ДНК [4]. Погрешность оценки динамических параметров составила менее 10%. В дальнейшем предполагается расширить интерпретатор модели возможностями сбора и анализа трассы параллельной программы с использованием модели.
Литературп
1. Прогнозирование производительности MPI-программ на основе моделей / В.П. Иванников, А.И. Аветисян [и др.] // Автоматика и телемеханика. - 2007. - № 5. -C. 8-17.
2. MPI: The complete Reference / Marc Snir, Steve Otto, [et al]. - Vol. 1, 2. - 2nd edition. - The MIT Press, 1998.
3. Аветисян А.И. Возникновение торнадо: трехмерная численная модель в мезомас-штабной теории турбулентности по В.Н. Николаевскому / А.И. Аветисян, B.B. Бабкова и А.Ю. Губарь // ДАН. Геофизика. - 2007. - Т. 419. - № 4.- С. 547-552.
4. Аветисян А.И., Гайсарян С.С. Разработка параллельного алгоритма компьютерного моделирования водно-ионной оболочки ДНК. Информационные и математические технологии в науке и управлении // Тр. XIII Байкальской Всероссийской конференции «Информационные и математические технологии в науке и управлении». Часть I. - Иркутск: ИСЭМ СО РАН, 2008. - С. 195-206.
Акопян Манук Сосович — Институт системного программирования РАН,
м.н.с., [email protected]
УДК 519.642
ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ УПРУГИХ ВОЛН В СРЕДАХ, ХАРАКТЕРНЫХ ДЛЯ ГРЯЗЕВЫХ
ВУЛКАНОВ Д.А. Караваев
Кратко изложен метод решения задачи численного моделирования распространения упругих волн в трехмерно неоднородных средах. На основе приведенного алгоритма создан комплекс программ. Предложен способ распараллеливания программы для численного расчета средствами OpenMP и MPI. Ключевые слова: упругие волны, грязевые вулканы, параллельные алгоритмы.
Введение
Проблема генезиса грязевых вулканов является дискуссионной. В работах [1-4] предложен вибросейсмический метод мониторинга магматических структур с контролируемым сейсмическим источником, который позволит получить новые знания о строении вулканов, их происхождении и динамике поведения дилатантных структур живущих вулканов. Предлагаемый программный комплекс фактически является инструментарием для проведения экспериментальных работ на местности.
Комплекс программ позволяет проводить численное моделирование распространения упругих волн в трехмерных моделях упругих сред и определять параметры и место расположения системы возбуждения и системы наблюдения относительно вулканической структуры для получения оптимальных экспериментальных данных при проведении натурных геофизических экспериментов. Результаты численного моделирования могут быть использованы при интерпретации данных вибросейсмических зондирований грязевых вулканов.
Постановка задачи и метод решения
Численное моделирование распространения сейсмических волн в сложно построенных упругих средах проводится на основе полной системы уравнений теории упругости, записанной в скоростях перемещений и напряжений с нулевыми начальными и граничными условиями. Решение поставленной задачи основано на использовании ко-нечноразностного метода [5]. Схема построена с учетом интегральных законов сохранения [5]. Конечноразностная схема имеет второй порядок аппроксимации по времени и пространству [5]. В связи с тем, что область расчета ограничена, необходимо использовать метод поглощающих границ (Perfectly Matched Layers, PML) [6].
Построение модели трехмерной упругой среды
Модель среды строится из криволинейных параллелепипедов, в которых задаются параметры среды, непрерывные внутри каждого блока, а затем методом конечных элементов происходит интерполяция параметров среды на сетку, на которой производится расчет. Возможно включение в слоистую модель цилиндрической, конической, эллипсоидальной и др. подобластей различной геометрии со своими параметрами среды. Можно моделировать присутствие трещин и газовых пузырей.
Параллельная реализация
Для трехмерных разностных схем имеет смысл применять гибридную технологию распараллеливания: внутри каждого вычислительного «узла» для распараллеливания применять OpenMP, а между «узлами» - MPI. Это значительно сокращает количество обменов информацией между узлами. Для обоих вариантов технологически удобным способом разбиения расчетной области является разбиение на слои вдоль координаты Z. Количество узлов в каждом слое определяется в зависимости от количества возможных вычислительных ядер. Каждый вычислительный узел будет рассчитывать количество слоев, равное числу процессорных ядер, имеющихся на нем. Для версии MPI будет необходим обмен данными между узлами в граничном слое.
Результат численного моделирования
Моделируется среда с находящимся в ней цилиндром, которые обладают следующими параметрами:
- вмещающая среда - Vp=2,0 км/c, Vs=l,0 км/c, р = 1 г/см3;
- цилиндр - Vp =1,0 км/c, Vs =0,7 км/c, р = 1 г/см3.
Результаты моделирования представлены на рис. 1.
Рис. 1. Снимки и компоненты волнового поля, плоскость Оху. Источник типа «центр давления», несущая частота 4 Гц
Литература
1. Глинский Б.М., Собисевич А. Л., Хайретдинов М. Опыт вибросейсмического зондирования сложно построенных геологических структур (на примере грязевого вулкана Шуго) // Докл. РАН. - 2007. - Т. 413. - № 3. - С.398-402.
2. Глинский Б.М. Фатьянов А.Г. Численно-аналитическое моделирование волновых полей в разномасштабных зонах вулканической деятельности // Всероссийская конференция по вычислительной математике «КВМ-2007», Новосибирск, 18-20 июня 2007.
3. Глинский Б.М., Фатьянов А.Г. Вибросейсмический мониторинг живущих вулканов // Материалы 2-го межд. симпозиума «Активный геофизический мониторинг вулканов». - Новосибирск, 2005. - С. 57-61.
4. Глинский Б.М., Фатьянов А.Г. Изучение и мониторинг грязевых вулканов активными сейсмическими методами // Материалы 2-го межд. симпозиума «Активный геофизический мониторинг вулканов». - Новосибирск, 2005. - С. 52-57.
5. Bihn M. A Stable Discretization Scheme for the Simulation of Elastic Waves / M. Bihn, T. Weiland // Proceedings of the 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics. - 1997. - Vol. 2. - Р. 75-80.
6. Collino F. Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media / F. Collino, C. Tsogka // Geophysics. -2001. - Vol. 66. - № 1. - Р. 294-307.
7. Clemens M. Descrete electromagnetism with the finite integration technique / M. Clemens, T.Weiland // Progress In Electromagnetics Research. - 2001. - Vol. 32. - Р. 65-87.
Караваев Дмитрий Алексеевич — Институт вычислительной математики и математи-
ческой геофизики СО РАН, магистр, [email protected]
УДК 004.4'23
ПАРАЛЛЕЛЬНЫЕ ВЫЧИСЛЕНИЯ С ИСПОЛЬЗОВАНИЕМ МИКРОПРОЦЕССОРОВ СЕМЕЙСТВА CELL
С.М. Вишняков, А.С. Мордвинцев
Целью работы является исследование применимости архитектуры CBEA к различным типам вычислительных задач, в частности - к задаче трассировки лучей через сцену, имеющую воксельное представление. Для этого предполагается разработать демонстрационное приложение, позволяющее пользователю перемещаться по трехмерному миру и взаимодействовать с ним. Ключевые слова: микропроцессор Cell, воксельная графика.
Процессор Cell BE
В настоящее время в связи с невозможностью дальнейшего роста тактовой частоты процессоров разработчики вычислительных машин в качестве способа увеличения производительности рассматривают использование параллельных вычислительных систем. В данной области можно выделить несколько сложившихся тенденций:
- использование многоядерных и многопроцессорных систем традиционной (x86) архитектуры;
- использование параллельных вычислительных акселераторов, встраиваемых в системы традиционной архитектуры;
- использование параллельных вычислительных систем «альтернативных» архитектур.