Results: The obtained results were compared and some conclusions
1918 Spanish Influenza and a mathematical model
CO CM
T
CO
£± O
E
<U T3 c ro
CP
ro
N
WHAT COULD HAPPEN AFTER THE FIRST WAVE OF COVID-19 DIFFUSION IN ITALY: LEARNING FROM THE 1918 INFLUENZA PANDEMIC
Nicola Fabianoa, Stojan N. Radenovicb
a Ton Duc Thang University, Faculty of Mathematics and Statistics, Ho Chi Minh City, Vietnam;
Ton Duc Thang University, Nonlinear Analysis Research Group, Ho Chi Minh City, Vietnam, e-mail: nicola.fabiano@tdtu.edu.vn, corresponding author, ro
ORCID iD: https://orcid.org/0000-0003-1645-2071 ^
b University of Belgrade, Faculty of Mechanical Engineering, ro
Belgrade, Republic of Serbia, e-mail: radens@beotel.net,
ORCID iD: https://orcid.org/0000-0001-8254-6688
oo
<u .c
E o
0 in
1
CD
DOI: 10.5937/vojtehg68-26500; https://doi.org/10.5937/vojtehg68-26500
FIELD: Mathematics g
ARTICLE TYPE: Original scientific paper
Summary:
Introduction/purpose: A comparison of the 1918 "Spanish" influenza to the 2020 COVID-19 pandemic could shed some light on the evolution of the latter.
Method: A mathematical method previously applied to the description of the behavior of the spread of COVID-19 in time is used this time to the ^ 1918 influenza. ^
o
e p
made about some possible forecasts for the next waves of COVID-19. ro
Conclusions: Some further waves of the 2020 pandemic should be expected in the future.
Keywords: 1918 Influenza, Coronavirus, COVID-19, differential equation, data fit.
ro to
In 1918, the influenza pandemic known as "Spanish" caused, according to some estimates, about 50 million deaths worldwide, with ^ about 500 million infected, about one third of world population
413
(Taubenberger & Morens, 2006, pp.15-22). The disease, considered the deadliest pandemic that ever happened, was spread in more waves across the years 1918 and 1919. In Figure 1, we show the death counts per thousands for the population of the United Kingdom in the period 1918-1919.
Figure 1 - Keywords: Spanish influenza deaths per thousands in the United Kingdom for
the period 1918-1919 Рис. 1 - Ключевые слова: Число смертных случаев (в тысячах) от испанского
гриппа в Соединенном Королевстве в период с 1918 по 1919 год Слика 1 - К^учне речи: броj смртних случаjева у хи^адама од шпанског грипа у У/'еди^еном Краъевству у периоду 1918-1919.
In (Fabiano & Radenovic, 2020, pp.216-224) a mathematical model of population growth due to (Verhulst, 1838, pp.113-121) was used to describe the spread in time of COVID-19 for the Italian population. Even though the model used only three parameters, it showed an excellent agreement with the available data.
In summary, the number of cases of COVID-19 in the population as a function of time, x(t), is given by the differential equation
dx (t )_x (t)( x(t dt
a
with a solution given by
x(t)
1 + exp(( -1)/с)
(1)
(2)
с
where in particular the variation of cases in time is explicitly written as
dx(t) _ с exp[(& -1) / a] dt a (1 + exp[( -1)/a])2
(3)
The parameters a, b, and c are to be determined with a fit to the data, in particular a and c are linked to the height and width of the bell-shaped function (3), while b translates in time its maximum value, which is c/(4a). We will use the same model in order to describe the peaks of the 1918 influenza shown in (1). As there is no numerical data available for this figure, we had to resort to software extraction of the above data from (1). Subsequently, we isolated every visible peak and fitted it with (3), determining for each case the parameters a, b, and c. The results are shown ordered in time starting from the earliest occurrence of a peak. The abscissa shows the number of days from the start of the peak.
The zeroth peak:
CO CM
T
CO
£± О
'E
<u
T3 с ro
ГО N
00 CD
<U .c
E о
го <u
ro
0 <л
1 тз
cn
g
£ о
I
TO
ё ro с <u
ГО
Figure 2 - Zeroth peak Рис. 2 - Нулевой пик Слика 2 - Нулти пик
го
<5 го
415
Table 1 - Fit parameters for the peak in Figure 2 Таблица 1 - Согласованные параметры пика на рис. 2 Табела 1 - Параметри уклапаша за пик на слици 2
Parameter Value Error Error %
a 5.46429 0.1222 2.236
b 13.452 0.1553 1.154
c 113.44 1.96 1.728
The first peak:
Figure 3 - First peak Рис. 3 - Первый пик Слика 3 - Први пик
Table 2 - Fit parameters for the peak in Figure 3 Таблица 2 - Согласованные параметры пика на рис. 3 Табела 2 - Параметри уклапаша за пик на слици 3
Parameter Value Error Error %
a 11.2462 0.2014 1.791
b 43.2221 0.2806 0.6491
c 1031.4 14.79 1.434
The second peak:
Figure 4 - Second peak Рис. 4 - Второй пик Слика 4 - Други пик
(3?т>
Table 3 - Fit parameters for the peak in Figure 4 Таблица 3 - Согласованные параметры пика на рис. 4 Табела 3 - Параметри уклапаша за пик на слици 4
Parameter Value Error Error %
a 8.1634 0.1196 1.465
b 33.2618 0.1621 0.4875
c 347.021 4.02 1.158
The (possible) third peak:
Figure 5 - Third peak Рис. 5 - Третий пик Слика 5-ТреПи пик
Table 4 - Fit parameters for the peak in Figure 5 Таблица 4 - Согласованные параметры пика на рис. 5 Табела 4 - Параметри уклапаша за пик на слици 5
Parameter Value Error Error %
a 5.08329 0.4081 8.029
b 4.26393 0.5602 13.14
c 47.9721 3.584 7.471
СО
см Т со
£± О
Е ф
ТЗ С
го го
N
оо
СП ф
-С
Е о
го ф
го
0 <л
1 тз СП
g
В
О
| (Б
ё го
с ф
го
As we can see, the agreement of eqs. (1) and (3) with the peaks found in Fig. (1) is excellent. The relative error of the parameters is almost always less than 2% for the first three peaks, as per Tables (1), (2), and (3). Even with the unclear last peak shown in Fig. (5), the relative error of the parameters is of the order of 10%, in Table (4).
These results show that the mathematical description of a pandemic given by equation (1) is once again very accurate.
Relation to COVID-19
Our aim now is to apply what we have learned from the 1918 pandemic to the evolution of the 2020 pandemic. The relaxation of quarantine rules could lead to other peaks of cases as seen in the 1918 case, when the second peak was much higher than the first.
In Table 5, we report the height of the four peaks found for the 1918 influenza and their relative heights normalized to the largest one. We also show the c parameter values and again their relative values normalized to the largest one, obtained again the second peak encountered. The c parameter is of particular interest because it is related to the duration of the infection (Fabiano & Radenovic, 2020, pp.216-224): the larger the c value, the longer the length of infection.
We had normalized here the peaks to the largest one, which actually belongs to the second wave of infection and not to the first one. Even in this more favorable case, one could expect that the next infection wave would have an intensity of almost half of the first one (about 46%), for a total number of cases of a third (about 33%). The third and the last wave would have an intensity of about 10% of the original one, and a relative total number of cases of about 5%.
ro
ts
<5 Ъ ro
Table 5 - Heights and relative heights together with the c parameter and its relative
values of peaks in Figure 1 Таблица 5 - Высоты и относительные высоты вместе с параметром c и его относительными значениями пиков на рис. 1 Табела 5 - Висине и релативне висине заjедно са параметром c и шеговим релативним вредностима пикова на слици 1
Peak n. Height Rel. to max height % c Rel. to max c %
1 22.928 100.0 1031.4 100.0
2 10.627 46.352 347.021 33.646
0 5.190 22.637 113.44 10.999
3 2.359 10.290 47.9721 4.651
All this of course in the case that the first wave was the strongest one. If this is not the case, from Table 5 we see that the relative height of the first two waves is almost 4-fold, while the c value is 9 times larger.
Notice that even in the so-called Hong Kong pandemic flu of 1968 the second wave was much deadlier than the first one (Rogers, 2020).
A few remarks are in order here. First of all, we have compared, because other data were unavailable, the deaths of the United Kingdom for influenza in 1918 to the number of COVID-19 cases in Italy in 2020. This should be acceptable as the population number of the two countries is similar; we assume that the number of deaths in a pandemic is proportional to the number of total cases of the disease, and that the proportionality constant is actually such, i.e. it does not change in time during the pandemic.
It should be also clear that the obtained results will provide the relative intensities and duration of the disease, mainly for the lack of data. In 1918, there were no tests available for the positivity of a virus infection, and a virus image was yet to be seen, as the necessary electron microscope was first built in 1931.
Another question of great interest for the current COVID-19 pandemic is when the subsequent peaks would happen. Actually, the speculations on those timings have been a subject of discussion for decades without a definitive answer. One could infer that due to the shorter persistency of this virus to higher temperatures (Fathizadeh et al, 2020) the next wave could occur in the next autumn, thus overlapping with the flu season.
Conclusion
References
CO CM
T
CO
£± Cp
o
Using a model of population growth with only 3 parameters, we have verified that it is able to describe the 1918 influenza pandemic extremely well. The same model already described the 2020 COVID-19 pandemic 1= in excellent agreement with data. We have used the results obtained for the various waves of the 1918 disease to try to describe the possible waves for the 2020 disease. According to the data, there are serious possibilities to expect subsequent waves of the COVID-19 infection of the same order of magnitude as the present one. The severity of the possible future situation should suggest constant monitoring of the population for a further outbreak of infection and a plan for an immediate lockdown in this case. m
o
<u
T3 c ro
Cp
ro
N
oo
<u
ro <u
Fabiano, N. & Radenovic, S. 2020. On COVID-19 diffusion in Italy: data rö analysis and possible outcome. Vojnotehnicki glasnik/Military Technical Courier, 68(1), pp.216-224. Available at: https://doi.org/10.5937/vojtehg68-25948. §
it=
Fathizadeh, H., Maroufi, P., Momen-Heravi, M., Dao, S., Köse, S., ^
en
g >
Ganbarov, K., Pagliano, P., Espsoito, S., & Kafil, H.S. 2020. Protection and disinfection policies against SARS-CoV-2 (COVID-19). Le infezioni in medicina, 2020, 28(2), pp.185-191 [online]. Available at: Ö
https://www.infezmed.it/media/journal/Vol_28_2_2020_8.pdf [Accessed: 8 May 2020].
Rogers, K. 2020. 1968 flu pandemic. In: Encyclopœdia Britannica. London: Encyclopœdia Britannica, Inc. [online]. Available at: https://www.britannica.com/event/Hong-Kong-flu-of-1968 [Accessed: 8 May 2020].
Taubenberger, J.K. & Morens, D.M. 2006. 1918 Influenza: the Mother of All Pandemics. Emerging Infectious Diseases, 12(1), pp.15-22. Available at: https://doi.org/10.3201/eid1201.050979.
Verhulst, PF. 1838. Notice sur la loi que la population suit dans son accroissement. Correspondance mathématique et physique, 10, pp.113-121 (in French).
| (Ü
ë ro c
<u p
p ro
ro
ts
ro la ro
ЧТО МОГЛО ПРОИЗОЙТИ ПОСЛЕ ПЕРВОЙ ВОЛНЫ ЭПИДЕМИИ 0<ЭУЮ-19 В ИТАЛИИ: ОПЫТ ПАНДЕМИИ ГРИППА В 1918 ГОДУ
Никола Фабианоа, Стоян Н. Раденович6
а Университет Тон Дук Тханг,Факультет математической статистики, Хо Ши Мин, Вьетнам;
Университет Тон Дук Тханг, Исследовательский отдел нелинейного анализа, Хо Ши Мин, Вьетнам, корреспондент б Белградский университет, Машиностроительный факультет, г. Белград, Республика Сербия
РУБРИКА ГРНТИ: 27.00.00 МАТЕМАТИКА;
27.29.00 Обыкновенные дифференциальные уравнения
ВИД СТАТЬИ: оригинальная научная статья Резюме:
Введение/цель: Сравнение пандемии испанского гриппа 1918 года с пандемией СО^'Ю-19 в 2020 году может пролить некоторый свет на развитие современной пандемии.
Методы: В статье использован математический метод, примененный ранее для описания характера распространения СО^'Ю-19, в данном случае на материале испанского гриппа 1918 года.
Результаты: На основании сравнения полученных результатов были сделаны выводы и прогнозы касательно возможности последующих волн вируса СОУЮ-19.
Выводы: В будущем следует ожидать новых волн пандемии 2020 года.
Ключевые слова: грипп 1918 года, Коронавирус, СО^'Ю-19, дифференциальное уравнение, совпадение данных.
ШТА JЕ МОГЛО ДА СЕ ДОГОДИ НАКОН ПРВОГ ТАЛАСА ШИРЕНА 0<ЭУЮ-19 У ИТАЛШИ: ИСКУСТВА ИЗ ПАНДЕМШЕ ГРИПА 1918. ГОДИНЕ
Никола Фабианоа, Сто^ан Н. Раденови^ а Универзитет Тон Дук Танг, Факултет математике и статистике, Хо Ши Мин, Вьетнам;
Универзитет Тон Дук Танг, Истраживачка група за нелинеарну анализу, Хо Ши Мин, Вьетнам, аутор за преписку б Универзитет у Београду, Машински факултет, Београд, Република Срби]а
ОБЛАСТ: математика
ВРСТА ЧЛАНКА: оригинални научни рад
Сажетак:
Увод/цил>: Поре^еъе шпанског грипа 1918. године са пандемиом 00УЮ-19 могло би донекле разjаснити развоj данашъе пандеми'е. Методе: У раду jе коришПена математичка метода ща jе применена за опис ширена 00УЮ-19, а овог пута према грипу ко\и jе владао 1918. године.
Резултати: Упоре^ени су добиени резултати на основу щих су изведени закъучци о могучим прогнозама за следеЬе таласе 00УЮ-19.
Закъучци: У будущности би требало очекивати нове таласе пандемие 00УЮ-19.
Къучне речи: грип 1918. године, корона вирус, 00^'Ю-19, диференциална jедначина, уклапаъе података.
Paper received on / Дата получения работы / Датум приема чланка: 08.05.2020. Manuscript corrections submitted on / Дата получения исправленной версии работы / Датум достав^а^а исправки рукописа: 31.05.2020.
Paper accepted for publishing on / Дата окончательного согласования работы / Датум коначног прихвата^а чланка за об]ав^ива^е: 01.06.2020.
© 2020 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/rs/).
© 2020 Авторы. Опубликовано в «Военно-технический вестник / Vojnotehnicki glasnik / Military Technical Courier» (www.vtg.mod.gov.rs, втг.мо.упр.срб). Данная статья в открытом доступе и распространяется в соответствии с лицензией «Creative Commons» (http://creativecommons.org/licenses/by/3.0/rs/).
© 2020 Аутори. Обjавио Воjнотехнички гласник / Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). Ово jе чланак отвореног приступа и дистрибуира се у складу са Creative Commons licencom (http://creativecommons.org/licenses/by/3.0/rs/).