УДК 662.6; 662.7
DOI: 10.14529/power170302
ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ РЕЖИМОВ РАБОТЫ ОДНОСТУПЕНЧАТОГО ПОТОЧНОГО ГАЗОГЕНЕРАТОРА С ПАРОВОЗДУШНЫМ ДУТЬЕМ
И.Г. Донской
Институт систем энергетики им. Л.А. Мелентьева СО РАН, г. Иркутск, Россия
Газификация твердого топлива позволяет повысить техническую и экологическую эффективность использования твердого топлива в энергетике. Обычно газогенераторы большой единичной мощности работают по принципу несущего потока: пылеугольное топливо увлекается дутьем и за время пребывания в реакторе претерпевает стадии превращения в горючие газы. В работе исследуется одноступенчатый процесс паровоздушной газификации угля с предварительным подогревом дутья. Для этого используется математическая модель, включающая одномерные уравнения переноса и химических превращений топлива и газовой смеси. С помощью расчетов определены основные характеристики процесса газификации и их зависимость от управляющих параметров: температуры подогрева воздуха, избытка окислителя и расхода пара.
Ключевые слова: газификация, уголь, воздушное дутье, численное моделирование.
Введение
Повышение технической и экологической эффективности использования твердого топлива в энергетике является важной научно-технической проблемой [1]. Одним из способов ее решения может стать переход с парового цикла на более эффективный парогазовый цикл за счет газификации угля (ЮСС) [2]. Большая часть таких станций использует поточные газогенераторы, в которых угольная пыль газифицируется в несущем потоке дутья [3-5]. В качестве дутья обычно используется парокислородная смесь, однако существуют и реакторы, использующие воздух. С одной стороны, при этом удается снизить собственные нужды станции за счет отказа от воздухоразделения; с другой стороны, при этом существенно возрастает нагрузка на дутьевые агрегаты и, что особенно важно, изменяются параметры термодинамически и кинетически оптимальных режимов (из-за необходимости нагрева инертного азота и уменьшения концентрации газов-реагентов в реакционной зоне газогенератора). Вопросы реализации высокотемпературного подогрева обсуждаются в работах [6, 7].
Последняя проблема может быть решена с помощью подогрева дутья до высоких температур аналогично процессам МШЭ-сжигания [8-11]. В этом случае снижаются потери, связанные с нагревом системы до температуры воспламенения, а также частично компенсируются энергетические затраты на эндотермические реакции образования горючих газов. В работах [12] подогрев дутья был предложен для двухступенчатого реактора. Однако при достаточно высокой температуре дутья можно ограничиться и одной стадией. В настоящей работе с помощью численного моделирования исследуется процесс газификации угля в одностадийном поточном реакторе с нагретым па-
ровоздушным дутьем, стационарные режимы работы такого газогенератора в разных условиях и оптимальные режимы в выбранной области параметров.
Математическая модель
процесса газификации
В работе используется пространственно одномерная модель процесса газификации угля в потоке, аналогичная моделям [13-16]. При формулировке математической модели принимаются следующие допущения [17, 18]:
• скорость сушки лимитируется внешним мас-сообменом с окружающим воздухом;
• скорость пиролиза пропорциональна содержанию летучих в частице и зависит от температуры по аррениусовскому закону;
• скорость газификации определяется из классического уравнения диффузионно-кинетической теории горения углерода;
• теплопотерями реактора можно пренебречь.
Уравнение теплового баланса для угольной
частицы записывается следующим образом:
cpmp ^ - 8ст5 " Тр) + а5 (Т " Tp)" ^ + ^ .
Здесь ср - удельная теплоемкость топлива, Дж/(кг К); mp - масса частицы, кг; Tp - температура частицы, К; е - степень черноты частицы; с - постоянная Стефана - Больцмана, Вт/(м2К4); - площадь поверхности частицы, м2; Тк - температура окружающей среды, К; а - коэффициент конвективного теплопе-реноса, Вт/(м2К); Qw - теплота испарения влаги, Вт; Qr - теплота химических превращений, Вт. Скорость сушки вычисляется по формуле
jw - (^н2о ^И20 ) .
Здесь jw - поток влаги, кг/с; К - константа скорости сушки, м/с; С - концентрация, кг/м3.
Коэффициент конвективного тепло- и массо-обмена для частицы в потоке рассчитывается по формуле Сокольского:
№ = Sh = 2 + 0,^е2,/3.
Здесь № - число Нуссельта; Sh - число Шервуда; Rep - число Рейнольдса для скорости движения частицы относительно несущего потока.
Скорость пиролиза описывается кинетическим уравнением первого порядка:
dm,
d х
V 7 0 I EV I = -VexP I - RT I mV .
Здесь ту - масса летучих в частице, кг; к° - пред-экспоненциальный коэффициент, 1/с; Еу - энергия активации стадии пиролиза, Дж/моль; R - универсальная газовая постоянная, Дж/(моль К). Летучие вещества в модели представляются механической смесью химических элементов, которые после выхода из частицы топлива распределяются по молекулярным формам по условиям химического равновесия.
Скорость реагирования топлива с газообразными окислителями записывается следующим образом:
dmC d х
■ = -keffSC<
где тС - масса топлива, кг; к^ - эффективная константа скорости гетерогенной реакции, м/с;
- площадь поверхности топлива, м2; Сох - концентрация окислителя, кг/м3.
Эффективная константа скорости выражается через кинетические и массообменные коэффициенты (в предположении, что кинетический порядок реакции по окислителю равен единице) следующим образом:
кГкА
к4 =-
kC + kd
Здесь кС - кинетическая константа скорости гетерогенной реакции, м/с; ка - коэффициент массооб-мена частицы с потоком, м/с.
Кинетическая константа скорости гетерогенной реакции зависит от температуры по экспоненциальному закону:
кс=кс ехр
где кС - предэкспоненциальный коэффициент, м/с; Еа - энергия активации, Дж/моль.
Химическая кинетика реакций в газовой фазе не рассматривается: полагается, что выходящие в газовую фазу вещества переходят в состояние равновесия. Таким образом, химические превращения описываются с помощью термодинамической модели с макрокинетическими ограничениями на скорость гетерогенных превращений [19, 20]. Та-
кой подход применим для высокотемпературных процессов, в которых скорость газофазных процессов достаточно высока по сравнению со скоростью гетерофазных.
Исходные данные и результаты расчетов
Рассматривается трубчатый реактор с производительностью по топливу 100 т/ч, рабочее давление в реакторе 30 атм. Геометрические размеры реактора: длина реакционной зоны 15 м; внутренний диаметр 3 м. Температура топлива, поступающего в реактор, составляет 27 °С; температура пара 323 °С; температура воздуха меняется от 100 до 1000 °С (с шагом в 100 °С). Расход пара меняется от 0 до 0,2 моль/моль углерода, избыток воздуха - от 0,1 до 0,7 от стехиометрического (с шагом 0,05). В качестве топлива используется каменный уголь с характеристиками:
Wr = 2 %; А1 = 15,38 %; У1а4 = 29,42 %;
С1а/ = 85,45 %; И^ = 4,86 %;
Ы1а4 = 2,0 %; Я1"4 = 0,67 %.
Индикаторами режимов выбраны следующие характеристики: химический КПД (доля теплоты сгорания твердого топлива, перешедшая в теплоту сгорания газа), максимальная и конечная температура газа, степень конверсии топлива, а также концентрация горючих компонентов в генераторном газе. Результаты расчетов представлены на рис. 1-6.
На рис. 1 показаны изолинии химического КПД процесса газификации для разных температур и избытков воздуха. Наблюдается типичная картина: при изменении стехиометрии эффективность процесса имеет выраженный экстремум для каждой фиксированной температуры дутья, соответствующий достаточно полной конверсии топлива (рис. 2) [21, 22]. Рост температуры дутья повышает эффективность только при наличии достаточного количества пара. Расход пара 0,2 моль/моль углерода позволяет повысить максимальный химический КПД газификации с 72 % (для режима без добавок пара) до 84 %. Добавление пара, кроме того, позволяет снизить температуру в ядре факела и на выходе из реактора (рис. 3, 4).
В области низких значений избытка окислителя и невысоких температур химический КПД резко падает: в этой области происходит окислительный пиролиз с неустойчивым температурным режимом, при этом наблюдается большой недожог (см. рис. 2). Увеличение избытка окислителя сверх оптимальных значений (0,3-0,4) приводит к окислению горючих компонентов, что также приводит к снижению эффективности, причем эта зависимость практически одинакова для всех расходов пара (см. рис. 1). Как видно из рис. 5, области параметров с максимальной концентрацией СО смещены в область пиролиза, в то время как максимум образования Н2 соответствует максимуму химического КПД (рис. 6).
Рис. 1. Зависимость химического КПД (%) от коэффициента избытка воздуха, начальной температуры воздуха и удельного расхода пара
Рис. 2. Зависимость степени конверсии топлива от коэффициента избытка воздуха, начальной температуры воздуха и удельного расхода пара
Рис. 3. Зависимость максимальной температуры факела (°С) от коэффициента избытка воздуха, начальной температуры воздуха и удельного расхода пара
Рис. 4. Зависимость температуры выходящего из реактора газа (°С) от коэффициента избытка воздуха, начальной температуры воздуха и удельного расхода пара
Рис. 5. Зависимость концентрации СО (% об.) в выходящем газе от коэффициента избытка воздуха, начальной температуры воздуха и удельного расхода пара
Рис. 6. Зависимость концентрации Н2 (% об.) в выходящем газе от коэффициента избытка воздуха, начальной температуры воздуха и удельного расхода пара
Диаграммы зависимости конечной температуры газа от условий газификации (см. рис. 4) позволяют выбрать режим газификации под требования систем охлаждения и очистки газа [23]. Как уже указывалось выше, повышение начальной температуры позволяет повысить эффективность газификации. При этом снижается оптимальное значение избытка окислителя, а также за счет уменьшения плотности газа меняется средняя скорость движения газа. Поэтому при высоких температурах дутья эффективность процесса начинает падать, в том числе и из-за уменьшения времени пребывания частицы в реакторе. Поэтому длина реактора должна, вообще говоря, выступать в качестве одного из переменных параметров.
Выводы
В работе проведено численное исследование процесса газификации угольной пыли в потоке нагретого паровоздушного дутья. Для этого была выделена сетка управляющих параметров (начальная температура воздуха, коэффициент избытка окислителя), в которой были построены зависимости основных характеристик процесса газификации: химический КПД, температура, состав газа. Расчеты показывают возможность достижения химического КПД процесса газификации до 84 % при расходе пара 0,2 моль/моль углерода топлива при подогреве воздуха до температур порядка 800 °С.
Работа выполнялась при поддержке РФФИ (проект № 16-08-00739)
Литература
1. Spliethoff, H. Power generation from solid fuels /H. Spliethoff. - Springer, 2010. - 704 p.
2. Integrated gasification combined cycle (IGCC) technologies / Ed. by T. Wang, G. Stiegel. -Woodhead Publ., 2017. - 929p.
3. Grabner, M. Industrial coal gasification technologies covering baseline and high-ash coal / M. Grabner. - Wiley-VCH, 2015. - 376 p. DOI: 10.1002/9783527336913
4. Развитие поточных газификационных технологий в Азиатско-Тихоокеанском регионе (обзор) / А.Ф. Рыжков, Т.Ф. Богатова, Цзэн Линянь, П.В. Осипов // Теплоэнергетика. - 2016. - № 11. -С. 40-50.
5. Ольховский, Г.Г. Новые проекты ПГУ с газификацией угля (обзор) / Г.Г. Ольховский // Теплоэнергетика. - 2016. - № 10. - С. 3-13.
6. Микула, В.А. Анализ возможности создания системы нагрева воздуха для ПГУ с внутрицикловой газификацией / ВА. Микула, А. Ф. Рыжков, Н.В. Валь-цев // Теплоэнергетика. - 2015. - № 11. - С. 9-14.
7. Клер, А.М. Угольная парогазовая установка с нагревом рабочего тела газотурбинного цикла в регенеративных теплообменниках периодического действия /А.М. Клер, Э.А. Тюрина, А.С. Медников //
Известия Томского политехнического университета. - 2013. - Т. 323, № 4. - С. 75-80.
8. Асланян, Г. С. Влияние параметров пароки-слородного дутья на газификацию углерода / Г.С. Асланян, И.Ю. Гиневская, Э.Э. Шпильрайн // Химия твердого топлива. - 1984. - № 1. - С. 90-98.
9. High temperature air combustion. From energy conservation to pollution reduction / H. Tsuji,
A.K. Gupta, T. Hasewaga et al. - CRC Press, 2003. -405 p.
10. Som, S.K. Thermodynamic irreversibilities and exergy balance in combustion processes / S.K. Som, A. Datta // Progress in Energy and Combustion Science. - 2008. - Vol. 34. - P. 351-376.
11. Li, P.F. Progress and recent trend in MILD combustion / P.F. Li, J.C. Mi, B.B. Dally et al. // Science China. Technological Sciences. - 2011. -Vol. 54, no. 2. - P. 255-269.
12. Рыжков, А.Ф. Выбор схемы подготовки рабочего тела газовой турбины для ПГУ с внут-рицикловой газификацией угля / А.Ф. Рыжков, С.И. Гордеев, Т.Ф. Богатова // Теплоэнергетика. -2015. - № 11. - С. 32-37.
13. Monaghan, R.F.D. A dynamic reduced order model for simulating entrained flow gasifiers. Part I: Model development and description / R.F.D. Mona-ghan, A. Ghoniem //Fuel. - 2012. - Vol. 91. - P. 61-80.
14. Reduced order modeling of the Shell-Prenflo entrained flow gasifier / M. Gazzani, G. Manzolini, E. Macchi, A.F. Ghoniem // Fuel. - 2013. - Vol. 104. -P. 822-837.
15. Reduced order modeling of a short-residence time gasifier /M.H. Sahraei, M.A. Duchesne, D. Yan-don et al. //Fuel. - 2015. - Vol. 161. - P. 222-232.
16. Hla, S.S. A numerical model for understanding the behaviour of coals in an entrained-flow gasifier / S.S. Hla, D.G. Roberts, D.J. Harris // Fuel Processing Technology. - 2015. - Vol. 134. - P. 424-440.
17. Донской, И.Г. Математическое моделирование реакционной зоны газогенератора типа Shell-Prenflo с помощью моделей последовательных равновесий / И.Г. Донской // Химия твердого топлива. - 2016. - № 3. - С. 54-59.
18. Coal gasification process simulations using combined kinetic-thermodynamic models in one-dimensional approximation /1. G. Donskoy, V.A. Sha-mansky, A.N. Kozlov, D.A. Svishchev // Combustion Theory and Modelling. - 2017. - Vol. 21, no. 3. -P. 529-559.
19. Koukkari, P. Introducing mechanistic kinetics to the Lagrangian Gibbs energy calculation / P. Koukkari, R. Pajarre // Computers and Chemical Engineering. - 2006. - Vol. 30. - P. 1189-1196.
20. Kaganovich, B.M. Equilibrium thermodynam-ic modeling of dissipative macroscopic systems /
B.M. Kaganovich, A.V. Keiko, V.A. Shamansky //Ad-vances in chemical engineering: Thermodynamics and kinetics of complex systems / ed. by D.H. West and G. Yablonsky. - Elsevier, 2010. - Vol. 39. - P. 1-74.
21. Prins, M.J. Energy and exergy analyses of the oxidation and gasification of carbon / M.J. Prins, K.J. Ptasinski // Energy. - 2005. - Vol. 30, no. 7. -P. 982-1002.
22. Biagini, E. Study of the equilibrium of air-blown gasification of biomass to coal evolution fuels /
E. Biagini // Energy Conversion and Management. -2016. - Vol. 128. - P. 120-133.
23. Zhu, Q. High temperature syngas coolers (CCC/257) / Q. Zhu. - IEA Clean Coal Centre, 2015. -60 p.
Донской Игорь Геннадьевич, канд. техн. наук, старший научный сотрудник, отдел теплосиловых систем, Институт систем энергетики им. Л.А. Мелентьева СО РАН, г. Иркутск; [email protected].
Поступила в редакцию 12 мая 2017 г.
DOI: 10.14529/power170302
NUMERICAL STUDY OF OPERATING MODES OF SINGLE-STAGE AIR-STEAM BLOWN ENTRAINED FLOW GASIFIER
I.G. Donskoy, [email protected]
Melentiev Energy Systems Institute of SB RAS, Irkutsk, Russian Federation
The gasification of solid fuels makes it possible to increase the technical and environment efficiency of the solid fuels using in the power engineering. Large-capacity gasifiers mostly operate on the principle of entrained flow: pulverized-coal fuel is entrained by blowing and undergoes the stages of conversion into combustible gases in the reactor. The paper studies the one-step process of air-steam coal gasification with preliminary heating of the gasification agent. To this end, a mathematical model is used, including one-dimensional transport equations and chemical transformations of fuel and gas mixture. The calculations provide the main characteristics of the gasification process and their dependence on the control parameters: the air heating temperature, the excess of the oxidant and the steam consumption.
Keywords: gasification, coal, air blasting, numerical simulation.
This work was supported by RFBR (project No. 16-08-00739).
References
1. Spliethoff H. Power Generation from Solid Fuels. Springer, 2010. 704 p. DOI: 10.1007/978-3-642-02856-4
2. Wang T., Stiegel G. (eds.) Integrated Gasification Combined Cycle (IGCC) Technologies. Woodhead Publ., 2017. 929 p. DOI: 10.1016/B978-0-08-100167-7.00001-9
3. Grabner M. Industrial Coal Gasification Technologies Covering Baseline and High-ash Coal. Wiley-VCH, 2015. 376 p. DOI: 10.1002/9783527336913
4. Ryzhkov A.F., Bogatova T.F., Lingyan Zeng, Osipov P.V. [Development of Entrained-Flow Gasification Technologies in the Asia-Pacific Region (review)]. Thermal Engineering, 2016, vol. 63, no. 11, pp. 791-801. DOI: 10.1134/S0040601516110069
5. Olkhovskii G.G. [New Projects for CCGTs with Coal Gasification (Review)]. Thermal Engineering, 2016, vol. 63, no. 10, pp. 679-689. DOI: 10.1134/S0040601516100074
6. Mikula V.A., Ryzhkov A.F., Val'tsev N.V. [Analyzing the Possibility of Constructing Air Heating System for Integrated Solid Fuel Gasification Combined-Cycle Power Plant]. Thermal Engineering, 2015, vol. 62, no. 11, pp. 773-778. DOI: 10.1134/S0040601515110038
7. Kler A.M., Tyurina E.A., Mednikov A.S. [Coal Combined-Cycle Plant with Working Medium Heating in Gas-turbine Cycle in Periodic Regenerative Heat Exchangers]. Bulletin of the Tomsk Polytechnic University, vol. 323, no. 4, pp. 75-80. (in Russ.)
8. Aslanjan G.S., Ginevskaja I.Ju., Shpil'rajn E.E. [Influence of Oxygen-Steam Blowing Parameters on Carbon Gasification]. Himija tverdogo topliva [Solid Fuel Chemistry], 1984, no. 1, pp. 90-98.
9. Tsuji H., Gupta A.K., Hasewaga T., Katsuki M., Kishimoto K., Morita M. High Temperature Air Combustion. From Energy Conservation to Pollution Reduction. CRC Press, 2003. 405 p. DOI: 10.1201/9781420041033
10. Som S.K., Datta A. Thermodynamic Irreversibilities and Exergy Balance in Combustion Processes. Progress in Energy and Combustion Science, 2008, vol. 34, pp. 351-376. DOI: 10.1016/j.pecs.2007.09.001
11. Li P.F., Mi J.C., Dally B.B., Wang F.F., Wang L., Liu Z.H., Chen S., Zheng C.G. Progress and Recent Trend in MILD Combustion. Science China. Technological Sciences, 2011, vol. 54, no. 2, pp. 255-269. DOI: 10.1007/s11431-010-4257-0
12. Ryzhkov A.F., Gordeev S.I., Bogatova T.F. [Selecting the Process Arrangement for Preparing the Gas Turbine Working Fluid for an Integrated Gasification Combined-cycle Power Plant]. Thermal Engineering, 2015, vol. 62, no. 11, pp. 796-801. DOI: 10.1134/S0040601515110075
13. Monaghan R.F.D., Ghoniem A. A Dynamic Reduced Order Model for Simulating Entrained Flow Gasifiers. Part I: Model Development and Description. Fuel, 2012, vol. 91, pp. 61-80. DOI: 10.1016/j.fuel.2011.07.015
14. Gazzani M., Manzolini G., Macchi E., Ghoniem A.F. Reduced Order Modeling of the Shell-Prenflo Entrained Flow Gasifier. Fuel, 2013, vol. 104, pp. 822-837. DOI: 10.1016/j.fuel.2012.06.117
15. Sahraei M.H, Duchesne M.A., Yandon D., Hughes R.W., Ricardez-Sandoval L.A. Reduced Order Modeling of a short-residence Time Gasifier. Fuel, 2015,vol. 161, pp. 222-232. DOI: 10.1016/j.fuel.2015.07.096
16. Hla S.S., Roberts D.G., Harris D.J. A numerical model for understanding the behaviour of coals in an en-trained-flow gasifier. Fuel Processing Technology, 2015, vol. 134, pp. 424-440. DOI: 10.1016/j.fuproc.2014.12.053
17. Donskoi I.G. Mathematical Modeling of the Reaction Zone of a Shell-Prenflo Gasifier with the Use of the Models of Sequential Equilibrium. Solid Fuel Chemistry, 2016, vol. 50, no. 3, pp. 191-196. DOI: 10.3103/S0361521916030034
18. Donskoy I.G., Shamansky V.A, Kozlov A.N., Svishchev D.A. Coal Gasification Process Simulations Using Combined Kinetic-thermodynamic Models in One-dimensional Approximation. Combustion Theory and Modelling, 2017, vol. 21, no. 3, pp. 529-559. DOI: 10.1080/13647830.2016.1259505
19. Koukkari P., Pajarre R. Introducing Mechanistic Kinetics to the Lagrangian Gibbs Energy Calculation. Computers and Chemical Engineering, 2006, vol. 30, pp. 1189-1196. DOI: 10.1016/j.compchemeng.2006.03.001
20. Kaganovich B.M., Keiko A.V., Shamansky V.A. Equilibrium thermodynamic modeling of dissipative macroscopic systems. Advances in chemical engineering: Thermodynamics and kinetics of complex systems, ed. by D.H. West and G. Yablonsky, 2010, vol. 39, pp. 1-74. DOI: 10.1016/S0065-2377(10)39001-6
21. Prins M.J., Ptasinski K.J. Energy and Exergy Analyses of the Oxidation and Gasification of Carbon. Energy, 2005, vol. 30, no. 7, pp. 982-1002. DOI: 10.1016/j.energy.2004.08.010
22. Biagini E. Study of the Equilibrium of Air-blown Gasification of Biomass to Coal Evolution Fuels. Energy Conversion and Management, 2016, vol. 128, pp. 120-133. DOI: 10.1016/j.enconman.2016.09.068
23. Zhu Q. High Temperature Syngas Coolers (CCC/257). IEA Clean Coal Centre, 2015. 60 p.
Received 12 May 2017
ОБРАЗЕЦ ЦИТИРОВАНИЯ
FOR CITATION
Донской, И.Г. Численное исследование режимов работы одноступенчатого поточного газогенератора с паровоздушным дутьем / И.Г. Донской // Вестник ЮУрГУ. Серия «Энергетика». - 2017. - Т. 17, № 3. -С. 13-23. DOI: 10.14529/power170302
Donskoy I.G. Numerical Study of Operating Modes of Single-Stage Air-Steam Blown Entrained Flow Gasifier. Bulletin of the South Ural State University. Ser. Power Engineering, 2017, vol. 17, no. 3, pp. 13-23. (in Russ.) DOI: 10.14529/power170302