeb. при техногенном воздействии в условиях Северо-Запада России. Экология 1, 25-33.

Придача, В.Б., Ольчев, А.В., Сазонова, Т.А., Тихова, Г.П., 2019. Параметры С02/Н20-обмена древесных растений как инструмент мониторинга и оценки состояния природной среды. Успехи современного естествознания 11, 25-30.

Сазонова, Т.А., Болондинский, В.К., Придача, В.Б., 2011. Эколого-физиологическая характеристика сосны обыкновенной. Verso, Петрозаводск, Россия, 207 с.

Сазонова, Т.А., Болондинский, В.К., Придача, В.Б., 2019. Сопротивление движению влаги в проводящей системе сосны обыкновенной. Лесоведение 6, 556-566. https://doi.org/10.1134/ S0024114819060081

Суворова, Г.Г., 2009. Фотосинтез хвойных деревьев в условиях Сибири. ГЕО, Новосибирск, Россия, 195 с.

Тужилкина, В.В., 2022. Функциональная характеристика хвои подроста ели сибирской под пологом и на вырубке ельника черничного в подзоне средней тайги. Известия высших учебных заведений. Лесной журнал 6, 107-116. https://doi.org/10.37482/0536-1036-2022-6-107-116

Уткин, А.И., Ермолова, Л.С., Уткина, И.А., 2008.Площадь поверхности лесных растений: сущность, параметры, использование. Наука, Москва, Россия, 292 с.

Филипчук, А.Н., Малышева, Н.В., Золина, Т.А., Федоров, С.В., Бердов, А.М. и др., 2022. Аналитический обзор количественных и качественных характеристик лесов Российской Федерации: итоги первого цикла государственной инвентаризации лесов. Лесохозяйственная информация 1, 5-34. https://doi.Org/10.24419/LHI.2304-3083.2022.1.01

Цельникер, Ю.Л., Малкина, И.С., Ковалев, А.Г., Чмора, С.Н, Мамаев, В.В., Молчанов, А.Г., 1993. Рост и газообмен СО2 у лесных деревьев. Наука, Москва, Россия, 256 с.

Шишов, Л.Л., Тонконогов, В.Д., Лебедева, И.И., Герасимова, М.И., 2004. Классификация и диагностика почв России. Ойкумена, Смоленск, Россия, 342 с.

Ялынская, Е.Е., 1999. СО2-газообмен почвы и напочвенного покрова в сосняке черничном. Экология 6, 411-415.

Amiro, B.D., Barr, A.G., Barr, J.G., Black, T.A., Bracho, R. et al., 2010. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research 115(G4). https://doi. org/10.1029/2010JG001390

Baldrian, P., 2017. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiology reviews 41(2), 109-130. https://doi.org/10.1093/femsre/fuw040

Bonan, G.B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444-1449. https://doi.org/10.1126/science.1155121

Busch, F.A., 2018. Photosynthetic gas exchange in land plants at the leaf level. Photosynthesis. Methods in Molecular Biology 1770. https://doi.org/10.1007/978-1-4939-7786-4_2

Chi, J., Zhao, P., Klosterhalfen, A. Jocher, G., Kljun, N., Nilsson, M.B., Peichlet, M., 2021. Forest floor fluxes drive differences in the carbon balance of contrasting boreal forest stands. Agricultural and Forest Meteorology 306. https://doi.org/10.1016/j.agrformet.2021.108454

FAO, 2020. Global Forest Resources Assessment, 2020 - Key findings. Rome, 16 p. https://doi. org/10.4060/ca8753en

Fatichi, S., Pappas, C., Zscheischler, J., Leuzinger, S., 2019. Modelling carbon sources and sinks in terrestrial vegetation. New Phytologyst 221, 652-668. https://doi.org/10.1111/nph.15451

Groisman, P., Shugart, H., Kicklighter, D., Henebry, G., Tchebakova, N. et al., 2017. Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century. Progress in Earth and Planetary Science 4. https://doi.org/10.1186/s40645-017-0154-5

IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013. Cambridge University Press, Cambridge, UK, 1535 p.

Karelin, D., Goryachkin, S.V., Zazovskaya, E.P., Shishkov, V., Pochikalov, A. et al., 2020. Greenhouse gas emission from the cold soils of Eurasia in natural settings and under human impact: controls on spatial variability. Geoderma Regional 22, 00290. https://doi.org/10.1016Zj.geodrs.2020.e00290

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Keeman, R.J., Kimmins, J.P., 1993.The ecological effects of clear-cutting. Environmental Reviews 1, 121-144.

Laganiere, J., Pare, D., Bergeron, Y., Chen, Y.H., 2012. The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biology and Biochemistry 53, 18-27. https://doi.org/10.1016/j.soilbio.2012.04.024

Lambers, H., Oliveira, R.S., 2019. Plant physiological ecology. Springer, Cham, Switzerland, 736 p.

Larcher, W., 2003. Physiological plant ecology. Springer, Berlin, Germany, 514 p.

Lukac, M., Calfapietra, C., Lagomarsino, A., Loreto, F., 2010. Global climate change and tree nutrition: effects of elevated CO2 and temperature. Tree Physiology 30, 1209-1220. https://doi.org/10.1093/ treephys/tpq040

Luo, Y., Zhou, X., 2010. Soil respiration and the environment.Elsevier, San Diego, USA, 333 p. https:// doi.org/10.1016/B978-0-12-088782-8.X5000-1

Mamkin, V., Kurbatova, J., Avilov, V., Ivanov, D., Kuricheva, O. et al., 2019. Energy and CO2 exchange in an undisturbed spruce forest and clear-cut in the Southern Taiga. Agricultural and Forest Meteorology 265, 252-268. https://doi.org/10.1016/j.agrformet.2018.11.018

Morén, A.S., Lindroth, A., 2000. CO2 exchange at the floor of a boreal forest. Agricultural and Forest Meteorology 101, 1-14. https://doi.org/10.1016/S0168-1923(99)00160-4

Mukhortova, L., Schepaschenko, D., Moltchanova, E., Shvidenko, A., Khabarov, N., See, L., 2021. Respiration of Russian soils: climatic drivers and response to climate change. Science of the Total Environment 785, 147314. https://doi.org/10.1016/j.scitotenv.2021.147314

Niinemets, U., 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management 260, 1623-1639. https://doi.org/10.1016/j.foreco.2010.07.054

Niinistö, S.M., Kellomäki, S., Silvola, J., 2011. Seasonality in a boreal forest ecosystem affects the use of soil temperature and moisture as predictors of soil CO2 efflux. Biogeosciences 8, 3169-3186. https://doi.org/10.5194/bg-8-3169-2011

Olchev, A., Radler, K., Sogachev, A., Panferov, O., Gravenhorst, G., 2009. Application of a three-dimensional model for assessing effects of small clear-cuttings on radiation and soil temperature. Ecological Modelling 220, 3046-3056. https://doi.org/10.1016/j.ecolmodel.2009.02.004

Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Science 11, 1633-1644. https://doi.org/10.5194/hess-11-1633-2007

Poorter, H., Niinemets, Ü., Ntagkas, N., Siebenkäs, A., Mäenpää, M., Matsubara, S., Pons, T., 2019. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologyst 223, 1073-1105. https://doi.org/10.1111/nph.15754

Price, D.T., Alfaro, R.I., Brown, K.J., Flannigan, M.D., Fleming, R.A. et al., 2013. Anticipating the consequences of climate change for Canada's boreal forest ecosystems. Environmental Reviews 21, 322-365. https://doi.org/10.1139/er-2013-0042

Pridacha, V.B., Sazonova, T.A., Novichonok, E.V., Semin, D.E., Tkachenko, Yu.N. et al., 2021. Clear-cutting impacts nutrient, carbon and water exchange parameters in woody plants in an east Fennoscandian pine forest. Plant and Soil 466,317-336. https://doi.org/10.1007/s11104-021-05058-w

Pumpanen, J., Ilvesniemi, H., Kulmala, L., Siivola, E., Laakso, H. et al., 2008. Respiration in boreal forest soil as determined from carbon dioxide concentration profile. Soil Science Society of America Journal 72, 1187-1196. https://doi.org/10.2136/sssaj2007.0199

Radler, K., Oltchev, A., Panferov, O., Klinck, U., Gravenhorst, G., 2010. Radiation and temperature responses to a small clear-cut in a spruce forest. Open Geography Journal 3, 103-114. https://doi. org/10.2174/1874923201003010103

Schulze, E.D., Lloyd, J., Kelliher, F.M., Wirth, C., Rebmann, C. et al., 1999. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis. Global Change Biology 5, 703-722. https://doi.org/10.1046/j.1365-2486.1999.00266.x

Shiklomanov, A.N., Cowdery, E.M., Bahn, M., Byun, C., Jansen, S. et al., 2020. Does the leaf economic spectrum hold within plant functional types? A Bayesian multivariate trait meta-analysis. Ecological Applications 30(3), 1-15. https://doi.org/10.1002/eap.2064

Shorohova, E., Sinkevich, S., Kryshen, A., Vanha-Majamaa, I., 2019. Variable retention forestry in European boreal forests in Russia. Ecological Processes 8(34). https://doi.org/10.1186/s13717-019-0183-7

Valentini, R., Matteucci, G., Dolman, A.,Schulze, E.-D., Rebmann, C. et al., 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404, 861-865. https://doi. org/10.1038/35009084

Vestin, P., Mölder, M., Kljun, N., Cai, Z., Hasan. A. et al., 2020. Impacts of clear-cutting of a boreal forest on carbon dioxide, methane and nitrous oxide fluxes. Forests 11, 961. https://doi.org/10.3390/ f11090961

Wiesmeier, M., Urbanski, L., Hobley, E.,Lang, B., von Lützow, M. et al., 2019. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma 333, 149-162. https://doi.org/10.1016/j.geoderma.2018.07.026

Williams, C.A., Vanderhoof, M.K., Khomik, M., Ghimire, B., 2014. Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment. Global Change Biology 20, 992-1007. https://doi.org/10.1111/gcb.12388

Yuste, J.C., Janssens, I.A., Carrara, A., Meiresonne, L., Ceulemans, R., 2003. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiology 23, 1263-1270. https://doi.org/10.1093/treephys/23.18.1263

Zha, T., Barr, A.G., Black, T.A., McCaughey, J.H., Bhatti, J. et al., 2009. Carbon sequestration in boreal jack pine stands following harvesting. Global Change Biology 15, 1475-1487. https://doi.org/10.1111/ j.1365-2486.2008.01817.x

i Надоели баннеры? Вы всегда можете отключить рекламу.