Научная статья на тему 'CEREAL RAW MATERIALS OBTAINED FROM THE CULTIVATION OF BIOMASS FOR ENERGY PURPOSES'

CEREAL RAW MATERIALS OBTAINED FROM THE CULTIVATION OF BIOMASS FOR ENERGY PURPOSES Текст научной статьи по специальности «Сельское хозяйство, лесное хозяйство, рыбное хозяйство»

CC BY
87
43
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
cereals / maize / sorghum / oats / rye / energy crops / злаки / кукуруза / сорго / овес / рожь / энергетические культуры

Аннотация научной статьи по сельскому хозяйству, лесному хозяйству, рыбному хозяйству, автор научной работы — Agnieszka Karwacka, Grzegorz Wałowski

The cultivation of energy crops offers many opportunities for influencing the environment. Plants, in particular, stabilize the soil, limit wind and water erosion, and constitute the living environment for animals. Properly located in the area, they are a valuable element of the landscape. The combination of energy crops with the use of wastewater and slurry for irrigation can be especially beneficial for the natural environment. The production of biomass in small towns creates additional jobs for the population living in small towns [Pepliński, 2015]. The cultivation of cereals for energy purposes can be an alternative to setting aside fields, as well as to the cultivation of specialized energy crops. Their cultivation in Poland usually has no tradition, and producers do not have specialized equipment for harvesting and cultivating them, or experience in their cultivation. Often these plants are also not fully tolerant of the Polish climate. Growing crops for energy purposes can be a safe, unquestionable way to use GMO crops. In Poland, there is a significant potential for the use of cereals for energy production [Frankowski, 2017b]. For years, maize has been one of the most widely grown species used for the production of biofuels. Increasing the use of sugar and grain sorghum will make it possible to increase the diversity of crops grown to convert their energy. Hybrids belonging to the genus Sorghum are also a good alternative for growers whose plants are damaged by the European corn borer, because the species of this insect does not cause losses in the cultivation of sorghum. In addition, there are many machines on the market for growing, harvesting and processing maize that can be successfully used for sorghum. The unfit for consumption of oat or rye grains, as well as the straw of these species, can only supplement other plant materials in the production processes of various types of biofuels. When planning to start growing this group of plants for energy purposes, you should seek the advice of specialists and thoroughly familiarize yourself with the characteristics of the selected plants and the multitude of varieties that are available on the market. The advantage of cultivating cereals for energy purposes is the possibility of relatively easy finding alternative outlets for the produced raw material, if it does not find recipients among bioenergy producers. Also, in the event of a project failure, it is possible to change the cultivated plant in the next growing season without incurring high costs. This is undoubtedly a great advantage in relation to the amount of work necessary, for example, to liquidate plantations of perennial plants [Frankowski, 2017b]. A characteristic feature of practically all substrates of plant origin is the considerable variability of properties [Kaszkowiak and Kaszkowiak, 2016]. First of all, the water content, ie humidity, is variable. This is due to both the different stages of maturity and the influence of weather conditions. Materials of plant origin are materials with a low degree of compaction, therefore they require a large area (volume) for storage. Often, the storage of substrates requires a roofed surface or the use of a foil cover, in some cases exposure to atmospheric agents improves the ability to bond and compact, and it is advisable to store without protection. In many cases, atmospheric factors significantly affect the content of impurities, especially sandiness. You should also take into account the variability of the chemical composition, and thus energy efficiency. One-year crops (e.g. cereals) are an example of such a substrate. Particularly problematic is the fluctuating supply, caused, among other things, by the instability of the crops. In addition to variable availability, differentiated yields result in instability in raw material prices. When material costs constitute a significant item in the production costs, it may cause changes in profitability

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ЗЕРНОВЫЕ СЫРЬЕ, ПОЛУЧЕННОЕ ПРИ ВЫРАЩИВАНИИ БИОМАССЫ ДЛЯ ЭНЕРГЕТИЧЕСКИХ ЦЕЛЕЙ

Выращивание энергетических культур открывает множество возможностей для воздействия на окружающую среду. В частности, растения стабилизируют почву, ограничивают ветровую и водную эрозию и представляют собой среду обитания для животных. Правильно расположенные на местности, они являются ценным элементом ландшафта. Сочетание энергетических культур с использованием сточных вод и навозной жижи для орошения может быть особенно полезным для окружающей среды. Производство биомассы в малых городах создает дополнительные рабочие места для населения [Pepliński, 2015]. Выращивание зерновых для энергетических целей может быть альтернативой закладке полей, а также выращиванию специализированных энергетических культур. Их выращивание в Польше обычно не имеет традиций, и у производителей нет специализированного оборудования для их сбора и выращивания или опыта в их выращивании. Часто эти растения также могут страдать от климатических условий. Выращивание сельскохозяйственных культур для энергетических целей может быть безопасным и бесспорным способом использования ГМО-культур. В Польше существует значительный потенциал использования зерновых для производства энергии [Frankowski, 2017b]. В течение многих лет кукуруза была одним из наиболее широко выращиваемых видов, используемых для производства биотоплива. Увеличение использования сахара и зернового сорго позволит увеличить разнообразие культур, выращиваемых для преобразования их энергии. Гибриды, принадлежащие к роду сорго, также являются хорошей альтернативой для производителей, растения которых повреждены европейским кукурузным мотыльком, поскольку вид этого насекомого не вызывает потерь при выращивании сорго. Кроме того, на рынке имеется множество машин для выращивания, сбора и обработки кукурузы, которые можно успешно использовать для выращивания сорго. Непригодное для употребления зерно овса или ржи, а также солома этих видов могут только дополнять другие растительные материалы в процессах производства различных видов биотоплива. Планируя начать выращивание этой группы растений в энергетических целях, вам следует обратиться за советом к специалистам и тщательно ознакомиться с характеристиками выбранных растений и множеством сортов, доступных на рынке. Преимущество выращивания зерновых в энергетических целях заключается в возможности относительно легко найти альтернативные источники сбыта производимого сырья, если оно не находит получателей среди производителей биоэнергетики. Также в случае неудачи проекта можно поменять культивируемое растение в следующем вегетационном периоде без больших затрат. Это, несомненно, большое преимущество по сравнению с объемом работ, необходимых, например, для ликвидации насаждений многолетних растений [Frankowski, 2017b]. Характерной чертой практически всех субстратов растительного происхождения является значительная изменчивость свойств [Kaszkowiak, Kaszkowiak, 2016]. Прежде всего, непостоянное содержание воды, то есть влажность. Это связано как с разными стадиями созревания, так и с влиянием погодных условий. Материалы растительного происхождения – это материалы с низкой степенью уплотнения, поэтому для хранения им требуется большая площадь (объем). Часто для хранения подложек требуется крытая поверхность или использование покрытия из фольги, в некоторых случаях воздействие атмосферных агентов улучшает способность склеивания и уплотнения, поэтому рекомендуется хранить без защиты. Во многих случаях атмосферные факторы существенно влияют на содержание примесей, особенно песчанистости. Вы также должны учитывать изменчивость химического состава и, следовательно, энергоэффективность. Примером такого субстрата являются однолетние культуры (например, зерновые). Особенно проблематичны колебания предложения, вызванные, среди прочего, нестабильностью урожая. Помимо переменной доступности, дифференцированная урожайность приводит к нестабильности цен на сырье. Когда материальные затраты составляют значительную часть производственных затрат, это может привести к изменению рентабельности

Текст научной работы на тему «CEREAL RAW MATERIALS OBTAINED FROM THE CULTIVATION OF BIOMASS FOR ENERGY PURPOSES»

DOI10.24412/2225-2584-2021-4-4-10 УДК 620.952: 633.1

CEREAL - RAW MATERIALS OBTAINED FROM THE CULTIVATION OF BIOMASS FOR ENERGY PURPOSES

Agnieszka Karwacka, MSc. (e-mail:a.karwacka@itp.edu.pl)

Grzegorz Watowski, PhD. (e-mail:g.walowski@itp.edu.pl)

Institute of Technology and Life Sciences - National Research Institute

Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland

Department of Renewable Energy Sources, Branch in Poznan

67 Biskupinska Street, 60-463 Poznan, Poland,

Abstract. The cultivation of energy crops offers many opportunities for influencing the environment.

Plants, in particular, stabilize the soil, limit wind and water erosion, and constitute the living environment for animals. Properly located in the area, they are a valuable element of the landscape. The combination of energy crops with the use of wastewater and slurry for irrigation can be especially beneficial for the natural environment. The production of biomass in small towns creates additional jobs for the population living in small towns [Peplinski, 2015]. The cultivation of cereals for energy purposes can be an alternative to setting aside fields, as well as to the cultivation of specialized energy crops. Their cultivation in Poland usually has no tradition, and producers do not have specialized equipment for harvesting and cultivating them, or experience in their cultivation. Often these plants are also not fully tolerant of the Polish climate. Growing crops for energy purposes can be a safe, unquestionable way to use GMO crops. In Poland, there is a significant potential for the use of cereals for energy production [Frankowski, 2017b]. For years, maize has been one of the most widely grown species used for the production of biofuels. Increasing the use of sugar and grain sorghum will make it possible to increase the diversity of crops grown to convert their energy. Hybrids belonging to the genus Sorghum are also a good alternative for growers whose plants are damaged by the European corn borer, because the species of this insect does not cause losses in the cultivation of sorghum. In addition, there are many machines on the market for growing, harvesting and processing maize that can be successfully used for sorghum.

The unfit for consumption of oat or rye grains, as well as the straw of these species, can only supplement other plant materials in the production processes of various types of biofuels. When planning to start growing this group of plants for energy purposes, you should seek the advice of specialists and thoroughly familiarize yourself with the characteristics of the selected plants and the multitude of varieties that are available on the market. The advantage of cultivating cereals for energy purposes is the possibility of relatively easy finding alternative outlets for the produced raw material, if it does not find recipients among bioenergy producers. Also, in the event of a project failure, it is possible to change the cultivated plant in the next growing season without incurring high costs. This is undoubtedly a great advantage in relation to the amount of work necessary, for example, to liquidate plantations of perennial plants [Frankowski, 2017b]. A characteristic feature of practically all substrates of plant origin is the considerable variability of properties [Kaszkowiak and Kaszkowiak, 2016]. First of all, the water content, ie humidity, is variable. This is due to both the different stages of maturity and the influence of weather conditions. Materials of plant origin are materials with a low degree ofcompaction,

therefore they require a large area (volume) for storage. Often, the storage of substrates requires a roofed surface or the use of a foil cover, in some cases exposure to atmospheric agents improves the ability to bond and compact, and it is advisable to store without protection. In many cases, atmospheric factors significantly affect the content of impurities, especially sandiness. You should also take into account the variability of the chemical composition, and thus energy efficiency. One-year crops (e.g. cereals) are an example of such a substrate. Particularly problematic is the fluctuating supply, caused, among other things, by the instability of the crops. In addition to variable availability, differentiated yields result in instability in raw material prices. When material costs constitute a significant item in the production costs, it may cause changes in profitability.

Keywords: cereals, maize, sorghum, oats, rye, energy crops.

For citation: Agnieszka Karwacka, Grzegorz Watowski Cereal - raw materials obtained from the cultivation of biomass for energy purposes // Vladimir agricolist. 2021. №4. pp. 4-10. DOI:10.24412/2225-2584-2021-4-4-10.

Introduction

Plants as the main producer of oxygen and the decomposition of carbon dioxide into oxygen and organic compounds are essential for the existence of all flora on earth. They create natural habitats for most animals, both on land and in the aquatic environment. The important role of vegetation is to protect the soil surface against direct exposure to rain and hail, which break up soil aggregates, wash away and lift soil particles (water erosion), and against wind (wind erosion). Moreover, plant roots, taking up nutrients, transfer them from deeper layers to the upper soil layers [Tomicka, 1995].

One of the amazing aspects of the present day is the return to technology related to the era of primitives. This is related to the use ofthe plant's energy source. The current situation on the fossil fuel market has led to serious environmental problems resulting from air pollution. An additional element drawing attention to alternative energy sources are the decreasing reserves of these fuels available for human activity and the associated increasing cost of their operation. The big advantage of plants as an energy source is their development associated with the use of CO2 for growth and the release of oxygen. It follows that the plant can not only be a source of energy materials, but also use the CO2 released during energy production. The problem is to select plants that show a rapid production of biomass used in the later stages of processing for energy production.

These plants can be grown in areas where the soil is severely degraded for two main reasons. Firstly, because they are not bred for consumption, and secondly, they show faster biomass growth and have low soil requirements.

Biomass is the oldest and most widely used renewable energy source, which includes all existing organic matter on Earth, all substances of plant or animal origin - biodegradable. Biomass is also leftovers from agricultural production, forestry residues, industrial and municipal waste [Widrex, 2021].

Biomass is the third largest natural source of energy in the

world. According to the European Union definition, biomass means the biodegradable fractions of products, waste and residues of the agricultural industry (including plant and animal substances), forestry and related industries, as well as the biodegradable fractions of industrial and municipal waste [Directive, 2001].

Each plant can be dried and burned, but not every plant belongs to the group of energy plants. Energy crops are those that are profitable to burn. Growing these plants cannot be complicated or expensive, as the energy produced afterwards would be too expensive. Energy crop plantations must yield high yields at low cost [Green energy, 2021]

Energy plants are characterized by similar features, they are distinguished by rapid growth and high biomass yield, including annual and perennial species [Bartnikowska and Frankowski, 2017]. Energy plants are processed mainly into solid biofuels and biocomponents, and the high calorific value makes them a very attractive raw material for the production of electricity and heat [Artyszak, 2015]. Energy crops have a number of requirements for soil conditions. One of the most important things to do before investing in a plantation is to check the pH of the soil. The pH value should be in the range (5.5-7.5). In addition, they also require proper soil irrigation. Both of these factors significantly affect the efficiency and general condition of the plantation. The discussed group of plants is also recommended for soil contaminated with heavy metals. By accumulating impurities in the root system, they clean the soil of undesirable elements. The collected harmful compounds do not get into the green part of the plant, thus, during the combustion process, pollutants do not escape to the natural environment [Stanczyk and Ludwik, 2003]. Biomass of the origin of energy plants is commonly regarded as an alternative source of energy [Frankowski, 2017a]. Using it for energy purposes is perceived as a much lower burden on the environment in relation to fossil fuels. Although energy is required for its production and processing into biofuel, it is estimated that the negative impact is much smaller than the extraction and subsequent refining of crude oil or the exploitation of hard coal deposits. This is mainly due to the absorption of carbon dioxide by plants during their growth. This eliminates the overall balance of the impact of its later use on the ecosystem. It is the rapid growth of biomass, and especially green mass of energy plants, that makes them a renewable resource in relation to fossil fuels [Kus and Matyka, 2010; Watowski 2020].

Cereals are a group of plants that occupy the largest acreage of arable land in the world. They are the staple food source for most people. The term "cereal" is used to describe species belonging to the Poaceae family. Their seeds are characterized by a high starch content. The most popular products for the processing of cereal grains are: flours, groats, oils and syrups. They are also used in various industries, such as: brewing, distilling, pharmaceuticals and feed production [Frankowski, 2017b].

Common corn Zea mays L. is a plant originating in Central America [Frankowski, 2017b]. Corn remains the dominant food source in many parts of the world. It provides food for 1.2 billion people, mainly all of Latin America and African countries. In other

places, e.g. in the USA, only about (2-3)% of the production of this plant is intended for direct human consumption.

Worldwide, about 116 million tonnes of maize is used for direct human consumption, 30% is in Africa and 21% in sub-Saharan countries. The highest per capita consumption is in Lesotho (South American country) and amounts to 174 kg^year-1 per person. Corn constitutes (15-20)% of the total daily calories in the diets of 20 developing countries, located mainly in Latin America and Africa.

As the primary source of starch, edible oil and gluten, corn is used in many dishes by cooking, frying, and in all sorts of food production processes. Corn provides 90% of the starch demand in the US [Corn, 2021].

The flasks are harvested in a state of so-called milk maturity, when the seeds are soft and contain more sugars. The harvest date is from August to September. The flasks break off easily from the stem, do not remove the leaves from the flask. Only the Putawska, Ryzowa and B^kowska varieties, which are cracking maize, are harvested when fully ripe (so-called wax), then dried and the seeds are peeled from the cob.

Corn is best grown on sandy loams or clay sands. It fails on heavy soils, wetlands and sands. Soil below pH 6 requires liming [Dziatkowiec, 2021].

The varieties that have been bred over the centuries are most often classified according to the shape of the grain. Due to the predominance of hybrid forms in cultivation, they often do not represent the pure original form, but are intermediate types. For energy purposes, mainly hybrids of vitreous maize, ie flint and horse's tooth, ie dent [Kotodziej and Matyka, 2012].

All varieties of this species are dioecious and monoecious. They develop strong, thick stalks up to 3 m high. They are topped with a panicle, which is a male inflorescence. The female inflorescence is a flask. It develops more or less in the middle of the stem, at the end of a shortened side branching, known as the dobot. Maize usually does not propagate because it is an undesirable trait in cultivation, which makes it difficult to carry out agrotechnical treatments [Frankowski, 2015]. As a plant with C4 photosynthesis [Frankowski, 2017b], it manages water quite sparingly. However, due to the large production of biomass, it has high water needs. The flowering period of plants is a particularly critical moment in this respect [Burczyk, 2012].

In Poland, the main factor influencing the efficiency of maize cultivation is the humidity conditions. They are shaped only by the amount of rainfall and their distribution during the growing season, as plantations are not irrigated. While this is a variable beyond the farmer's control, the high thermal demands of maize can be easily minimized by selecting the appropriate varieties. Varieties with greater tolerance to cold and with a short growing season deserve attention [Podkowka and Podkowka, 2010; Kotodziej and Matyka, 2012; Horseshoe, 2007].

Due to the various environmental conditions prevailing in Poland, there is a region of maize cultivation. A very large number of available varieties means that in order to obtain optimal yields for a given place and purpose of cultivation, the variety is matched on the basis of the FAO number, ie its earliness class [Frankowski, 2015].

1. Possibilities of using maize as an energy resource [Kotodziej and Matyka, 2012].

Grain (5-10) Mg-ha"1 Biomass (8-20) Mg s.m.-ha"1 Straw (3-6) Mg s.m.-ha"1 Cores (1-2) Mg s.m.-ha-1

Fermentation industry Burning, energy and domestic installations Whole plants or pickled By-product after harvesting grain or CCM By-product after harvesting whole flasks

biogas plants biogas plants combustion -energetics combustion -energetics

Production volume from 1 Mg of raw material

(370-410) l ethanol, 400 l of stock Around 19 GJ (600-700) m3 biogas incl (350-450) m3 of methane (250-300) m3 biogas incl around 150 m3 of methane around 15 GJ Around 15 GJ

The number of FAOs is in the range (100-1000). The lower this number, the earlier a given variety, ie its growing period from sowing to harvesting for grain - is shorter [Lipski, 2016]. In Lower Silesia, Greater Poland, Mazovia and the Lublin region, early, mid-early and mid-late (250-290) FAO varieties reach full grain maturity. In the southern part of the country, FAO late varieties (300-350) can also be cultivated for the needs of biogas plants [Michalski, 2008]. On the basis of the experiments carried out in the vicinity of Rawicz in the Stary Sielec Experimental Station of the Institute of Natural Fibers and Medicinal Plants, it was found that also maize of the middle-early variety "Opoka", grown in secondary yield to ordinary life, is efficient and profitable. Several years of field research have shown that in this way it is possible to obtain 26 Mg^ha-1 dry matter of maize with a biogas efficiency of about 11 thousand. m^ha-1 [Burczyk, 2012]. Two technologies of maize cultivation are used for energy purposes: for silage or for grain. Whole plant silage is obtained in the silage technology. Therefore, maize is usually harvested in one step and the biomass is chopped into small pieces. After ensiling, it is a substrate for biogas production. On the other hand, in the grain technology, several products can be obtained: - dry or silage grain, - grain silage with the addition of cob cores - CCM (corn-cob-mix), - silage from crushed proper cobs, - silage from cobs collected with leaves ground cover - LKS (from German Lieschkolben Schrott) [Michalski, 2002; Michalski, 2007]. The possibilities of using maize as an energy raw material are presented in Table 1.

As can be seen from Table 1, maize has a variety of uses. One ton of corn can produce about 400 l of ethanol on average. Moreover, the same amount of straw is a substrate for the production of up to 700 m3 of biogas, including up to 450 m3 of methane. Cores can also be used for energy purposes because their calorific value is similar to the parameters of straw. For this reason, maize is a good raw material for the conversion of its energy [Frankowski and Burczyk, 2016].

Corn has one of the highest gas extraction values per ton. Cultivars with high dry matter content can yield a yield of 60 tons of fresh weight per hectare and a yield of 6000 m3 of methane per hectare, mainly used for energy production [Watowski 2020].

Sorghum Sorghum L.

The genus Sorghum L. includes short-day spring plants of the C4 photosynthesis type [Frankowski, 2017b]. In the world,

№ 4 (98) 2021

Sorghum bicolor L and Sudanese grass Sorghum bicolor L. Moench nothosubsp. drummondii, are grown on a larger scale as well as their hybrids. In Europe, they are used as feed or for energy purposes [Michalski, 2008]. In Poland, mainly subspecies and various forms of bicolor sorghum are used. They form stalks (0.5-4) m high. The leaves, on the other hand, are (0.2-0.8) m long and covered with a layer of wax. This protects them from excessive transpiration. Moreover, sorghum has a strongly developed bundle root system, which reaches up to 2 m deep into the ground [Kotodziej and Matyka, 2012; Podkowka, 2007]. Thanks to it, sorghum has less soil requirements than maize and can be grown in very light, sandy soils and better withstands periodic droughts. Sorghum, and especially its sugar variety "Sucrosorgo 506", is very sparing in the management of water [Lewandowski and Ryms, 2013]. This is an important feature, especially in the case of a shortage of atmospheric precipitation often occurring in the area of central Poland [Watowski 2020].

The sorghum leaves can be used for the production of cattle feed, and the grain can be processed into groats and flour, which are used to make cakes, pasta or bread. Alcoholic drinks are made from sorghum (just like potatoes). Foods prepared from sorghum (groats, flour) are safe for people with celiac disease. People with celiac disease can eat gluten-free foods such as rice, corn, millet and buckwheat. Currently, sorghum has also joined this list [Sorghum, 2021].

It is best to sow after May 20, when the soil temperature is around (14-15) oC. because in warm soil there is a rapid germination [Sorghum, 2021].

The long period of vegetation makes it necessary to harvest in late autumn. Sorghum should be grown in light, dry but fertile soils. Likes warm soils that heat up quickly, dislikes moist soils. It is perfectly adapted to longer periods of drought. It has a well-developed root system, by means of which it draws water from the deeper parts of the soil.

Field tests carried out at the Stary Sielec Experimental Station and P^tkowo Institute of Natural Fibers and Medicinal Plants have proven that sugar sorghum of this variety tolerates well with little rainfall and allows obtaining a higher biomass yield - on average 23.4 Mg d.m/ha-1 - in relation to other compared plants grown for energy purposes [Burczyk, 2012]. The costs of growing sorghum for biomass are about 30% lower than that of maize, as it does not require such extensive maintenance. This is due to the savings in the field of chemical protection of the plantation.

g/iaSuMipckiu 3eM/ietanu

This is due to the fact that sorghum does not yet have natural pests in our country [Kotodziej and Matyka, 2012]. Sorghum is characterized by very high thermal requirements. For this reason, its yield depends mainly on the temperature distribution during the growing season. Very late or early autumn frosts, to which the plant is not resistant, can also do significant damage. Due to late sowing, ie recommended after May 15, sugar sorghum can be cultivated in secondary crops, after winter catch crops, and even after early potatoes [Majtkowski, 2007; Michalski, 2008]. Biomass is usually harvested from the end of September to mid-October, before the first frosts occur. This is because they inhibit vegetation and reduce the sugar content of green mass, which significantly reduces its quality [Kotodziej and Matyka, 2012]. According to Lewandowski and Ryms [Lewandowski and Ryms, 2013], sugar sorghum does not bear fruit in the Polish climate. However, according to Michalski and Burczyk [Michalski, 2008; Burczyk, 2012], some cultivars reach threshing maturity in favorable weather conditions, ie hot and long summers. On the other hand, typical tropical varieties of sorghum in a temperate climate extend the vegetative period to frost and do not produce inflorescences [Michalski, 2008; Burczyk, 2012]. Due to the continuous, dynamic development of breeding works, new varieties of "Sorghum" species appear on the market in great numbers. Their economic potential is estimated to be very high. Initial experience shows that the new hybrids can be successfully grown for grain in the climatic conditions of Poland. Hence, the country adopted a colloquial term for this group of varieties -grain sorghum [Frankowski, 2017b].

The most important advantages of grain sorghum include:

- high yield potential (based on information from Polish farmers, up to 9 tons of grain per ha can be obtained in our country);

- wide range of use (consumption, feed, industrial grain);

- belonging to the group of gluten-free cereals (important for the production of gluten-free food);

- low water requirements and high resistance to drought [Waligóra, 2013];

- lower costs of seeds and tending treatments than in maize cultivation;

- high energy value and content of minerals (nutritional value similar to that of maize);

- high, in relation to other cereals, the content of antioxidants;

- very good water management of the plant helps sorghum to survive drought.

The disadvantages, however, are as follows:

- long growing season, necessitating harvesting in late autumn;

- the possibility of strong infestation of the grain by fungi, especially in unfavorable weather conditions and improper handling after harvesting (in wet grain, fungi develop very quickly);

- the possibility of birds destroying the ripening grain and the decrease in the amount and quality of the grain yield;

- high (too high in the case of a monodiet) content of some amino acids: valine, methionine, cysteine, isoleucine, phenylalanine, tyrosine, especially leucine (excess leucine may

cause pellagra-Lombard erythema) [Agrofakt, 2021].

Sorghum grown on light soil is characterized by greater agricultural and physiological nitrogen efficiency than for maize. Diversified nitrogen fertilization as well as the course of the weather during the growing season affect the content of this element in plants of both species. The assessed species are characterized by a very similar average fat content in dry matter. However, it reacts differently to an increase in nitrogen dose - in maize there is a slight reduction in the amount of fat, and sorghum fertilized with higher doses of nitrogen shows a higher content of this component. Sorghum has a higher ash content than maize. Increasing the dose of nitrogen fertilization in sorghum resulted in an increase in ash content, while maize contained the highest amount of ash when fertilized with the dose of 120 kg^ha-1 [Ksi^zak et al., 2012].

An extensive, bundled root system and economical water management make grain sorghum suitable for cultivation on light and dry soils, just like the green sorghum varieties. Moreover, it is not sensitive to soil pH, as it can be successfully grown in soils with a wide pH range, amounting to (5-8.5). It also tolerates soil salinity relatively well and periodic flooding in summer after heavy rainfall. Spring floods are dangerous, especially if they take place in the early stages of plant development. In combination with the low temperature, they reduce the seed germination capacity, which implies a lower yield [Frankowski, 2016].

Grain sorghum is characterized by a large increase in biomass, therefore it requires intensive fertilization, however, it makes good use of nutrients contained in fertilizers, including organic ones. Plant feeding is similar to that of maize and should amount to approximately: (80-150) kg N, (30-60) kg P2O5 and (60-120) K2O and 30 MgO per hectare of crops. Despite the fact that grain sorghum requires weeding in the initial phase of growth, similarly to green sorghum, it does not require spraying against pathogens, which reduces the cost of cultivation [Frankowski, 2016].

Experiments conducted in various European countries show that the yield of sorghum seeds varies (2-8) Mg per hectare of crops. In addition, the yield of fresh weight of grain sorghum is about 45 Mg from the same acreage, and the new varieties are even more fertile [Frankowski, 2016].

The sorghum biomass, composed mainly of lignocellulosic structures, is a good raw material to be used for energy purposes [Watowski 2020]. The conversion of the energy contained in the biomass can be carried out using thermochemical and biochemical methods. In the process of combustion, gasification, carbonization, pyrolysis or in the production of biogas or bioethanol, especially from sorghum straw, it is possible to obtain significant amounts of bioenergy at a low cost, ie about 10 PLN^GJ-1 [Lewandowski and Ryms, 2013; Burczyk, 2012].

Common oat Avena sativa L.

Phytosanitary plant - diseases occur sporadically in oat crops, the "perpetrators" of which winter in the soil or colonize plant remains in the field. Threatening diseases of the stalk base are rare, contributing to the lodging of cereals. Part of the soil directly surrounding the outer part of the oat root is colonized

by non-pathogenic fungi, which constitute a kind of barrier preventing the invasion of unwanted organisms. Moreover, oat root secretions have a fungicidal effect [Rynek 2021].

Oats came to Europe along with wheat from Asia, and as the crops moved from the south to the north of the continent, the soil and climatic conditions worsened, it began to gain in importance [Oats, 2021].

Oat is self-pollinating, blooms quite early, and its flowering and pollination are not affected by weather conditions. Moreover, it is relatively insensitive to excessive moisture which causes the grain to become drained. The plant is resistant to lodging, i.e. excessive bending, breaking and falling over. It tolerates harrowing well, as it spreads quite deeply, and this treatment even improves its tillering [Oats, 2021].

We grow oats mainly for the production of fodder (mainly in mixtures for horses), but also for consumption purposes, for the production of groats, flakes and flour. It is also increasingly used as biomass. Grown for fodder, it must be characterized by a high grain yield, while for food purposes, it must have a low husk content and a higher fat and protein content.

Common oats probably come from deaf oats and barren oats, which were found naturally in the Mediterranean regions. Interestingly, it is the only grain that does not have a winter form [Uprawa owsa, 2021].

Oats have low soil and climatic requirements and can be grown in the mountains and on light soils of the lowlands [Oats, 2021].

For years, Poland has been at the forefront of global producers of common oats Avena sativa L. [GUS, 2012]. Although it is primarily a food source for humans and a substrate for the production of fodder, due to its properties, i.e. high calorific value, low ash content, its straw and grain are sometimes mentioned as substrates for bioenergy production.

Oats have many benefits. It is characterized by low soil requirements, has phytosanitary properties, and is also a good forecrop for cereals. For energy purposes, the grain can be used for the production of bioethanol or for direct combustion in

specially adapted boilers with burners for burning seeds as an add-on. However, the reluctance of the society towards fuel, which could be a potential source of food, means that it is not used in the energy sector. It is estimated that only low-quality, unfit for consumption oat kernels, eg infected by fungi - should be used in heating installations [Watowski 2020].

Common rye Secale cereale L.

The production of common rye in Poland is the largest among the Member States of the European Union. In terms of the mass of the produced grain, it is very similar to the world leader - Russia [GUS, 2012]. For the production of bioenergy, as in the case of oats, one can use poor grain and straw [Watowski 2020].

In addition, rye is grown as catch crops, as a substrate source for biogas plants. The research carried out at the Stary Sielec and P^tkowo Experimental Plants, belonging to the Institute of Natural Fibers and Medicinal Plants, showed the usefulness of rye grown as a catch crop, as well as common maize and sorghum in the main crop, as an effective method of biomass production for the needs of agricultural biogas plants. Several years of field experiments have proved that rye, harvested at the stage of milk-waxy grain maturity, and then maize, grown for silage, are efficient energy resources. The total amount of biomass obtained in this way amounted to approx. 40 Mg^ha-1 dry weight during the year. It was also characterized by high biogas efficiency, amounting to 17,900 m^ha-1. As a result, low costs of biomass production for energy purposes per unit area of the field were achieved. They amounted to less than 10 PLN for 1 GJ of generated energy [Burczyk, 2012; Frankowski and Burczyk, 2016].

Acknowledgments

Work done as part of a project financed by the National Center for Research and Development implemented under the BIOSTRATEG program, contract no. BIOSTRATEG1 /269056/5 / NCBR/2015

References.

1. Agrofakt. https://www.agrofakt.pl/sorgo-uprawiane-ziarno-5-zboze-swiecie/- access to the website on January 28, 2021.

2. Artyszak D., Rosliny energetyczne - charakterystyka podstawowych gatunkow i ich wykorzystanie w polskiej energetyce. [Energy plants - characteristics of basic species and their use in the Polish energy industry]. Warsaw, 2015.

3. Bartnikowska S., Frankowski J. Wady i zalety bylin uprawianych na cele energetyczne. Bezpieczenstwo energetyczne, rynki surowcow i energii, energetyka - bezpieczenstwo w wyzwaniach badawczych. T. 2, Prawo - gospodarka - spoteczenstwo - biotechnologie - ochrona srodowiska - bezpieczenstwo zdrowotne. Pod redakcjq naukowq Piotra Kwiatkiewicza i Radostawa Szczerbowskiego, [Advantages and disadvantages of perennials grown for energy purposes. Energy security, raw materials and energy markets, energy - security in research challenges. Vol. 2, Law - economy - society - biotechnologies - environmental protection - health safety. Edited by Piotr Kwiatkiewicz and Radostaw Szczerbowski,] Poznan, 2017,325-332.

4. Burczyk H., Przydatnosc jednorocznych roslin, uprawianych do produkcji biomasy na potrzeby energetyki zawodowej, „Problemy Inzynierii Rolniczej" [Usefulness of one-year-old plants grown for the production of biomass for the purposes of commercial power industry, "Problems of Agricultural Engineering"], 2012,1 (75), 59-68.

5. Corn. https://www.yara.pl/odzywianie-roslin/kukurydza/- access to the website on January 28,2021.

6. Directive 2001/77/WE the European Parliament and the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal market (Dz. U. L 283 z 27.10.2001, 33)

7. Dziatkowiec. http://dzialkowiec.pixelart.com.pl/kukurydza.html - access to the website on January 28, 2021.

8. Frankowski J., Projekt uprawy wybranych roslin energetycznych w warunkach glebowo-klimatycznych Wielkopolski, Materiat niepublikowany - praca inzynierska. [Project of cultivation of selected energy crops in the soil and climatic conditions of Wielkopolska, Unpublished material - engineering thesis.] Poznan, 2015.

9. Frankowski J., Sorgo ziarnowe-jednoroczna roslina do produkcji bioetanolu, biogazu, biopaliw statych, [Grain sorghum - an annual plant for the production of bioethanol, biogas, solid biofuels]„Magazyn Biomasa", 2016,8 (26).

10. Frankowski J. Mozliwosci uprawy i wykorzystania traw wieloletnich do celow energetycznych. Bezpieczenstwo energetyczne, rynki surowcow i energii, energetyka - bezpieczenstwo w wyzwaniach badawczych. T. 2, Prawo - gospodarka - spoteczenstwo - biotechnologie -

ochrona srodowiska - bezpieczenstwo zdrowotne. Pod redakcjq naukowq Piotra Kwiatkiewicza i Radosfawa Szczerbowskiego, [Possibilities of growing and using perennial grasses for energy purposes. Energy security, raw materials and energy markets, energy - security in research challenges. Vol. 2, Law - economy - society - biotechnologies - environmental protection - health safety. Edited by Piotr Kwiatkiewicz and Radosfaw Szczerbowski,] Poznan, 2017a, 333-342.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

11. Frankowski J. Ocena przydatnosci energetycznej wybranych gatunkow zboz. Bezpieczenstwo energetyczne, rynki surowcow i energii, energetyka - bezpieczenstwo w wyzwaniach badawczych. T. 2, Prawo - gospodarka - spofeczenstwo - biotechnologie - ochrona srodowiska -bezpieczenstwo zdrowotne. Pod redakcjq naukowq Piotra Kwiatkiewicza i Radosfawa Szczerbowskiego, [Assessment of energy suitability of selected types of cereals. Energy security, raw materials and energy markets, energy - security in research challenges. Vol. 2, Law - economy - society - biotechnologies - environmental protection - health safety. Edited by Piotr Kwiatkiewicz and Radosfaw Szczerbowski] Poznan, 2017b, 343-352.

12. Frankowski J., Burczyk H., Biomasa jednorocznych roslin energetycznych jako element dywersyfikacji zrodef energii w Polsce, (w:) Monografie „Inzynieria Srodowiska - Mfodym okiem" tom: Ekoenergetyka, [Biomass of annual energy plants as an element of diversification of energy sources in Poland, (in :) Monographs "Inzynieria Srodowiska - Mfodym okiem", volume: Ekoenergetyka] I. Skoczko, J. Piekutin, M. Drobiszewskiej i R. Mokryckiego (Ed.). Biafystok 2016, 83-109.

13. Green energy. https://zielona-energia.cire.pl/- access to the website on January 28,2021.

14. GUS, 2012. Gfowny Urzqd Statystyczny, Rocznik Statystyki Miqdzynarodowej. [Central Statistical Office, Yearbook of International Statistics]. Warsaw, 2012.

15. Kaszkowiak J., Kaszkowiak E., Mozliwosci pozyskania materiafu pochodzenia roslinnego do produkcji pelletow i brykietow. Monografia pod redakcjq Adama Mrozinskiego, IX EKO-€URO-ENERGIA, Inzynieria Odnawialnych Zrodef Energii, [Possibilities of obtaining material of plant origin for the production of pellets and briquettes. Monograph edited by Adam Mrozinski, IX ECO-€URO-ENERGY, Renewable Energy Sources Engineering,] Bydgoszcz, ISBN: 978-83-64423-33-8,2016,167-174.

16. Kotodziej B., Matyka M., Odnawialne zrodfa energii. Rolnicze surowce energetyczne. [Renewable energy sources. Agricultural energy resources.] Poznan, 2012,334.

17. Ksiqzak J., Bojarszczuk J., Staniak M., Produkcyjnosc kukurydzy i sorga w zaleznosci od poziomu nawozenia azotem. [The productivity of maize and sorghum depending on the level of nitrogen fertilization.] Polish Journal of Agronomy 2012, 8, 20-28, doi: 10.26114/pja. iung.076.2012.08.04

18. Kus J., Matyka M., Uprawa roslin na cele energetyczne [Growing plants for energy purposes]. Pufawy, 2010.

19. Lewandowski M., Ryms M., Biopaliwa. Proekologiczne odnawialne zrodfa energii. [Biofuels. Pro-ecological renewable energy sources]. Warsaw, 2013.

20. LipskiS., Siew. Wybor odmiany do uprawy [Choosing a variety for cultivation], http://www.kukurydza.org.pl/siew.php - access to the website on December 7,2016.

21. Majtkowski W., Sorgo i szczaw [Sorghum and sorrel]. „ Agroenergetyka" 2007,2, 9-10.

22. Michalski T., Kukurydza zrodfem surowca dla roznych gafqzi przemysfu [Corn as a raw material for various industries]. „Wies Jutra", 2002, 6 (47), 53-55.

23. Michalski T., Kukurydza doskonafy surowiec do produkcji bioetanolu i biogazu. Materiafy targowe z Forum Producentow Surowcow Rolniczych POLAGRA Agropremiery [Maize is an excellent raw material for the production of bioethanol and biogas. Fair materials from the Forum of Producers of Agricultural Raw Materials POLAGRA Agropremiery], 2007,5-8.

24. Michalski T. (Ed.), Problemy agrotechniki oraz wykorzystania kukurydzy i sorgo [Problems of agrotechnics and the use of maize and sorghum]. Poznan, 2008.

25. Oats. https://www.doz.pl/czytelnia/a1515-Owies_8211_nie_tylko_dla_koni - access to the website on January 28,2021.

26. Peplinski B., Energochfonnosc produkcji sorgo na cele energetyczne - analiza regionalna. Stowarzyszenie ekonomistow rolnictwa i agrobiznesu. Roczniki Naukowe [Energy consumption of sorghum production for energy purposes - regional analysis. Association of agricultural and agribusiness economists. Scientific Annals], 2015, XVII, 1.

27. Podkowka W., Biopaliwa dzis i jutro [Biofuels today and tomorrow]. „Kukurydza", 2007, 2 (31), 4-35.

28. Podkowka W., Podkowka Z, Substraty dla biogazowni rolniczych [Substrates for agricultural biogas plants]. Warsaw, 2010.

29. Rynek. https://www.rynek-rolny.pl/artykul/owies-zwyczajny-opis-charakterystyka-i-zastosowanie.html?page=2 - access to the website on January 28,2021.

30. Sorghum. https://zielonyogrodek.pl/katalog-roslin/inne/9789-sorgo - access to the website on January 28,2021.

31. Stanczyk K., Ludwik M., Uprawy roslin energetycznych - mozliwosci zagospodarowania nieuzytkow i uzytkow rolniczych, na ktorych produkcja rolnicza jest nieopfacalna [Cultivation of energy crops - possibilities of developing wastelands and arable lands where agricultural production is unprofitable], „Prace naukowe GIG" 2003,3/2003, 71-81.

32. Tomicka I. Produkcja roslinna 2 [Plant production 2]. Panstwowe Wydawnictwo Rolnicze i Lesne, 1995.

33. Uprawa owsa. https://www.rynek-rolny.pl/artykul/uprawa-owsa-wyjasniamy-najwazniejsze-aspekty.html - access to the website on January 28, 2021.

34. Waligora R., Kiedy sorgo gra pierwsze skrzypce? [When does sorghum play the first fiddle?]. Agrotechnika, Poradnik Rolnika, 2013, 5, 47

35. Wafowski G., Analiza i klasyfikacja biomasy rolniczej jako surowca dla biorafinerii, w tym materiafu lignocelulozowego oraz roslin wodnych. Monografia pod red. Agnieszki Wawrzyniak: Produkcja biogazu w rafinerii biomasy z uwzglqdnieniem aspektow eksploatacji biogazowni. [Analysis and classification of agricultural biomass as a raw material for biorefineries, including lignocellulosic material and aquatic plants. Monograph edited by Agnieszka Wawrzyniak: Biogas production in a biomass refinery including aspects of biogas plant operation.] Ed. ITP, ISBN 978-83-65426-46-8, Poznan 2020, 49-79.

36. Widrex, http://www.widrex.pl/biomasa.html - access to the website on January 28,2021.

ЗЕРНОВЫЕ - СЫРЬЕ, ПОЛУЧЕННОЕ ПРИ ВЫРАЩИВАНИИ БИОМАССЫ ДЛЯ ЭНЕРГЕТИЧЕСКИХ ЦЕЛЕЙ

Резюме. Выращивание энергетических культур открывает множество возможностей для воздействия на окружающую среду. В частности, растения стабилизируют почву, ограничивают ветровую и водную эрозию и представляют собой среду обитания для животных. Правильно расположенные на местности, они являются ценным элементом ландшафта. Сочетание энергетических культур с использованием сточных вод и навозной жижи для орошения может быть особенно полезным для окружающей среды. Производство биомассы в малых городах создает дополнительные рабочие места для населения [Peplinski, 2015]. Выращивание зерновых для энергетических целей может быть альтернативой закладке полей, а также выращиванию специализированных энергетических культур. Их выращивание в Польше обычно не имеет традиций, и у производителей нет

специализированного оборудования для их сбора и выращивания или опыта в их выращивании. Часто эти растения также могут страдать от климатических условий. Выращивание сельскохозяйственных культур для энергетических целей может быть безопасным и бесспорным способом использования ГМО-культур. В Польше существует значительный потенциал использования зерновых для производства энергии [Frankowski, 2017b]. В течение многих лет кукуруза была одним из наиболее широко выращиваемых видов, используемых для производства биотоплива. Увеличение использования сахара и зернового сорго позволит увеличить разнообразие культур, выращиваемых для преобразования их энергии. Гибриды, принадлежащие к роду сорго, также являются хорошей альтернативой для производителей, растения которых повреждены европейским кукурузным мотыльком, поскольку вид этого насекомого не вызывает потерь при выращивании сорго. Кроме того, на рынке имеется множество машин для выращивания, сбора и обработки кукурузы, которые можно успешно использовать для выращивания сорго. Непригодное для употребления зерно овса или ржи, а также солома этих видов могут только дополнять другие растительные материалы в процессах производства различных видов биотоплива. Планируя начать выращивание этой группы растений в энергетических целях, вам следует обратиться за советом к специалистам и тщательно ознакомиться с характеристиками выбранных растений и множеством сортов, доступных на рынке. Преимущество выращивания зерновых в энергетических целях заключается в возможности относительно легко найти альтернативные источники сбыта производимого сырья, если оно не находит получателей среди производителей биоэнергетики. Также в случае неудачи проекта можно поменять культивируемое растение в следующем вегетационном периоде без больших затрат. Это, несомненно, большое преимущество по сравнению с объемом работ, необходимых, например, для ликвидации насаждений многолетних растений [Frankowski, 2017b]. Характерной чертой практически всех субстратов растительного происхождения является значительная изменчивость свойств [Kaszkowiak, Kaszkowiak, 2016]. Прежде всего, непостоянное содержание воды, то есть влажность. Это связано как с разными стадиями созревания, так и с влиянием погодных условий. Материалы растительного происхождения - это материалы с низкой степенью уплотнения, поэтому для хранения им требуется большая площадь (объем). Часто для хранения подложек требуется крытая поверхность или использование покрытия из фольги, в некоторых случаях воздействие атмосферных агентов улучшает способность склеивания и уплотнения, поэтому рекомендуется хранить без защиты. Во многих случаях атмосферные факторы существенно влияют на содержание примесей, особенно песчанистости. Вы также должны учитывать изменчивость химического состава и, следовательно, энергоэффективность. Примером такого субстрата являются однолетние культуры (например, зерновые). Особенно проблематичны колебания предложения, вызванные, среди прочего, нестабильностью урожая. Помимо переменной доступности, дифференцированная урожайность приводит к нестабильности цен на сырье. Когда материальные затраты составляют значительную часть производственных затрат, это может привести к изменению рентабельности.

Ключевые слова: злаки, кукуруза, сорго, овес, рожь, энергетические культуры.

Сведения об авторах: Agnieszka Karwacka, MSc., (e-mail: a.karwacka@itp.edu.pl); Grzegorz Watowski, PhD, (e-mail: g.walowski@itp. edu.pl)

Для цитирования: Агнежка Карвацка, Гжегож Валовски Зерновые - сырье, полученное при выращивании биомассы для энергетических целей // Владимирский земледелец. 2021. №4. С. 4-10. DOI:10.24412/2225-2584-2021-4-4-10.

DOI:10.24412/2225-2584-2021-4-10-14 УДК 631.452:631.582:631.8

ВЛИЯНИЕ СИСТЕМ УДОБРЕНИЯ НА ПОКАЗАТЕЛИ ПЛОДОРОДИЯ

ДЕРНОВО-ПОДЗОЛИСТОЙ ПОЧВЫ

Н.Н. КУЗЬМЕНКО, кандидат сельскохозяйственных наук, ведущий научный сотрудник (e-mail:kuzmenko. nataliya2010@mail.ru)

Федеральный научный центр лубяных культур

ул. Луначарского, 35, г. Торжок, Тверская обл., 172002, Российская Федерация

Работа выполнена по Госзаданию №075-00853-19-00 и финансовой поддержке Минобрнауки

Резюме. Представлены данные длительного мониторинга (1948-2011 гг.) по влиянию разных систем удобрений на изменение показателей плодородия дерново-подзолистой легкосуглинистой почвы, а также влияние известкования на фракционно-групповой состав гумуса. Исследования проведены в Тверской области на базе опытного поля федерального научного центра лубяных культур. Системы удобрения (органическая и минеральная, органическая и органоминеральная), эквивалентные по количеству элементов питания за севооборот, оказывают неодинаковое влияние

на агрохимические показатели почвы. Применение в течение длительного времени систем удобрения с насыщенностью 67,5 и 135 кг д.в. на 1 га севооборотной площади не обеспечивает сохранение исходных запасов гумуса. Наименьшие потери - 24 % от исходного уровня отмечаются при применении в севообороте навоза в дозе 10 т на 1 га. Органическая система удобрения сдерживает подкисление почвы. Применение навоза на фоне известкования улучшает качественный состав гумуса, увеличивая содержание гуминовых кислот (19,7 %) в составе гумуса и формирует наиболее высокое соотношение Сгк:Сфк - 0,50 ед. Минеральная система удобрения (NPK67,5 кг д.в./га) при длительном применении без известкования приводит к высокому содержанию подвижного алюминия, увеличивает подкисление почвы в сравнении с органической и органоминеральной системами, способствует наибольшим потерям гумуса - на 37 % и снижению его качества. Применение органоминеральной системы удобрения (навоз 5 т + NPK67,5 кг д.в./га) обеспечивает в течение длительного периода времени наиболее высокое содержание доступных форм фосфора и калия в почве. Потери гумуса выше, чем при равной по количеству элементов питания органической системе удобрения и составляют 31 %.

Ключевые слова: дерново-подзолистая почва, система удобрения, плодородие, гумус.

i Надоели баннеры? Вы всегда можете отключить рекламу.