Научная статья на тему 'Changes in the nociceptive response to thermal stimulation in rats following administration of N-terminal analogs of the adrenocorticotropic hormone'

Changes in the nociceptive response to thermal stimulation in rats following administration of N-terminal analogs of the adrenocorticotropic hormone Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
100
41
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
regulatory peptide / ACTH / pain / hot plate / tail flick / регуляторный пептид / АКТГ / боль / горячая пластина / отдергивание хвоста

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Dodonova S.A., Bobyntsev I.I., Belykh A.E., Andreeva L.A., Myasoedov N.F.

Melanocortins (MCs) are an increasingly studied class of regulatory peptides exerting a wide range of biological effects. All naturally occurring MCs share a His-PheArg-Trp fragment (HFRW) corresponding to the sequence of amino acid residues 6–9 of the adrenocorticotropic hormone (ACTH6-9), which is also a central active component of ACTH. Attaching the Pro-Gly-Pro (PGP) sequence to the C-end of the peptide extends the duration of the peptide’s effect. The aim of this study was to investigate the effects of ACTH6-9-PGP (HFRWPGP) on the spinal and supraspinal mechanisms involved in the nociceptive response in rats and to compare them to those of its structural analog ACTH4-7-PGP (MEHFPGP). ACTH6-9-PGP effects were studied following the intraperitoneal administration of the peptide at doses 0.5, 1.5, 5, 15, 50, 150, or 450 µg/kg 15 minutes before the hot plate and tail flick tests. ACTH4-7-PGP effects were studied under the same conditions at the following doses: 50, 150 and 450 µg/kg. We found that ACTH6-9-PGP administered intraperitoneally at 5 or 150 µg/kg induced a pronounced reduction in pain sensitivity 15 and 45 minutes after the injection (p = 0.04); this effect was implemented via supraspinal mechanisms. In the tail flick test, 150 µg/kg ACTH6-9-PGP increased pain sensitivity, with the participation of segmental spinal mechanisms (p = 0.04). ACTH4-7-PGP did not have any effect on the studied mechanisms of pain sensitivity. Thus, unlike ACTH4-7-PGP, ACTH6-9-PGP can both increase pain sensitivity and exert an analgesic effect.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по фундаментальной медицине , автор научной работы — Dodonova S.A., Bobyntsev I.I., Belykh A.E., Andreeva L.A., Myasoedov N.F.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ИЗМЕНЕНИЕ ТЕМПЕРАТУРНОЙ БОЛЕВОЙ ЧУВСТВИТЕЛЬНОСТИ У КРЫС ПОСЛЕ ВВЕДЕНИЯ N-КОНЦЕВЫХ АНАЛОГОВ АДРЕНОКОРТИКОТРОПНОГО ГОРМОНА

Меланокортины (МК) — один из активно исследуемых классов пептидных регуляторов c широким спектром биологических эффектов. В структуре всех природных МК присутствует общий фрагмент — His-Phe-Arg-Trp (HFRW), соответствующий последовательности с 6-го по 9-й аминокислотный остаток молекулы адренокортикотропного гормона (АКТГ6-9) и являющийся ее активным центром. Показано, что присоединение к С-концу аминокислотной последовательности Pro-Gly-Pro (PGP) приводит к пролонгации действия пептидов. Целью работы было изучить влияние эффектов АКТГ6-9-PGP (HFRWPGP) на спинальные и супраспинальные механизмы формирования болевой чувствительности у крыс, а также сравнить их с эффектами его структурного аналога — АКТГ4-7-PGP (MEHFPGP). Эффекты АКТГ6-9-PGP были исследованы при его внутрибрюшинном введении в дозах 0,5, 1,5, 5, 15, 50, 150 и 450 мкг/кг за 15 мин до начала опыта по изучению температурной болевой чувствительности у крыс с использованием тестов «горячая пластина» и «отдергивание хвоста». Эффекты АКТГ4-7-PGP были исследованы в аналогичных условиях в дозах 50; 150 и 450 мкг/кг. Показано, что АКТГ6-9-PGP в дозах 5 и 150 мкг/кг вызывал выраженное снижение температурной болевой чувствительности через 15 и 45 мин после его внутрибрюшинного введения (p = 0,04), реализованного на супраспинальном уровне. В тесте «отдергивание хвоста» АКТГ6-9-PGP в дозе 150 мкг/кг повышал температурную болевую чувствительность с участием сегментарных спинальных механизмов (p = 0,04). АКТГ4-7-PGP не оказывал влияния на исследованные механизмы болевой чувствительности. Таким образом, установлено, что АКТГ6-9-PGP, в отличие от АКТГ4-7-PGP, способен обладать как анальгетическими, так алгическими эффектами.

Текст научной работы на тему «Changes in the nociceptive response to thermal stimulation in rats following administration of N-terminal analogs of the adrenocorticotropic hormone»

CHANGES IN THE NOCICEPTIVE RESPONSE TO THERMAL STIMULATION IN RATS FOLLOWING ADMINISTRATION OF N-TERMINAL ANALOGS OF THE ADRENOCORTICOTROPIC HORMONE

Dodonova SA1 Bobyntsev II1, Belykh AE1, Andreeva LA2, Myasoedov NF2

1 Kursk State Medical University, Kurks, Russia

2 Institute of Molecular Genetics, Moscow, Russia

Melanocortins (MCs) are an increasingly studied class of regulatory peptides exerting a wide range of biological effects. All naturally occurring MCs share a His-Phe-Arg-Trp fragment (HFRW) corresponding to the sequence of amino acid residues 6-9 of the adrenocorticotropic hormone (ACTH6-9), which is also a central active component of ACTH. Attaching the Pro-Gly-Pro (PGP) sequence to the C-end of the peptide extends the duration of the peptide's effect. The aim of this study was to investigate the effects of ACTH6-9-PGP (HFRWPGP) on the spinal and supraspinal mechanisms involved in the nociceptive response in rats and to compare them to those of its structural analog ACTH4-7-PGP (MEHFPGP). ACTH6-9-PGP effects were studied following the intraperitoneal administration of the peptide at doses 0.5, 1.5, 5, 15, 50, 150, or 450 |jg/kg 15 minutes before the hot plate and tail flick tests. ACTH4-7-PGP effects were studied under the same conditions at the following doses: 50, 150 and 450 pg/kg. We found that ACTH6-9-PGP administered intraperitoneally at 5 or 150 pg/kg induced a pronounced reduction in pain sensitivity 15 and 45 minutes after the injection (p = 0.04); this effect was implemented via supraspinal mechanisms. In the tail flick test, 150 pg/kg ACTH6-9-PGP increased pain sensitivity, with the participation of segmental spinal mechanisms (p = 0.04). ACTH4-7-PGP did not have any effect on the studied mechanisms of pain sensitivity. Thus, unlike ACTH4-7-PGP, ACTH6-9-PGP can both increase pain sensitivity and exert an analgesic effect.

Keywords: regulatory peptide, ACTH, pain, hot plate, tail flick

Author contribution: Dodonova SA, Belykh AE — collected processed and analyzed the data; Bobyntsev II, Andreeva LA, Myasoedov NF — conceived and designed the study; Dodonova SA, Belykh AE, Bobyntsev II — wrote this manuscript.

Compliance with ethical standards: the study was approved by the Ethics Committee of Kursk State Medical University (Protocol № 3 dated October 27, 2015). The animals were treated in strict compliance with the Declaration of Helsinki, Directive 2010/63/EU of the European Parliament and the Council (September 22, 2010) on the protection of animals used for scientific purposes, and Good Laboratory Practice guidelines established by the Order 708n of the Ministry of Healthcare of the Russian Federation (August 23, 2010).

[><1 Correspondence should be addressed: Svetlana А. Dodonova K. Marx, 3, Kursk, 305004; [email protected]

Received: 02.12.2019 Accepted: 16.12.2019 Published online: 20.12.2019 DOI: 10.24075/brsmu.2019.085

ИЗМЕНЕНИЕ ТЕМПЕРАТУРНОЙ БОЛЕВОЙ ЧУВСТВИТЕЛЬНОСТИ У КРЫС ПОСЛЕ ВВЕДЕНИЯ N-КОНЦЕВЫХ АНАЛОГОВ АДРЕНОКОРТИКОТРОПНОГО ГОРМОНА

С. А. Додонова1 И. И. Бобынцев1, А. Е. Белых1, Л. А. Андреева2, Н. Ф. Мясоедов2

1 Курский государственный медицинский университет, Курск, Россия

2 Институт молекулярной генетики, Москва, Россия

Меланокортины (МК) — один из активно исследуемых классов пептидных регуляторов c широким спектром биологических эффектов. В структуре всех природных МК присутствует общий фрагмент — His-Phe-Arg-Trp (HFRW), соответствующий последовательности с 6-го по 9-й аминокислотный остаток молекулы адренокортикотропного гормона (АКТГ6-9) и являющийся ее активным центром. Показано, что присоединение к С-концу аминокислотной последовательности Pro-Gly-Pro (PGP) приводит к пролонгации действия пептидов. Целью работы было изучить влияние эффектов АКТГ^-PGP (HFRWPGP) на спинальные и супраспинальные механизмы формирования болевой чувствительности у крыс, а также сравнить их с эффектами его структурного аналога — АКТГ^-PGP (MEHFPGP). Эффекты АКТГ^-PGP были исследованы при его внутрибрюшинном введении в дозах 0,5, 1,5, 5, 15, 50, 150 и 450 мкг/кг за 15 мин до начала опыта по изучению температурной болевой чувствительности у крыс с использованием тестов «горячая пластина» и «отдергивание хвоста». Эффекты АКТГ^-PGP были исследованы в аналогичных условиях в дозах 50; 150 и 450 мкг/кг. Показано, что АКТГ^-PGP в дозах 5 и 150 мкг/кг вызывал выраженное снижение температурной болевой чувствительности через 15 и 45 мин после его внутрибрюшинного введения (p = 0,04), реализованного на супраспинальном уровне. В тесте «отдергивание хвоста» АКТГ^-PGP в дозе 150 мкг/кг повышал температурную болевую чувствительность с участием сегментарных спинальных механизмов (p = 0,04). АКТГ^-PGP не оказывал влияния на исследованные механизмы болевой чувствительности. Таким образом, установлено, что АКТГ^-PGP, в отличие от АКТГ^-PGP, способен обладать как анальгетическими, так алгическими эффектами.

Ключевые слова: регуляторный пептид, АКТГ, боль, горячая пластина, отдергивание хвоста

Информация о вкладе авторов: С. А. Додонова, А. Е. Белых — сбор, обработка материала и статистический анализ данных; И. И. Бобынцев, Л. А. Андреева, Н. Ф. Мясоедов — концепция и дизайн исследования; С. А. Додонова, А. Е. Белых, И. И. Бобынцев — написание текста.

Соблюдение этических стандартов: исследование одобрено этическим комитетом Курского государственного медицинского университета (протокол № 3 от 27 октября 2015 г). Условия содержания животных и работы с ними соответствовали принципам Хельсинской декларации о гуманном отношении к животным, директиве Европейского парламента и Совета Европейского шюза 2010/63/ЕС от 22 сентября 2010 г. о защите животных, используемых для научных целей, «Правилам лабораторной практики в Российской Федерации», утвержденными приказом Министерства здравоохранения РФ № 708н от 23.08.2010 г

Для корреспонденции: Светлана Александровна Додонова ул. К. Маркса, д. 3, г. Курск, 305004; [email protected]

Статья получена: 02.12.2019 Статья принята к печати: 16.12.2019 Опубликована онлайн: 20.12.2019 DOI: 10.24075/vrgmu.2019.085

Regulatory melanocortin peptides and their fragments exert a wide range of biological effects. This phenomenon has inspired the creation of synthetic melanocortin analogs for structure-function analysis and therapeutic applications [1, 2]. It is known that N-terminal regions of the adrenocorticotropic hormone (ACTH) have a neurotropic effect and affect the body's response to pain [3]. The His-Phe-Arg-Trp sequence found at ACTH6-9 is required for the activation of all melanocortin receptor types [4]. Some of ACTH6-9 effects are retained after the Pro-Gly-Pro (PGP) tripeptide is attached to its C-terminus so as to enhance resistance to carboxypeptidases [5]. However, the impact of the ACTH6-9-PGP peptide on sensitivity to pain has not been studied so far. At the same time, a synthetic fragment ACTH4-7-PGP, which is structurally close to ACTH6-9-PGP and is also an active ingredient of a pharmaceutical drug Semax, has similar effects [3]. Therefore, it is important to investigate the neurotropic action of ACTH6-9-PGP as part of the structure-function analysis of N-terminal ACTH fragments.

The aim of this work was to study the effect of the ACTH6-9-PGP peptide on the spinal and supraspinal mechanisms of nociceptive response in rats and to compare them to the effects of ACTH4-7-PGP.

METHODS

Our experiments were carried out in 121 male Wistar rats weighing 150-190 g. The animals were kept in cages (10 rats per cage) in standard housing conditions at a 12/12 light/dark cycle at controlled ambient temperature (22 ± 2 °C). The rats were fed a standard pellet diet and had free access to water. The experiments were carried out between 9 am and 15 pm.

Ten experimental and one control groups were formed consisting of 11 rats each. Each experimental group received a single dose of either ACTH6-9-PGP or ACTH4-7-PGP (Semax) from the dose range specified below. The peptides used in the experiment had been synthesized in advance at the Institute of Molecular Genetics (RAS). ACTH6-9-PGP was dissolved in 0.9% normal saline. Fifteen minutes before the experiment, 7 experimental groups received a single intraperitoneal injection of ACTH6-9-PGP at one of the following doses: 0.5, 1.5, 5, 15, 50, 150, or 450 |jg/kg. ACTH4-7-PGP was also dissolved in normal saline and administered intraperitoneally to the animals from the 3 remaining experimental groups at a single dose of 50, 150 or 450 | g/kg 15 min before the tests. The control group received equivalent amounts of normal saline (1 ml per 1 kg body weight).

Pain response to thermal stimulation was assessed using the hot plate and the tail flick tests [6] and the corresponding equipment: a hot plate (model LE7406) and a tail-flick meter (model LE7106) (PanLab Harvard Apparatus; Spain). The hot plate test consisted of 4 trials separated by 15-min breaks and conducted at 53 °C. In this test, the nociceptive threshold was measured once before the injection and 3 times after the injection. Each animal was placed on a hot plate and the latency to the first behavioral response (hind paw licking, jumping) to the nociceptive stimulus was measured. In the tail flick test, the middle section of the tail was exposed to the heat stimulus of fixed intensity (set to 50 units) and the latency to tail flicking was recorded. In this test, 5 measurements were taken at 15-min intervals: 2 pretreatment measurements of the baseline nociceptive threshold (averaged) and 3 measurements of the nociceptive threshold after the injection. The maximum possible effect (MPE) was calculated using the following formula: [6]:

MPE =

LP „, - LP,.

CO, - LP

time re

■ X 100%

where LPost is posttreatment latency, LPre is pretreatment latency, COtime is cut-off time (45 s in the hot plate test and 9 s in the tail flick test).

Statistical analysis was carried out in MS Excel 2016 (Microsoft; USA), Statistica 13.3 (StatSoft; USA) and the R environment (The R Foundation for Statistical Computing; Austria). Normality of data distribution was assessed using the Shapiro Wilk test. The equality of variances was tested using Levene's test (lawstat). The obtained results were expressed as a median (Me), lower (25) and upper (75) quartiles (Q1 and Q3). Statistical significance was assessed using the nonparametric univariate Kruskal-Wallis test; post-hoc intergroup comparisons were done using the Mann-Whitney U test and the Benjamini-Hochberg procedure. The results were considered significant at p < 0.05

RESULTS

A single injection of the ACTH6-9-PGP peptide produced a dose-dependent effect on the MPE value in the hot plate test (see Table). The analgesic effect was the most pronounced for the 5 jg/kg dose 15 and 45 min after the injection, with a significant 2.5-fold (p = 0.04) and 7-fold (p = 0.02) elevation of the nociceptive threshold, respectively. At a lower dose of 1.5 jg/kg, the peptide did not have any considerable impact on pain sensitivity. However, further dose reduction to 0.5 jg/kg changed the trend: 30 min after the ACTH6-9-PGP injection, the MPE value dropped by 193% (p = 0.15) and remained at this low level for at least 45 min (p = 0.07).

Increasing the ACTH6-9-PGP dose to 15 jg/kg did not have any significant effect. However, the peptide tended to increase sensitivity to pain 45 min after the injection when administered at 50 jg/kg (p = 0.1). Further dose increase to 150 jg/kg was accompanied by a significant elevation of the nociceptive threshold 15 min (p = 0.04) and 45 min (p = 0.04) after the injection. When administered at 450 jg/kg, ACTH6-9-PGP did not have any significant effect on the studied parameters.

No statistically significant differences in the studied parameters were observed between the rats in the experimental groups following the injection of ACTH4-7-PGP at all studied doses in comparison with the controls.

Based on the results of the tail flick test, no reliable changes in the nociceptive threshold were observed in the rats injected with 0.5, 1.5, 15, 50, and 450 jg/kg of ACTH6-9-PGP (see Table).

Although no significant effect of ACTH6-9-PGP administered at 5 and 150 jg/kg was observed in the hot plate test 30 min after the injection, the peptide did affect the rats' sensitivity to heat in the tail flick test 30 min after its administration: at 150 jg/kg the nociceptive threshold was significantly lower (p = 0.04) and at 5 jg/kg the peptide tended to increase pain sensitivity (p = 0.1).

The tail flick test did not reveal any significant changes in pain sensitivity in the animals treated with ACTH4-7-PGP.

DISCUSSION

Biological effects of melanocortin peptides are implemented via a variety of melanocortin receptors (MCRs). Specifically, MCR1 is expressed in the neurons of the periaqueductal gray, MCR3 is expressed in the cortex and the thalamus, whereas MCR4, in the brain stem. The activation of these brain structures plays an important role in nociception by reducing pain progression [7, 8]. Considering that supraspinal structures are involved in the nociceptive response to thermal stimulation in the hot plate test [6], the interaction between ACTH-PGP and

Table 1. Effects of ACTH6-9-PGP and ACTH4-7-PGP on pain sensitivity in rats in the hot plate and tail flick tests, MPE (Me (Q1; Q3))

^^ MPE, % Group 15 min 30 min 45 min 15 min 30 min 45 min

Hot plate test Tail flick test

Control 12.92 (-6.05; 26.83) 1.9 (-6.93; 5.84) 3.58 (-3.18; 9.53) 15.53 (-22.91; 29.78) 15.69 (-5.07; 28.69) -17.81 (-46.16; 25.12)

acth69-pgp 0.5 pg/kg (n = 11) 4.41 (-16.20; 7.73) -18.11 (-38.62; -0.72) -18.73 (-31.94; -7.92) 17.08 (6.06; 50.00) 0.05 (-30.59; 23.43) -14.31 (-41.03; 5.79)

acth69-pgp 1.5 pg/kg (n = 11) 8.98 (-0.59; 19.74) 16.28 (8.43; 23.68) -9.05 (-26.00; 11.33) 11.68 (8.08; 38.79) 22.42 (-3.37; 54.11) -5.95 (-7.98; 19.13)

acth69-pgp 5 pg/kg (n = 11) 45.44* (23.88; 54.69) 28.05 (-1.46; 42.62) 31.11* (27.57; 36.58) -7.73 (-28.83; 16.98) -8.76 (-19.43; 12.29) 8.6 (-8.97; 41.44)

acth69-pgp 15 pg/kg (n = 11) 16.48 (11.57; 48.20) 11.75 (-0.76; 29.79) 10.83 (-11.48; 46.64) 0.62 (-8.11; 22.87) -6.11 (-17.38; 12.50) 1.96 (-3.77; 22.24)

acth69-pgp 50 pg/kg (n = 11) 3.57 (-9.45; 23.48) -4.09 (-32.97; 7.96) -10.42 (-23.20; 2.20) 11.65 (-13.77; 40.37) 19.97 (9.45; 40.40) 15.73 (-5.16; 20.34)

acth69-pgp 150 pg/kg (n = 11) 41.02* (16.37; 66.96) 10.06 (2.88; 29.73) 30.40* (19.13; 37.31) -18.04 (-44.05; 6.37) -31.67* (-36.45;-21.85) -20.85 (-43.43; 8.58)

acth69-pgp 450 pg/kg (n= 11) 24.15 (9.36; 26.39) 6.61 (-7.00; 17.15) 4.56 (-2.13; 6.92) 3.77 (-21.28; 23.96) 11.16 (-28.31; 40.84) -5.78 (-22.03; 38.22)

acth47-pgp 50 pg/kg (n = 11) 0.45 (-14.1; 37.27) 11.01 (-18.57; 23.17) 10.23 (-0.03; 42.15) 1.21 (-22.86; 38.97) 22.7 (-58.53; 32.46) -4.63 (-47.24; 25.36)

acth47-pgp 150 pg/kg (n = 11) 12.07 (-5.06; 34.59) 12.48 (0.64; 31.16) 1.52 (-5.75; 16.44) 10 (-43.69; 26.44) 0.1 (-44.11; 27.93) -3.91 (-40.36; 21.57)

acth47-pgp 450 pg/kg (n= 11) 20.37 (8.63; 27.69) 12.19 (-9.18; 32.12) 21.9 (-9.19; 35.83) 25.78 (1.54; 80.88) -16.71 (-35.19; 25.67) 11.83 (-27.97; 26.38)

Note: * — differences are significant p < 0,05) in comparison with the control group at the same time points (according to the Mann-Whitney U test and the Benjamini-Hochberg procedure).

melanocortin receptors localized in the brain can affect pain sensitivity.

MCR4 is found in the spinal cord [3, 8]; a ACTH6-9-PGP-induced change in their activity can affect the function of segmental mechanisms involved in nociception, which was observed in our flick tail test. It is still unclear how melanocortin receptors mediate the effect of ACTH analogs; it is hypothesized that there is at least one previously undescribed receptor subtype involved [9, 10].

The observed differences in the intensity and directionality of the effects induced by different peptide doses can be explained by the interaction of the peptide with various types of MCRs it encounters when travelling across the brain or by some aspects of intracellular mechanisms of its action. Specifically, transmembrane and subsequent intracellular signaling from an MCR can be implemented via different pathways depending on the concentration of the ligand: through cAMP activation, by inositol phosphates [1, 11], Ca2+ and protein kinases [1]. This is true for all types of melanocortin receptors [1]. The direction, intensity and duration of the nociceptive response to a stimulus are determined by the type of the activated signal transduction mechanism [1, 2]. These facts are consistent with our findings demonstrating the opposite dose-dependent trends in responding to the thermal stimulus following ACTH6-9-PGP administration; these effects are typical of regulatory peptides as a separate class of bioactive substances [11, 12].

The opposite trends in the nociceptive response following ACTH6-9-PGP administration observed in our study are also consistent with the literature reports on the effects of ACTH fragments and analogs on nociception [3, 13]. It could be

hypothesized that the mechanisms of the ACTH6-9-PGP effect on the response to pain are similar to those of its structural analog ACTH4-7-PGP (Semax), which reduces sensitivity to pain and exerts its effects via opioid and serotonin receptors [3].

Because the ACTH6-9-PGP sequence is required for the activation of all types of melanocortin receptors [4], the effects of ACTH6-9-PGP on pain sensitivity (compared to those of ACTH4-7-PGP) observed in our study may result from the interaction of the peptide with all types of MCRs in CNS structures involved in nociception and antinociception. Interestingly, we did not observe the pain-reducing effect of ACTH4-7-PGP described by other authors [3]. Considering that the character of pain response can be largely determined by the features of a specific animal breed or line [14, 15], the differences observed in our study may be to some extent explained by the use of Wistar rats vs outbred rodents exploited in the studies cited above.

CONCLUSIONS

In the hot plate test, a reduction in pain sensitivity was observed 15 and 45 minutes after the intraperitoneal injection of 5 and 150 pg/kg ACTH6-9-PGP; this reduction was mediated by supraspinal mechanisms. Other studied doses of the peptide did not produce any effect on the nociceptive response. In the tail flick test, the injection of 150 pg/kg ACTH6-9-PGP increased pain threshold, with the participation of segmental spinal mechanisms. No effect on pain response was observed for ACTH4-7-PGP. Our findings broaden the knowledge of physiological effects of N-terminal ACTH analogs and can provide a theoretical rationale for developing neurotropic pharmaceutical agents based on these compounds.

References

1. Catania A, Lonati C, Sordi A, Carlin A, Leonardi P, Gatti S. The melanocortin system in control of inflammation. Scientific World 9. Journal. 2010; (10): 1840-53.

2. Catania A. Neuroprotective actions of melanocortins: a therapeutic opportunity. Trends Neurosci. 2008. 31 (7): 353-60. 10.

3. Koroleva SV, Myasoedov NF. Semax as a Universal Drug for Therapy and Research. Biology Bulletin. 2018; 45 (6): 589-600.

4. Clark AJ, Forfar R, Hussain M, Jerman J, McIver E, Taylor D, et al. 11. ACTH Antagonists. Front Endocrinol (Lausanne). 2016; (7): 101.

5. Andreeva LA, Grivennikov IA, Gavrilova SA, Dolotov OV Kamenskij AA, Koshelev VB, Levickaya NG, Myasoedov NF, avtory. Uchrezhdenie 12. Rossijskoj akademii nauk Institut molekulyarnoj genetiki RAN, patentoobladatel'. Peptid, obladayushchij nejrotropnymi svojstvami. Patent RF № 2443711. 27.02.2012. Russian. 13.

6. Mironov AN, redaktor. Rukovodstvo po provedeniyu doklinicheskih issledovanij lekarstvennyh sredstv. CHast' pervaya. M.: Grif i K, 14. 2012; 944 s. Russian.

7. Kovalitskaya YuA, Funtikova AN, Sadovnikov VB, Navolotskaya EV. The influence of ACTH-like peptides on migration, adhesion and spreading of mouse peritoneal macrophages in vitro. Rossiyskiy 15. immunologicheskiy zhurnal. 2011; 5 (1): 3-10. Russian.

8. Hill JW, Faulkner LD. The Role of the Melanocortin System in Metabolic Disease: New Developments and Advances.

Neuroendocrinology. 2017; 104 (4): 330-46. Wikberg JE, Muceniece R, Mandrika I, Prusis P, Lindblom J, Post C, et al. New aspects on the melanocortins and their receptors. Pharmacol Res. 2000; 42 (5): 393-420.

Fridmanis D, Roga A, Klovins J. ACTH Receptor (MC2R) Specificity: What Do We Know About Underlying Molecular Mechanisms? Front Endocrinol (Lausanne). 2017; (8): 13. Akmaev IG, Grinevich VV. Ot nejroendokrinologii k nejroimmunoendokrinologii. Byul eksperim biologii i mediciny. 2001; 131 (1): 22-32. Russian.

Ashmarin IP, Karazeeva EP, Lelekova TV. Effektivnost' ul'tramalyh doz endogennyh bioregulyatorov i immunoaktivnyh soedinenij. ZHurn mikrobiol. 2005; (3): 109-116. Russian. Levitskaya NG, Kamensky AA. Melanocortin System. Uspekhi fiziologicheskikh nauk. 2009; 40 (1): 44-65. Russian. Hestehave S, Abelson KSP, Pedersen TB, Munro G. The analgesic efficacy of morphine varies with rat strain and experimental pain model: implications for target validation efforts in pain drug discovery. Eur J Pain. 2019; 23 (3): 539-54. PubMed PMID: 30318662. Hestehave S, Abelson KSP, Pedersen TB, Munro G. Stress sensitivity and cutaneous sensory thresholds before and after neuropathic injury in various inbred and outbred rat strains. Behavioural Brain Research. 2019; (375): 112149.

Литература

1. Catania A, Lonati C, Sordi A, Carlin A, Leonardi P, Gatti S. The melanocortin system in control of inflammation. Scientific World 9. Journal. 2010; (10): 1840-53.

2. Catania A. Neuroprotective actions of melanocortins: a therapeutic opportunity. Trends Neurosci. 2008. 31 (7): 353-60. 10.

3. Koroleva SV, Myasoedov NF. Semax as a Universal Drug for Therapy and Research. Biology Bulletin. 2018; 45 (6): 589-600.

4. Clark AJ, Forfar R, Hussain M, Jerman J, Mclver E, Taylor D, et al. 11. ACTH Antagonists. Front Endocrinol (Lausanne). 2016; (7): 101.

5. Андреева Л. А, Гривенников И. А., Гаврилова С. А., Долотов О. В., Каменский А. А., Кошелев В. Б., Левицкая Н. Г., Мясоедов Н. Ф., 12. авторы. Учреждение Российской академии наук Институт молекулярной генетики РАН, патентообладатель. Пептид, обладающий нейротропными свойствами. Патент РФ 13. № 2443711. 27.02.2012.

6. Миронов А. Н., редактор. Руководство по проведению 14. доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К, 2012; 944 с.

7. Ковалицкая А. Ю., Фунтикова А. Н., Садовников В. Б., Наволоцкая Е. В. Действие АКТГ-подобных пептидов на миграцию и расплавление перитонеальных макрофагов мыши 15. in vitro. Российский иммунологический журнал. 2011; 5 (1): 3-10.

8. Hill JW, Faulkner LD. The Role of the Melanocortin System in Metabolic Disease: New Developments and Advances.

Neuroendocrinology. 2017; 104 (4): 330-46. Wikberg JE, Muceniece R, Mandrika I, Prusis P, Lindblom J, Post C, et al. New aspects on the melanocortins and their receptors. Pharmacol Res. 2000; 42 (5): 393-420.

Fridmanis D, Roga A, Klovins J. ACTH Receptor (MC2R) Specificity: What Do We Know About Underlying Molecular Mechanisms? Front Endocrinol (Lausanne). 2017; (8): 13. Акмаев И. Г., Гриневич В. В. От нейроэндокринологии к нейроиммуноэндокринологии. Бюллетень экспериментальной биологии и медицины. 2001; 131 (1): 22-32. Ашмарин И. П., Каразеева Е. П., Лелекова Т. В. Эффективность ультрамалых доз эндогенных биорегуляторов и иммуноактивных соединений. Журнал микробиолологии. 2005; (3): 109-16. Левицкая Н. Г., Каменский А. А. Меланокортиновая система. Успехи физиол. наук. 2009; 40 (1): 44-65. Hestehave S, Abelson KSP, Pedersen TB, Munro G. The analgesic efficacy of morphine varies with rat strain and experimental pain model: implications for target validation efforts in pain drug discovery. Eur J Pain. 2019; 23 (3): 539-54. PubMed PMID: 30318662.

Hestehave S, Abelson KSP, Pedersen TB, Munro G. Stress sensitivity and cutaneous sensory thresholds before and after neuropathic injury in various inbred and outbred rat strains. Behavioural Brain Research. 2019; (375): 112149.

i Надоели баннеры? Вы всегда можете отключить рекламу.