Научная статья на тему 'CHEMICAL COMPOSITION OF EXTRACTS AND ESSENTIAL OILS OBTAINED FROM COMMON JUNIPER (JUNIPERUS COMMUNIS L.) IN AZERBAIJAN'

CHEMICAL COMPOSITION OF EXTRACTS AND ESSENTIAL OILS OBTAINED FROM COMMON JUNIPER (JUNIPERUS COMMUNIS L.) IN AZERBAIJAN Текст научной статьи по специальности «Химические науки»

CC BY
42
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Kimya Problemleri
Scopus
CAS
Область наук
Ключевые слова
common juniper / essential oils / gas chromatography / leaves / branches / terpenoids / можжевельник обыкновенный / эфирные масла / газовая хроматография / листья / ветки / терпеноиды

Аннотация научной статьи по химическим наукам, автор научной работы — A.B. Suleymanova, K.T. Aliyeva, A.E. Nasirova

Juniperus communis L. (common juniper) is a widespread plant species in the Western region of Azerbaijan. The dependence of the composition and content of various biologically active substances in juniper on natural climatic conditions was studied. The results of the study of the substances obtained from the extraction of leaves and branches in ethanol were presented. The composition of volatile compounds was studied by the gas chromatography technique. In all samples, monoterpene hydrocarbons always predominated with percentages higher than 70% (from 71.12% for the plant material collected in August to 74.38% for those in September), followed in similar quantities by oxygenated monoterpenes or sesquiterpene hydrocarbons with values between 10.45% and 12.77% and between 10.50% and 12.72%, respectively. Ascorbic acid content varying from 33.1 to 123.2 mg/100 g was also determined. The investigation of the yield of essential oils in different months of the year showed that its amount varies depending on the season (3.5-4.4% of the mass of dry raw materials).

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

CHEMICAL COMPOSITION OF EXTRACTS AND ESSENTIAL OILS OBTAINED FROM COMMON JUNIPER (JUNIPERUS COMMUNIS L.) IN AZERBAIJAN

Juniperus communis L. (можжевельник обыкновенный) – широко распространённый вид растения в западном регионе Азербайджана. Изучена зависимость состава и содержания различных биологически активных веществ в можжевельнике от природно-климатических условий. Представлены результаты исследования веществ, полученных экстракцией этанолом из листьев и ветвей. Состав летучих соединений изучали методом газовой хроматографии. Во всех образцах всегда преобладали монотерпеновые углеводороды с процентным содержанием выше 70% (от 71.12% для растительного материала, собранного в августе, до 74,38% для растительного материала, собранного в сентябре), за которыми в аналогичных количествах следовали кислородсодержащие монотерпены или сесквитерпеновые углеводороды со значениями от 10.45% до 12.77% и от 10.50% до 12.72% соответственно. Также было определено содержание аскорбиновой кислоты в пределах от 33.1 до 123.2 мг/100 г. Исследование выхода эфирного масла в разные месяцы года показало, что его количество колеблется в зависимости от сезона (3.5-4.4% от массы сухого сырья).

Текст научной работы на тему «CHEMICAL COMPOSITION OF EXTRACTS AND ESSENTIAL OILS OBTAINED FROM COMMON JUNIPER (JUNIPERUS COMMUNIS L.) IN AZERBAIJAN»

@

CHEMICAL PROBLEMS 2024 no. 2 (22) ISSN 2221-8688

211

UDC 547.913:543.2

CHEMICAL COMPOSITION OF EXTRACTS AND ESSENTIAL OILS OBTAINED FROM COMMON JUNIPER (JUNIPERUS COMMUNISL.) IN AZERBAIJAN

A.B. Suleymanova, K.T. Aliyeva, A.E. Nasirova

Institute of Bioresources of the Ministry of Science and Education of the Republic of Azerbaijan (Ganja) AZ 2000, av. H.Aliyeva, 419, Ganja E-mail: ayshe_hesenova@rambler. ru

Received 15.12.2023 Accepted 13.02.2024

Abstract: Juniperus communis L. (common juniper) is a widespread plant species in the Western region of Azerbaijan. The dependence of the composition and content of various biologically active substances in juniper on natural climatic conditions was studied. The results of the study of the substances obtained from the extraction of leaves and branches in ethanol were presented. The composition of volatile compounds was studied by the gas chromatography technique. In all samples, monoterpene hydrocarbons always predominated with percentages higher than 70% (from 71.12% for the plant material collected in August to 74.38% for those in September), followed in similar quantities by oxygenated monoterpenes or sesquiterpene hydrocarbons with values between 10.45% and 12.77% and between 10.50% and 12.72%, respectively. Ascorbic acid content varying from 33.1 to 123.2 mg/100 g was also determined. The investigation of the yield of essential oils in different months of the year showed that its amount varies depending on the season (3.5-4.4% of the mass of dry raw materials).

Keywords: common juniper, essential oils, gas chromatography, leaves, branches, terpenoids DOI: 10.32737/2221-8688-2024-2-211-220

1. Introduction

Currently, the western region of Azerbaijan is increasingly attracting the attention of scientists, since the flora of this territory has unique characteristics in terms of plant species that are used to obtain valuable products for food and medicine fields [1, 2]. The wide distribution of the common juniper (Juniperus communis L., Cupressaceae) in the region allows us to research its bioactive compounds. The reason for the widespread use in folk medicine of preparations obtained from the leaves and branches of the common juniper is that their essential oils (EOs) and the related biologically active substances have a wide spectrum of pharmacological actions [3]. In particular, juniper berries are used to treat many infections, as well as spice and flavor in the preparation of some drinks [4]. J. communis has been used traditionally in folk medicine for renal suppression, acute and chronic cystitis,

catarrh of the bladder, albuminuria, leucorrhea, and amenorrhea [5]. J. communis also has a healing effect on the forest environment, emits more phytoncides than other conifers and shapes the microclimate of the surface layer of the atmosphere [5].

The genus Juniperus L. consists of 67 species and 34 varieties [6]. All the taxa grow in the northern hemisphere, except J. procera Hochst. ex Endl., which grows along the Rift Mountains in east Africa in the southern hemisphere [7-9]. In Azerbaijan, the genus is represented by J. foetidissima Willd. J. polycarpos K. Koch, J. oxycedrus L. (syn.: J. rufescens Link), J. excelsa M. Bieb. (syn.: J. sabina L.) and J. communis var. saxatilis Pall. (syn.: J. oblonga M. Bieb. and J. pygmaea C. Koch.) along with J. communis [10]. Species names were verified against World Flora Online [11].

www.chemprob.org

CHEMICAL PROBLEMS 2024 no. 2 (22)

The analysis of literature data showed that numerous studies have been performed to investigate the morphology, anatomy, chemistry and biological activity of J. communis. Mohamedi and coauthors conducted complex studies on J. communis growing in natural forests obtaining information on tree biometric indicators, age structure, density, growth laws, shape diversity and morphological structure of the species [12]. In terms of antimicrobial potential, activity of its EO has been proven against 40 different species of fungi, viruses and bacteria, including some resistant clinical strains [13]. It is an aromatic EO that possesses a light fruity fragrance considered psychologically uplifting [14].

The substances identified in J. communis belong to a large number of different chemical classes, such as aliphatic hydrocarbons, alcohols and acids, terpenes, sterols, polyphenols,

tannins, and polysaccharides, among others. These compounds ensure protective functions, the stability and plasticity of the photosynthesis process, as well as the normal life activity of the plant as a whole [15].

However, it is known that the type and amount of molecules synthesized by plants mainly depend on the species, place and growth conditions (e.g., temperature regime, precipitation, duration of the vegetation period), and collection time [16-20]. Despite the fact that the taxonomy of the genus Juniperus has been well studied in Azerbaijan, data regarding the analysis of its chemical composition is lacking. Considering this, the aim of the present study was to evaluate both quantitative and qualitative differences in the chemical composition of the leaves and branches of J. communis from the western region during different seasons.

2. Experimental part

Plant material. The plant material (450 g) was collected from Dashkasan district (41°05' 36" N - 45°21' 58" E) in the first week of every month from April to December 2022.

Chemicals. All chemicals and solvents used in this study were purchased from Sigma Aldrich (St. Louis, MO).

Ethanol extraction. The branches with leaves (250 g) collected monthly were crushed to 2-3 mm with a laboratory mill (SM-450L, MRCLab, Israel). Ethanol extracts were obtained according to the standard method at 45-50°C for 6-7 hours in a Soxhlet extractor unit consisting of counter-cooling [21]. Each sample was settled for 16 hours at 4°C and the resinous part was filtered and separated with a separating funnel. Ethanol extracts were obtained according to the standard method at 45-50°C for 6-7 hours in a Soxhlet apparatus [22]. Each sample was then left to settle for 16 hours at 4°C to separate the resinous part destined for a characterization still in progress.

Distillation of EO. The leaves with branches (250 g) were also crushed to 2-3 mm with a laboratory mill (SM-450L, MRCLab, Israel) and EO was obtained by hydrodistillation with a Clevenger-type apparatus according to the European pharmacopeia 35 for

4 h [23]. The EO was collected, dried under anhydrous sulfate, and stored at 4°C until used. EO yield was expressed in terms of the weight of the oil collected per gram of dry plant material.

Determination of physicochemical characteristics of EO. The considered physicochemical properties of the EO were color, transparency, odor and taste, density, kinematic viscosity, absorbance measurement. The color was determined by physical observation in daylight and under ultraviolet radiation using ultraviolet chamber [24]. The odor was determined by organoleptic evaluation following W.C. Evans [25]. The percentage oil yield was calculated according to AOAC, 2000. The refractive index was determined using a refractometer (model RL1 8056, Russia), and kinematic viscosity was determined with viscometer (model CT 72/P, Germany) [26].

Gas chromatography (GC). The qualitative composition of the ethanol extracts and EOs was determined by the gas chromatography method in an AutoSystem XL (Perkin Elmer, Canada) flame ionization detector chromatograph. A 100 m long thin quartz capillary column (diameter 250 p,m x 0.5 p,m) is evaporated at a temperature of 250°C.

Under the influence of the carrier gas (helium) constantly flowing through this tube, the ethanol extracts and EOs in the form of vapor move through the tube. At the same time, the temperature of the column is 3-4°C/min and rises rapidly from 50°C to 200°C. The analysis and percentage of the individual components in

the samples were calculated according to the next State Standards [27, 28].

Vitamin C determination. The 2, 6-dichlorophenolindophenol titrimetric method was used to determine the total ascorbic acid content from ethanol extracts [29].

3. Results and Discussion

3.1. Ethanol extract characterization and sesquiterpenes were found in ethanolic

As a result of the research, monoterpenes extracts by GC analysis (Table 1).

Table 1. Chemical composition (percentage values) of J. communis ethanol extracts by GC _technique_

Compounds April May June July August September October November December

Monoterpene hydrocarbons

a-pinene 32.20 32.1 31.12 30.65 31.65 33.90 32.97 32.45 32.45

camphene 2.01 1.99 2.00 2.12 1.03 2.00 2.45 2.00 2.07

ß-pinene 11.23 11.78 10.12 11.0 10.01 10.50 10.54 11.02 10.36

ß-myrcene 9.23 9.00 8.89 9.21 8.89 9.62 9.95 8.78 8.00

A -karene 2.00 2.23 1.99 2.23 1.65 1.83 1.45 1.79 2.0

a-phellandrene 2.23 2.45 2.98 2.56 2.12 2.80 2.00 2.00 2.10

a-terpinene 2.05 2.2 2.54 2.89 2.64 2.50 2.12 2.56 2.78

dipentene 1.1 1.6 1.10 1.45 1.56 1.10 1.78 1.89 1.79

3-phellandrene 5.12 5.23 4.65 4.89 4.89 5.15 5.02 5.56 5.00

y-terpinene 1.2 0.36 1.45 1.89 1.45 1.50 0.65 0.45 1.89

terpinolene 2.2 1.35 2.78 2.02 2.65 2.20 2.45 2.78 2.02

^-cymene 2.23 1.2 2.11 2.23 2.58 1.28 1.45 1.54 1.98

SUM 72.8 71.49 71.73 73.14 71.12 74.38 72.83 72.82 72.44

Oxygenated 1 monoterpenes

1,8 cineole 3.02 2.3 2.01 2.00 2.56 2.34 2.89 2.76 3.22

a-thuj one 3.32 2.56 2.45 2.59 2.97 2.28 2.05 1.33 2.46

geranial 1.01 1.1 1.56 1.45 0.97 1.0 0.02 1.03 0.71

neral 0.23 0.98 1.45 0.12 0.98 0.80 0.45 0.12 0.36

longycyclene 1.23 1.32 1.65 1.02 1.35 1.12 1.06 1.40 1.09

a-terpineol 3.45 3.98 3.65 3.00 3.45 3.80 3.98 3.56 3.21

SUM 12.26 12.24 12.77 10.18 12.28 11.34 10.45 12.21 11.05

Sesq fuiterpene hydrocarbons

chamazulene 3.29 4.14 3.9 4.67 3.97 2.90 3.78 2.45 3.89

ß- caryophyllene 1.45 1.56 1.11 1.06 1.78 1.41 2.45 1.62 1.78

siberene 0.98 0.78 0.35 0.94 0.87 0.82 0.73 0.89 0.59

murolene 0.11 0.14 0.21 0.23 0.10 0.12 0.13 0.28 0.21

longifolene 0.98 0.97 0.87 0.99 0.79 0.95 0.89 0.87 0.85

a-cadinene 2.12 2.36 2.65 2.14 2.45 2.20 2.19 2.34 2.65

y-cadinene 2.01 1.97 2.04 2.00 2.03 2.00 2.56 2.33 2.45

a-curcumene 0.1 0.65 0.12 0.20 0.12 0.10 0.11 0.21 0.3

SUM 11.04 12.57 11.28 12.23 12.11 10.5 12.84 10.99 12.72

Oxygenated sesquiterpenes

farnesol 0.23 0.45 0.32 0.89 0.12 0.20 0.25 0.23 0.45

a-bisabolol 0.11 0.13 0.45 0.11 0.9 0.10 0.12 0.10 0.13

bornyl acetate 3.56 3.12 3.45 3.45 3.47 3.48 3.51 3.65 3.21

SUM 3.9 3.7 4.22 4.45 4.49 3.78 3.88 3.98 3.79

In all samples, monoterpene hydrocarbons always predominated with percentages higher than 70% (from 71.12% for the plant material collected in August to 74.38% for those in September), followed in similar quantities by oxygenated monoterpenes or sesquiterpene hydrocarbons with values between 10.45% and 12.77% and between 10.50% and 12.72%, respectively. Oxygenated sesquiterpenes were present in all harvest months in small quantities, with a maximum of 4.49% in August. a-Pinene was the most abundant hydrocarbon monoterpene (30.65%-33.90%) together with B-pinene (10.01%-11.78%), B-myrcene (8.00%-9 .95%) and 3-phellandrene (4.65%-5.56%), while among the oxygenated monoterpenes, a-terpineol prevailed (3.00%-3.98%). The main sesquiterpene hydrocarbons were a- (2.12%-2.65%) and Y-cadinene (1.97%-2.56%). Bornyl acetate characterized the fraction of oxygenated sesquiterpenes (3.12%-3.65%).

It is known that J. communis synthesizes a certain amount of compounds with biological activity (EO components, chlorophylls, carotenoids, many amino acids, vitamins, and phytohormones) [30].

In this work, we managed to determine the content of ascorbic acid in alcohol extracts. These values varied from 33.1 mg/100g in April

to 123.2 mg/100g in September being, however, approximately 2 times lower than those of the pines (in particular, P. chiapensis L.) present in the same region and characterized by values ranging from 87.8 to 210.7 mg/100g [31, 32].

3.2. Essential oil characterization

EOs are a complex combination of volatile aromatic substances belonging to various organic chemical classes, mainly terpenoids. Most EOs are characterized by the presence of monoterpenoids with medicinal properties [33].

The EO obtained from J. communis growing in the western region of Azerbaijan and harvested over several months was a light yellow volatile liquid.

The amount of EO in the leaves and branches of J. communis samples varies throughout the year and has 2 maximum percentages, respectively in spring and in autumn: in April it reached 4.3% while in September it was 4.4%. It can be seen from the graph (Fig.) that the decrease in the quantity of EO begins in May and reaches its lowest value in June, confirming EO's role in the growth of the plant [34]. The yield of J. communis EO and its seasonal variation have been the subject of many studies around the world.

Table 2. Yields of EO obtained from J. communis depending on the season

The months of Volume of essential Yield of EO (%)

collecting of the raw material oil, (ml)

April 10.75 4.3

May 10.5 4.2

June 8.25 3.5

July 10.0 4.0

August 10.25 4.1

September 11.0 4.4

October 8.75 3.5

November 7.97 3.19

December 10.0 4.0

Thus, according to N.V. Gerlingin , the Middle Taiga zone was 4.46-0.81%, EO yield of EO from J. communis growing in the compounds in the needles of J. Sabina (Kazakh

juniper) 2.60%; 1.80-2.10% in J. communis var. saxatilis Pall. (Siberian juniper), it is 1.07% in Green Sargent Juniper (J. chinensis Viridis) [35, 36]. It should be noted that according to D.K. Uvarovskaya in Far Eastern juniper species, EO content decreases in April-June, and increases in autumn-winter [37]. Depending on the season, the yield of EO was 3.5-4.4% ( Table 2, Fig.).

Also, during the summer and winter months, the lowest levels of EO in the plant

were recorded (Fig.). The accumulation of EO from July to September is explained by the intensification of physiological processes and the activation of metabolism in conifers, the formation of which ends with the approach of autumn, in correspondence with which (October-November) the metabolic processes slow down and the plants react to the reduction of daylight hours by finding themselves in a state of forced dormancy [38].

Vi

"o

."s

S

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

V M M

V (to

2

£

5 4,5 4 3,5 3 2,5 2 1,5 1

0,5 0

45 Months

Fig. The monthly (1-April; 2-May; 3-June;-July; 5-August; 6-September; 7-October; 8-November; 9-December) dynamics of EO in J. communis branches and leaves

Table 3. Chemical composition (percentage values) of J. communis EO by GC technique

Compounds April May June July August September October November December

Monoterpene hydrocarbons

tricyclene 0.23 0.10 0.03 0.02 0.01 0.03 0.02 0.02 0.03

a-thujene 0.23 0.45 0.78 0.32 0.87 0.75 0.26 0.45 0.36

a-pinene 19.47 20.47 19.12 19.9 16.31 17.12 16.41 17.34 16.89

camphene 1.98 2.13 2.47 3.36 2.45 2.36 2.58 2.56 2.36

sabinene 4.69 4.95 5.46 5.45 5.22 3.83 4.87 5.42 4.45

ß-Pinene 1.41 3.45 3.65 4.25 3.47 3.78 3.58 3.78 3.89

^-pinene 6.36 5.56 5.23 7.36 4.23 6.24 7.63 7.26 7.63

ß-myrcene 6.63 5.78 5.63 7.63 5.45 6.63 8.45 7.74 7.29

A -karene 2.36 2.45 2.78 3.56 2.89 2.78 1.89 1.98 1.99

a-phellandrene 3.47 2.78 2.45 3.56 3.45 3.12 3.23 3.25 2.45

a-terpinene 2.36 2.22 2.56 3.36 2.57 2.65 2.36 3.01 2.98

dipentene 1.2 1.7 2.01 2.63 1.78 1.63 2.58 2.01 1.69

3-phellandrene 5.63 5.89 5.64 6.47 5.67 4.57 5.78 5.97 4.89

y-terpinene 1.6 1.47 0.36 1.78 1.78 1.32 1.37 0.78 2.36

terpinolene 2.7 2.56 2.97 2.36 2.6 2.89 2.45 2.97 2.47

p-cymene 2.56 2.3 2.56 2.79 2.56 2.76 1.78 1.79 1.43

SUM 67.34 63.26 61.17 63.3 61.31 62.46 63.24 64.33 63.16

Oxygenated monoterpenes

1,8 cineole 3.45 2.36 3.14 2.36 3.56 2.69 2.47 2.87 3.41

1

2

3

6

7

8

9

a-thuj one 3.45 3.47 3.12 3.12 3.24 3.46 3.74 3.44 3.14

geranial 1.20 1.45 1.78 1.78 1.69 1.77 0.47 1.55 0.66

neral 0.36 0.99 0.74 0.96 0.77 0.79 0.99 0.78 1.23

longycyclene 2.13 2.78 2.88 2.56 2.36 2.78 2.99 2.47 2.97

a-terpineol 3.44 4.2 4.44 4.78 4.69 4.78 4.02 4.78 4.44

SUM 14.03 15.25 16.1 15.56 16.31 16.27 14.86 15.89 15.85

Sesq uiterpene hydrocarbons

Verbenene 0.03 0.11 0.14 0.07 0.09 0.04 0.03 0.01 0.01

a-Copaene 1.23 1.63 1.78 1.48 1.79 0.58 0.74 0.25 0.99

chamazulene 3.45 3.98 4.23 4.78 4.66 3.96 3.78 3.55 4.12

ß-caryophyllene 1.23 1.63 1.45 1.77 2.31 1.88 2.93 2.36 2.47

siberene 0.36 1.32 1.45 1.58 1.02 1.69 1.47 1.27 1.44

murolene 0.12 0.36 0.47 0.33 0.74 0.96 0.47 0.33 0.47

longifolene 0.99 0.71 1.36 1.37 1.33 1.76 1.23 1.44 1.35

a-cadinene 2.98 2.56 2.74 2.36 2.77 2.33 2.71 2.91 2.31

y-cadinene 2.33 2.47 2.77 2.69 2.37 2.71 2.34 2.66 2.10

a-curcumene 0.31 0.78 0.47 0.14 0.73 0.13 1.46 0.31 0.99

SUM 13.03 15.55 16.86 16.57 17.81 16.04 17.16 15.09 16.26

Oxygenated sesquiterpenes

farnesol 1.36 0.79 0.56 0.99 0.46 0.34 0.23 0.77 0.64

a-bisabolol 0.23 0.79 0.56 0.44 0.33 0.93 0.14 0.79 0.43

bornyl acetate 4.01 4.36 4.22 3.14 3.78 3.96 4.37 4.13 3.66

SUM 5.6 5.94 5.34 4.57 4.57 5.23 4.74 5.69 4.73

The chemical volatile composition of J. communis EO investigated by GC is shown in Table 3. As a result of the research, monoterpenes and sesquiterpenes were found in the EO. In all samples, monoterpene hydrocarbons always predominated with percentages higher than 60% (from 61.31% for the plant material collected in August to 62.46% for those in September), followed in similar quantities by oxygenated monoterpenes or sesquiterpene hydrocarbons with values between 14.86% and 16.1% and between 16.04% and 16.26%, respectively. Oxygenated sesquiterpenes were present in all harvest months in small quantities, with a maximum of 5.94% in August. a-Pinene was the most abundant hydrocarbon monoterpene (16.31%-20.47%) together with B-pinene (1.41%-4.25%), B-myrcene (5.45%-8.45%) and 3-phellandrene

(4.57%-6.47%), while among the oxygenated monoterpenes, a-terpineol prevailed (3.44%-4.78%). The main sesquiterpene hydrocarbons were a- (2.31%-2.98%) and y-cadinene (2.10%-2.77%). Bornyl acetate characterized the fraction of oxygenated sesquiterpenes (3.14%-4.37%).

3.3. Physicochemical characteristics of J. communis EO

The study of various physicochemical characteristics explores the practical importance and provides bases for the suitability and usefulness of various oils of plant origin in daily life. In general, the commercial importance of oils mostly depends on these physicochemical properties, which provide baseline data to determine their suitability for consumption [39, 40]. The results of the physicochemical analysis of J. communis EO are presented in Table 4.

Table 4. Physicochemical properties of EOs obtained from J. communis depending on the

collection month

№ Color Trans- Odor and Densi Nd, Kinematic pH Refractive ABS

parency taste ty at 20°C, g/sm3 20°C visco. 20°C, mm2/s index at 25°C (absorbance measurement)

N1 yellow Clear

specific

0.9769

1.3645

1.741

4.25

0.5

0.959

N2

yellow

Clear

Specific

0.8162

1.2356

1.631

5.12

0.1

1.155

N3

yellow

Clear

Specific

0.8445

1.2564

1.625

6.31

1.5

1.211

N4

yellow

Clear

Specific

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0.9785

1.2456

1.742

5.00

0.5

0.987

N5

yellow

Clear

Specific

0.8954

1.4235

1.623

6.12

0.5

0.963

N6

yellow

Clear

Specific

0.9745

1.3258

1.685

4.23

0.2

0.987

N7

yellow

Clear

Specific

0.9782

1.4562

1.789

5.23

0.3

0.978

N8

yellow

Clear

Specific

0.8974

1.3214

1.712

5.12

0.3

0.951

N9 yellow Clear

Specific

0.9178

1.4789

1.754

5.47

0.5

0.914

*Note: N1 - April, N2 - May, N3 N8 - November, N9 - December

une, N4 - July, N5 - August, N

6 - September, N7 - October,

As can be seen from Table 4, the density of EO is usually less than unity [41]. The refractive index is almost constant for all EOs and this depends on the prevalence of some compounds over others [42]. The highest

refraction is characteristic of EOs with a high content of aliphatic terpenes with three double bonds which corresponds to our results, and the lowest refraction is characteristic of tricyclic terpenes [43-45].

4. Conclusion

In conclusion, due to the yield of EO from the branches with leaves of J. communis (in April 4.3% and in September 4.4%), it can be used as a source of raw materials for obtaining EO from that plant. Based on the medicinal properties of the components of the juniper, the obtained essential oil can be used in medicine and cosmetology in the preparation of ointments

and lotions with various ingredients. At the same time, the EO obtained in April contains 67% of monoterpene hydrocarbons, which are biologically important compounds. Moreover, the ethanol extract of the plant can be used as a potential natural source for the cosmetic and drug industry.

References

1. Mehdiyeva N.P. Biodiversity of medicinal flora of Azerbaijan. Baku, 2011, 186 p.

2. Bakhshaliyeva K., Namazov N., Hasanova A. et al. Assessment of the prospects of studying and using mushrooms of Azerbaijan as effective producers of biologically active substances // Periodico Tche Quimica. Brazilia, 2020, 17, 34, pp. 403-411.

3. Ved A., Gupta A., Rawat A.K. Antioxidant and Hepatoprotective Potential of Phenol-Rich. Fraction of Juniperus communis Linn // Leaves. Pharmacogn Mag; 2017, 13, 49, pp.108-113.

4. Mahmutovic I., Muratovic E. Antimicrobial potential of forest plants from different areas of Bosnia and Herzegovina, Bosna Hercegovina; 2014, 82 p.

5. Ivanova D.I., Adams R.P., Anderson J., Tashev A.N., Nedialkov P.T., Kokanova-

Nedialkova Z.K., Ilieva Y.E., Atanassova T.N., Kalotova G.I., Angelov G., Najdenski H.M. Extraction of bioactive compounds from conifers growing in the Windsor Great Park and other arboretums // Bulgarian Chemical Communications, 2020, 52, 4, pp. 543-548.

6. Flora Azerbaidjana. Ed.: I.I. Kojagin. Baku: AN Azerb. SSR, 1950-1961, 1-8 p.

7. Lakusic B., Lakusic D. Anatomy of four taxa of the Genus Juniperus sect. Juniperus (Cupressaceae) from the Balkan peninsula // Botanika Serbica. 2011, 35, 2, pp. 145156.

8. Alizade V.M., Shulkina T. The flora of Azerbaijan for the world horticulture // Plant & Fungal Res. 2018, 1, 1, pp. 2-8.

9. AOAC. Official methods of analysis. Gaithersburg, MD, 2000, Washington, USA, 23-30 p.

10. Arboretum of Azerbaijan. Baku, "Elm", 2011, I, 312 p.

11. WFO (2023): World Flora Online. Published on the Internet: http://www.worldfloraonline.org. Accessed on: 05 July 2023.

12. Mohamadi M., Shamspur T., Mostafavi A. Comparison of microwave-assisted distillation and conventional hydrodistillation in the essential oil extraction of flowers Rosa damascena Mill. // J. Essent. Oil Res. 2013, 25, pp. 55-61.

13. Miller R.B. Food irradiation using (bremsstrahlung) X-rays. Radiat. Phys. and Chem. 2003, vol. 68, 6, pp. 96.

14. Bamgboye A.I.; Adejumo O.I. Physicochemical properties of Roselle seed oil // Nutrul and Food Science, 2010, 40, 2, pp. 186-192.

15. Bae Gi-Sang, Park Kyoung-Chel, Choi Sun Bok, Jo Il-Joo, Choi Mee-Ok, Hong Seung-Heon, Song Kyung, Song Ho-Joon, Park Sung-Joo. Protective effects of alpha-pinene in mice with cerulein-induced acute pancreatitis // Life Sciences, 2012, 91, pp. 866-871.

16. Boren K.E. et al. Detecting Essential Oil Adulteration // J. Environ. Anal. Chem. 2015, 2, pp. 100-132.

17. Essien E.P., Essien J.P., Ita B.N., Ebong G.A. Physicochemical properties and fungitoxicity of the essential oil of Citrus medica L. against groundnut storage fungi // Turk. J. Bot., 2008, 32, pp. 161-164.

18. Efremov E.A., Zykova E.D., Efremov A.A., Strukova E.G. Component Composition of Essential Oil of Siberian Juniper Boughs and Berries in Evenkia // Chemistry of plant raw material. 2011, 2, pp. 127-131.

19. Hoer K. et al. Flavor authenticity studies by 2H/1H ratio determination using on-line gas chromatography pyrolysis isotope ratio mass spectrometry // J. Agric. Food Chem. 2001, 49, pp. 21-25.

20. ISO 4724:2004. Specifies certain characteristics of the oil of cedarwood, Virginian (Juniperus virginiana L.), in order

to facilitate assessment of its quality. 2004, 6 p.

21. Khare C.P. Indian Medicinal Plants; Springer: Berlin/Heidelberg, Germany,

2020, 245 p.

22. Kutakova N.A. Laboratory Workshop on Technology of Bioactive Substances and Carbon Adsorbents. In 2 Parts. Part 2. Analysis of BAS. Arkhangelsk, NArFU Publ., 2015, 117 p.

23. Mahmutovic I., Dahija S., Besta-Gajevic R., Karalija E. Biological activity of Juniperus communis L. extracts. Conference: 28th International Scientific-Expert Conference of Agriculture and Food Industry. 2017, pp. 1-11.

24. Maisonneuv, S.A. Pharmacopeia European, Sainte Ruffine: Conseil de l'Europe. 1996, 245 p.

25. Evans W.C. Pharmacognosy. 15 ed. English Language Book, Society Baillere Tindall, Oxford University Press. 2002, 41 p.

26. Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. 2010, 15, pp. 9252-9287.

27. Nievola C.C., Carvalho C.P., Carvalho V., Rodrigues E. Rapid responses of plants to temperature changes // Temperature (Austin). 2017, 4, 4, pp. 371-405.

28. Parthiban K.T., Selvan P., Paramathma M., Kanna S.U., Kumar P., Subbulakshmi V., Vennila S. Physico-chemical characterization of seed oil from Jatrophacurcas L. genetic resources // Journal of Economic and Natural Environment, 2011, 3, 5, pp. 163-167.

29. Nielsen S.S. Vitamin C Determination by Indophenol Method. In: Nielsen, S.S. (eds) Food Analysis Laboratory Manual. Food Science Texts Series. Springer, Boston, MA. 2010, 452 p.

30. Raina R., Verma P.K., Peshin R., Kour H. Potential of Juniperus communis L as a nutraceutical in human and veterinary medicine // Heliyon, 2019, 5, pp.2376.

31. Rajput J.D., Bagul S.D., Pete U.D., Zade C.M., Padhye S.B., Bendre R.S. Perspectives on medicinal properties of natural phenolic monoterpenoids and their hybrids // Mol Divers. 2018, 22, 1, pp. 225245.

32. Sharifi Rad J., Sureda A., Tenore G.C., Daglia M., Sharifi Rad M., Valussi M., Tundis Rtollahi S.A., Iriti M. Biological Activities of Essential Oils: From Plant

Chemoecology to Traditional Healing Systems // Molecules, 2017, 22, 1, pp. 70.

33. Souza, R. et al. The famous Amazonian rosewood essential oil: characterization and adulteration monitoring by electrospray ionization mass spectrometry fingerprinting // Anal. Lett. 2011, 44, pp. 2417-2422.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

34. Shlyk, A.A. Determination of Chlorophylls and Carotenoids in Extracts of Green Leaves. Biochemical Methods in Plant Physiology. Editor-in-Chief O.A. Pavlinova. Moscow, Nuka Publ., 1971, pp. 154-170.

35. Gerling N.V., Punegov V.V., Gruzdev I.V. Component Composition of Essential Oil Juniperus Communis (Juniperus communis L.) under the Canopy of Spruce Forests in the European North-East of Russia // Chemistry of plant raw material. 2016, 2, pp. 89-96.

36. Tishkina E.A., Semkina L.A. Health Assessment Based on Photosynthetic Pigments Contents in Coenopopulations of Common Juniper in Middle and Southern Ural. Lesovedenie // Russian Journal of Forest Science. 2017, 6, pp. 452-456.

37. Riu-Aumatell M., Vichi S., Mora-Pons M., Guadayol J.M., Buxaderas S., Lopez-Tamames E. HS-SPME coupled to GC/MS for quality control of Juniperus communis L. berries used for gin aromatization // Food Chem. 2007, 105, pp. 1748-1754.

38. Turek C., Stintzing F.C. Stability of

essential oils: A review. Comp. Rev. // Food Sci. Food Saf. 2006, 12, pp. 40-53.

39. Yadav S.R., Murthy K., Mishra D., Baral B. Estimation of petrol and diesel adulteration with kerosene and assessment of usefulness of selected automobile fuel quality test parameters. Intern // Jour. Env. Sci. and Tech., 2005, 1, 4, pp. 253-255.

40. Zhou J.Y., Tang E D., Mao G.G., Bian R.I. Effect of alpha-Pinene on nuclear translocation of NF-kappa B in THP-1. Cell, 2004, 25, pp. 480-484.

41. State Standart 279-2014. Essential oils. Method for determining the relative density at a temperature of 20°C. Control method. Moscow, 2015, 8 p.

42. State Standart 31791-2017. Essential oils and floral-herbaceous essential oil raw materials. Technical conditions. Moscow, 2018, 19 p.

43. State Standart ISO 875-2014. Essential oils. Method for determination of solubility in ethyl alcohol. 2015, 8 p.

44. Adams R.P. Systematics of Juniperus section Juniperus based on leaf essential oils and RAPD DNA fingerprinting // Biochem. Syst. Ecol. 2000b, 28, pp. 515528.

45. Adams R.P. Geographic variation in leaf essential oils and RAPDs of J .polycarpos K. Koch in central Asia. // Biochem. Syst. Ecol. 2001, 29, pp. 609-619.

AZ9RBAYCANDA BiT9N ADi ARDICDAN (JUNIPERUS COMMUNIS L.) ALINAN EKSTRAKTLARIN УЭ EFiR YAGLARININ KIMY9Vi TÖRKIBi

A.B. Süleymanova, K.T. 91iyeva, A.E. Nasirova

Azdrbaycan Respublikasi Elm vd Tdhsil Nazirliyi Bioresurslar institutu (Gdncd) E-mail: ayshe_hesenova@rambler. ru

Xülasa: Adi ardic (Juniperus communis L.) Azarbaycanin Qarb bölgasinda geni§ yayilmi§ bitki növüdür. Ardicin tarkibinda olan müxtalif bioloji aktiv maddalarin tarkibinin, miqdarinin va onun böyümasinin tabii iqlim §araitindan asililigi tadqiq olunmu§dur. Yarpaq va budaqlarin etanolda ekstraksiyasindan alinan ektraksiya mahsullarinin tadqiqinin naticalari verilmi§dir. U9ucu ekstraksiya maddalarin tarkibi xromatoqrafiya metodu ila öyranilmi§dir. Bütün nümunalarda monoterpen karbohidrogenlari 70%-dan yuxari olur (avqustda yigilan bitki materiali ü9ün 71.12%-dan yuxari, sentyabrda yigilanlar ü9ün isa 74.38%-a qadar), eyni zamanda hamin miqdarda oksigenla§dirilmi§ monoterpenlar va ya sesquiterpen karbohidrogenlari 10.45% va 12.77% va

muvafiq olaraq 10.50% ila 12.72% arasinda muyyan edilmi§dir. 33.1-123.2 mq/100 q arasinda dayman askorbin tur§usu da tayin edilmi§dir. Efir yaglarinin ilin muxtalif aylarinda mahsuldarliginin tadqiqi gostardi ki, onun miqdari movsumdan asili olaraq dayi§ir (quru xammalin kutlasinin 3.5-4.4%-i).

A?ar sozlari: adi ardic, efir yaglari, qaz xromatoqrafiyasi, yarpaqlar, budaqlar, terpenoidlar

ХИМИЧЕСКИЙ СОСТАВ ЭКСТРАКТОВ И ЭФИРНЫХ МАСЕЛ, ПОЛУЧЕННЫХ ИЗ МОЖЖЕВАЛЬНИКА ОБЫКНОВЕННОГО (JUNIPERUS COMMUNIS L.) В

АЗЕРБАЙДЖАНЕ

А.Б. Сулейманова, К.Т. Алиева, А.Э. Насирова

Институт Биоресурсов Министерства Науки и Образования Азербайджанской Республики

(Гянджа) E-mail: ayshe_hesenova@rambler. ru

Аннотация: Juniperus communis L. (можжевельник обыкновенный) - широко распространённый вид растения в западном регионе Азербайджана. Изучена зависимость состава и содержания различных биологически активных веществ в можжевельнике от природно-климатических условий. Представлены результаты исследования веществ, полученных экстракцией этанолом из листьев и ветвей. Состав летучих соединений изучали методом газовой хроматографии. Во всех образцах всегда преобладали монотерпеновые углеводороды с процентным содержанием выше 70% (от 71.12% для растительного материала, собранного в августе, до 74,38% для растительного материала, собранного в сентябре), за которыми в аналогичных количествах следовали кислородсодержащие монотерпены или сесквитерпеновые углеводороды со значениями от 10.45% до 12.77% и от 10.50% до 12.72% соответственно. Также было определено содержание аскорбиновой кислоты в пределах от 33.1 до 123.2 мг/100 г. Исследование выхода эфирного масла в разные месяцы года показало, что его количество колеблется в зависимости от сезона (3.5-4.4% от массы сухого сырья).

Ключевые слова: можжевельник обыкновенный, эфирные масла, газовая хроматография, листья, ветки, терпеноиды

i Надоели баннеры? Вы всегда можете отключить рекламу.