Научная статья на тему 'Carrier-envelope phase control of sub-cycle dynamics of ultrashort pulses in anti-resonance hollow core fiber'

Carrier-envelope phase control of sub-cycle dynamics of ultrashort pulses in anti-resonance hollow core fiber Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
67
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Carrier-envelope phase control of sub-cycle dynamics of ultrashort pulses in anti-resonance hollow core fiber»

The 30th International Conference on Advanced Laser Technologies LD-I-2

ALT'23

Carrier-envelope phase control of sub-cycle dynamics of ultrashort pulses in anti-resonance hollow core fiber

I.V.Saitsky1, A.A.Voronin1'2, E.A.Stepanov1,2, A.A.Lanin12, A.B.Fedotov1'2,

1 - Physics Department, M.V. LomonosovMoscow State University, Moscow 119992, Russia 2 - Russian Quantum Center, Skolkovo, Moscow Region, 143025 Russia

a.b.fedotov@physics.msu.ru

The carrier-envelope phase (CEP) of the laser pulse plays an extremely important role in variety of applications when the electric field strength is large enough for such phenomena as high-order harmonic and atto-second pulse generation [1-4], above-threshold ionization [5] and terahertz sub-cycle waveform formation [6]. The time duration of a near single-cycle pulse itself depends on the absolute value of CEP [7].

In our work we used Ti:Saaphire laser system and optical papametric ammplifier to produce tunable pulses in idler wave with an energy of E0 ~ 180 J central wavelength of A0 ~ 2000 nm and duration of T0 ~ 60 fs. These pulses couples into anti-resonant hollow-core fiber (AR HCF) filled with argon. The transverse structure of the fiber consists of a hollow core with a diameter of D = 70 ^m, surrounded by six hollow tubes with diameters of d = 36 ^m and a wall thickness of w ~ 590 nm and allows to support radiation waveguiding in very wide spectarsl range. The sequence of nonlinear transformations of the femtosecond pump pulse in an AR HCF leads to spectral broadening (supercontinuum generation (SC)) and near single cycle waveform generation. The spectrum broadening follows the soliton self-compression (SSC) scenario, with additional enhancement from the self-steepening effect and parametric generation of four-wave components in the blue wing of the soliton spectrum [8,9]. In such conditopn it is possible to form very short pulses with the duration less than on cycle of the field, and for such pulses the influence of CEP could play noticeable role.

In our investigation we explore the signatures of phase dependence in the visible part of the SC generated during SSC down to single-cycle pulsewidth in an anti-resonant hollow-core fiber (AR HCF) filled with argon. This phenomenon is observed within the small parameter range, when the pulse reaches its maximum compression ratio, but there is still no strong ionization, leading to pulse decay. Theoretical analysis by means of the numerical solution of the generalized nonlinear Schrodinger equation (GNSE) reveals that the phase dependence arises from the broadband third harmonic generation (THG) in the range from 250 nm to 800 nm at the moment of a sub-cycle pulse composition and its spectral interference with the visible part of the SC. The CEP control of this ultrabroadband f-3f interference provides a signature of the sub-cycle pulse synthesis during SSC in the fiber with duration of 0.4 optical cycles and peak power more than 2 GW on the fiber output.

The work was supported by Russian Science Foundation grant # 22-12-00149.

[1] P. B. Corkum and F. Krausz, "Attosecond science," Nat. Phys., vol. 3, pp.381-387 (2007).

[2] G. Vampa, T. J. Hammond, N. Thire, B. E. Schmidt, F. Legare, C. R. McDonald, T. Brabec, and P. B. Corkum, "Linking high harmonics from gases and solids," Nature, vol. 522, pp. 462-464 (2015).

[3] O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, "Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations," Nat. Photonics, vol. 8, pp.119-123 (2014).

[4] A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, and T. W. Hansch, "Attosecond control of electronic processes by intense light fields," Nature, vol.421, 611 (2003).

[5] D. B. Milosevic, G. G. Paulus, D. Bauer, and W. Becker, "Above-threshold ionization by few-cycle pulses," J. Phys. B At. Mol. Opt. Phys. vol.39, R203 (2006).

[6] M. KreB, T. Loffler, M. D. Thomson, R. Dorner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, "Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy," Nat. Phys. vol.2, pp.327-331 (2006).

[7] A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, "Synthesized Light Transients," Science, vol.334, pp. 195-200 (2011).

[8] E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugzlys, A. Baltuska, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, "Multioctave supercontinua from shock-coupled soliton self-compression," Phys. Rev. A, vol. 99, p.033855 (2019).

[9] I. V. Savitsky, E. A. Stepanov, A. A. Lanin, A. B. Fedotov, and A. M. Zheltikov, "Single-Cycle, Multigigawatt Carrier-Envelope-Phase-Tailored Near-to-Mid-Infrared Driver for Strong-Field Nonlinear Optics," ACS Photonics, vol. 9, pp. 1679-1690 (2022).

i Надоели баннеры? Вы всегда можете отключить рекламу.