Научная статья на тему 'Canonical and boundary representations on the Lobachevsky plane associated with linear bundles'

Canonical and boundary representations on the Lobachevsky plane associated with linear bundles Текст научной статьи по специальности «Математика»

CC BY
77
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
LOBACHEVSKY PLANE / CANONICAL REPRESENTATIONS / DISTRIBUTIONS / BOUNDARY REPRESENTATIONS / POISSON AND FOURIER TRANSFORMS / ПЛОСКОСТЬ ЛОБАЧЕВСКОГО / КАНОНИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ / ОБОБЩЕННЫЕ ФУНКЦИИ / ГРАНИЧНЫЕ ПРЕДСТАВЛЕНИЯ / ПРЕОБРАЗОВАНИЯ ПУАССОНА И ФУРЬЕ

Аннотация научной статьи по математике, автор научной работы — Grosheva Larisa Igorevna

Мы описываем канонические представления, связанные с сечениями линейных расслоений, соответствующие граничные представления и преобразования Пуассона и Фурье.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

We describe canonical representations on the Lobachevsky plane, associated with sections of linear bundles, corresponding boundary representations and Poisson and Fourier transforms.

Текст научной работы на тему «Canonical and boundary representations on the Lobachevsky plane associated with linear bundles»

UDK 517.98

DOI: 10.20310/1810-0198-2017-22-6-1218-1228

CANONICAL AND BOUNDARY REPRESENTATIONS ON THE LOBACHEVSKY PLANE ASSOCIATED WITH LINEAR BUNDLES

© L.I. Grosheva

Tambov State University named after G.R. Derzhavin, 33 Internatsionalnaya st., Tambov, Russian Federation, 392000 E-mail: gligli@mail.ru

We describe canonical representations on the Lobachevsky plane, associated with sections of linear bundles, corresponding boundary representations and Poisson and Fourier transforms. Keywords: Lobachevsky plane; canonical representations; distributions; boundary representations; Poisson and Fourier transforms

We give a generalization of the work [1] where we studied canonical and boundary representations of the group G = SU(1,1) on the Lobachevsky plane D. Canonical representations in [1] are deformations of the quasi-regular representation U of G on D . Now we study similar deformations of representations of G in the space sections of linear bundles on D, or, what is the same, deformations of representations of G induced by characters of a maximal compact subgroup K. See also our note [2].

The Lobachevsky plane is the unit disk D : zz< 1 on the complex plane with the linear-fractional action of G :

The boundary S of D is the circle zz = 1, it consists of points s = exp ia, the measure ds on S is da. Let D be the closure of D : D = D U S. The stabilizer of the point z = 0 is the maximal compact subgroup K = U(1) consisting of diagonal matrices:

so that D = G/K. Recall principal non-unitary series representations of G trivial on the center. Let a € C . The representation Ta acts on the space D(S) by

§ 1. Canonical representations associated with a character of K

(1.1)

(Ta(g)<p)(s) = <p(s ■ g)\bs + â\2°.

If a€ Z , then Ta is irreducible and equivalent to T-a-1 (for a € Z there is a "partial equivalence"). The following operator Aa acts on D(S) and intertwines Ta and T-a-1:

A<p)(s) = f |1 - su\-2a-2 ip(u)du, (1.2)

Js

exponents sn are eigenfunctions for Aa with eigenvalues an(a):

°"<a) = 2' r^j-Tr- - n) • <L3)

We shall use denotation

a[q = a(a + 1) ... (a + q - 1), z^ 'n = \z\»( Z)n, fi € C, n € Z, q € N.

V \z\ J

Let A € C, m € Z. We define the canonical representation Rx,m of the group G as follows:

(Rx, m(g)f) (z) = f (z ■ g) (bz + a)-2X-4 • 2m,

it acts on the space D(D). This space consists of functions f (z) = f (z,z) such that for any f € D(D) there is a neighbourhood U of D such that f belong^ to D(U). The representation Rx,m is the restriction to G of a representation of the overgroup G = SL(2, C). Introduce the inner product

(f, h )d = f (z) h(z) dxdy, z = x + iy. (1.4)

Jd

It is invariant with respect to the pair (Rx,m, R_x_2 m):

(RX,m(g)f, h )d = (f, R-j-2,m(g-1)h )d, (1.5)

where g €G . Let us define the operator Qx,m - first on D(D):

(Qx,mf) (z) = c(A, m) i (1 - zw)2X,2m f (w)dudv, Jd

-A + m - 1

id

where

c(A, m) =

n

It intertwines Rx,m and R-\-2,m :

Qx Rx (g) = R — X—2,m (g) Qx g G, and interacts with the form (1.4) as follows:

(Qxmf,h ) D = (f, Qx, m h) D. (16)

The formulae (1.5) and (1.6) allow to extend the representation Rx,m and the operator Qx,m to the space D'(D) of distributions on D .

§ 2. Boundary representations

Any canonical representation of the group G generates 2 representations related to the boundary S of the disk D (see L\m and M\,m below).

Introduce on C polar coordinates (r,s): z = rs, r ^ 0, s € S . Let

p = 1 — zz = 1 — r2,

so that D = {p> 0} and S = {p = 0} . The Euclidean measure dxdy on D is (1/2) dpds .Consider the Taylor series of f € D(D) in powers of p :

f (z) ~ ao + ai p + a2p2 +----, (2.1)

where ak = ak(s) are functions in D(S):

ak(s) = k {dp) l=of(z)

Denote by Sk(D) the space of distributions on C concentrated at S and of the form

c = Ms) m + Ms) S'(p) + ••• + pk (s) 5(k)(p), (2.2)

where 5(p) is the Dirac delta function on the real line (being a continuous linear functional on D(R)) and 5(j)(p) its j -th derivative. Set

S(D) = U=o ^(D).

There is a natural filtration

So(D) C Si(D) C MD) C-^ (2.3)

A distribution p(s) 5(l\p) acts on a function f €D(D) as follows:

(p(s) S{l)(p),f) = 1(—1)11. (P, ai)s.

The canonical representation R\,m acting on D'(D), preserves the space S (D) and the filtration (2.3). Denote by L\, m the restriction of R\,m to S (D). Let us assign to the distribution (2.2) the column (p0, pi,..., pk, 0, 0,...) .

Lemma 2.1. On these columns the representation L\,m is a upper triangular matrix. It is equivalent to a upper triangular matrix with diagonal T-\-i, T-\, T-\+i,... . The equivalence is given by multiplication of the functions pk(s) by s-m .

Proof. Set pk(s) s-m = ik(s). We have to trace how the operator L\ m(g) (g € G) acts on the distribution ik(s)sm • 5(k\p). This distribution is mapped on

ik(s) s™ 5(k\p) (bz + a)-2X-4'2m. (2.4)

Since ps = p •\bz + a\-2 and 5(k\p) is homogeneous of degree —k — 1, the distribution (2.4) is equal to

ik(s) sm (bz + a)-2X-2-2k,2m 6(k)(p) = ik (s) sm (bs + a)-2X-2-2k,2m S(k\p) + •••, (2.5)

where the dots means a distribution in Sk-i(D). Since s = s-1, we have

_ as + b bs + a ,0 2 . .

s = --= s •--= s • (bs + a)0,-2, (2.6)

bs + a bs + a ' y '

so that the distribution (2.5) is equal to

4>k (S) lbs + a-2X-2+2k ■ sm ô(k) (p) + ■■■.

The factor in front of sm 5(k'l(p) is precisely (T-\-\+k(g)^k) (s). □

For f eV(D), let a(f) denote the column (a0,a\,...) of the Taylor coefficients of f , see (2.1). The representation M\,m acts on these columns by:

Mx,m(g) a(f ) = a(Rx,m(g)f )■

Lemma 2.2. The representation M\,m is a lower triangular matrix. It is equivalent to a lower triangular matrix with diagonal T-\-2, T-\-3,... . The equivalence is given by multiplication of the Taylor coefficients ak(s) by s-m .

Proof. By expanding functions in a Taylor series, we find that the k -th Taylor coefficient of the function fg(z) = (Rx,m(g)f)(z) is

ak (s) (bs + â)-2X-4-2k '2m + ■■■

= ak (s) SS-m lbs + âl-2X-4-2k ■ sm + ■■■, (2.7)

where the dots means a linear combination of a0(s),..., ak-1(sS) whose coefficients are some functions of s . Here we used again that p = p ■ lbz + al-2 and formula (2.6). Now setting ak(s) = dk(s) sm , we see from (2.7) that the coefficient dgk (s) for fg (s) is (T-\-2-k (g) dk ) (s) + ■■■. □

§ 3. Poisson transform

Let X, a € C and m € Z . We define the Poisson transform associated with the canonical representation R\,m as the map P? : D(S) — Crx(D) by the following formula

(P\m) v) (z) = P-X-a-2 J (1 - sz)2a'-2m sm v(s) ds. (3.1)

Theorem 3.1. The Poisson transform P^ intertwines the representations T-a-\ and the canonical representation R\,m :

R\,m(g) p? = Pff T-a-i(g) (geG).

Theorem 3.2. With the intertwining operators A* and Q\,m the Poisson transform P^? interacts as follows:

P? A* = a-m(a) P("-i-V (3.2)

Qx,m P? =A(m\X, a) P™ , (3.3)

where

A (m)(A a) = r(-A + a)r(-A - a - 1) A (A'a) T(-A - m)T(-A + m - 1) ^

Proof. Formula (3.2) follows immediately from (3.1). Let us prove (3.3). Applying the operator QX,m P^rnm? to a function p € D(S) , we get the multiple integral:

5 (m) ^ (z) = c(\ m) I (1 _ zW)2X,2m (1 _ W'W)-X-a-2dudV

(Q x,m P? v) (z) = c(X, m) j(1 - zw)2x'2m (1 - ww)

x j (1 - sw)2a'-2m sm v(s) ds, w = u + iv (3.4)

JS

By (3.1), the function (p^ pj (z) behaves as Ci p { a 2 + C2 p x+a 1 when p ^ 0 .Therefore, the integral (3.4) converges absolutely for Re a> —1/2 , Re (A + a) < —1, Re (—A + a) > 0 , and we can then change the order of integration. We obtain

Q,m P{m p) (z) = c(A, m) J K(z, s) sm p(s) ds, (3.5)

where the kernel K(z, s) is given by

K(z, s)= f (1 — zw)2{,2m (1 — ww)-{-a-2 (1 — sw)2a'-2m dudv. Jd

Let us compute it. Using the formula

1 — zw

1 — zw =

(bz + a)(bw + a)

and similar formulae with replacing z by s and by w, we find that the kernel K (z, s) has the following invariance property:

K (I, I) (bz + a)2X,2m (bs + a)2a,-2m = k (z, s).

Take here z = 0, s = 1 and write z and s instead of I and I respectively. Then we have

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

K (z, s) = K (0,1) a-2X'2m (b + a)-2a'2m (3.6)

and _ _

b a + b

z = -, s = -—=.

a b + a

For these z and s we find

1 _ 1 1 _ 1 a + b b 1

1 — zz = —, 1 — sz = 1 —

aa b + a a a(b + a)'

so that

a-2X,2m (b + a)-2a'2m = (1 - zz)X-a (1 - sz)2a'-2m. (3.7)

It remains to compute K(0,1) :

K(0,1)= j (1 - ww)-X-a-2 (1 - w)2a'2m dudv. (3.8)

Jd

Expand (1 — w)2a'2m in a binomial series:

(1 - w)2a'2m = (1 - w)a+m (1 - w)a-m

= £ ( *+m )( *) (-1)«*wqw.

A non-zero contribution to (3.8) is given by the terms with q = j only, so that

K(0,1) = * + m ) (* -qm^ D (1 - ww)-X-°-2 (ww)q dudv.

The latter integral is equal to B(q +1, —X - a - 1), so that

(a + m)[q1 (a - m)[q1 T(-X - a - 1)

oo

K (0,1) =

= n ■

q=0 q! r(-X - a + q)

^ (-a - m)[q1 (-a + m)[q1 ^ (-X - a - 1)lq+1]q\

n A (-a - m)[q1 (-a + m)[q1 -X - a - 1 ^ (-X - a)[q1 q!

q=0 v '

IT

—--- F (-a - m, -a + m; -X - a; 1)

-X - a - 1

T(-X - a - 1)T(-X + a) T(-X + m)T(-X - m)

1 A(m)(X,a).

c(A, m)

Thus, collecting (3.5), (3.6) and (3.7), we obtain

(Qx,m pm p) (z) = A(m)(A,a) px- S (1 - sz)2°,-2m sm p(s)ds,

which is just (3.3). □

Theorem 3.3. Introduce on D polar coordinates r, s : z = rs, 0 ^ r ^ 1, s€S . Let 2a € Z . For any K -finite function p € D(S), the Poisson transform P^ P of p has the following expansion in powers of p = 1 - r2 :

(P? p) (z) = p-A-a-2 s^ (C? p)) (s) ■ pk

<x

+ pA+a-1 smYl (D? p) (s) ■ pk. (3.9)

k=0

Let us the factors px a 2 and p x+a 1 in (3.9) leading factors. The factors yield that P^ is

„A - a - 2

A,a

meromorphic in a , and has poles at the points

a = A - k, a = -A - 1 + l (k,l € N). (3.10)

All poles are simple except in the case when the two sequences (3.10) have a non-empty intersection and the pole belongs to this intersection. This happens when 2A + 1 €N and 0 ^ k, l ^ 2A + 1, k +1 = 2A + 1. In this case the pole i is of the second order. Let us write down the principal part

of the Laurent series of Pm at the poles ¡i of the first and the second order respectively:

p(m)

P? = --- + ■■■ (3.11)

iM

P? = f_ A'^)2 + + ■ ■■ (3.12)

(m)

(a - fx)2 a - f

The first Laurent coefficient ( p(m and PA ^ respectively) intertwines T-^-\ with RA

Let us write down the Laurent coefficients in (3.11) and (3.12) explicitly.

For that we introduce the following differential operators WO"k on S . Let us set

Va,m,n(p) = (1 - p)(m+n)/2 F (* + 1 + m,* + 1 + n; 2* + 2; p), where F is the Gauss hypergeometric function. Expand V in powers of p :

Vamn (p) = ^ w^mk (n) Pk, k=0

here wO^k are polynomials in n of degree k. The coefficients of these polynomials are rational

functions of a with simple poles at a = —1, —3/2,..., (—k — 1)/2 . Now we set

(1 d).

\i da J

If a pole i belongs only to one of the sequences (3.10), then it is simple and

W™ = w(mA- -

I , da,

Pitk = (—1)k+m 1 a-m(A — k) (3.13)

P{%-i+l = (—1)l+m 1 & ◦ A{-i, (3.14)

where {k is the following operator D(S) — Sk(D):

p = s™ h—1)n (Witn p) (s) 5{k-n)(p). (3.15)

n=0 ( )!

The operator {{m is meromorphic in A . For fixed k = 1,2 ... it has poles (simple) at the points

k1

A = k — 1, k — 3/2, k — 2,...,-

(k poles in total). It intertwines T-{-i+k with L{,m (restricted to Sk(D)). A number A0 € N/2 is a pole for {k for those k that satisfy

Ao + 1 ^ k ^ 2Ao + 1.

In particular, let A0 € N. Denote by the residue of ({lk at A = A0 and denote by W^

the residue of W^ at the pole a = t . The contribution to the residue of {j} is given by the summands in (3.15) for which n ^ 2k — 2A0 — 1. So we have (we omit the index 0) for A € N and A + 1 ^ k ^ 2A + 1:

p = sm £ (—1)n ^^ (Wtinp) (s) • s(k-n)(p). n=2k-2{-i (k — n)!

Let the pole i belong to both sequences (3.10). This happens when 2A + 1 € N . Then i = A — k = = —A — 1 — l, where k,l € N , so that k +l = 2A + 1 and l — k = 2i + 1.

Let first A € N . Then the pole i is of the second order (m = 0). Here we have a difference with the case m = 0 : in that case the pole ¡ was of the first order.

We shall write down, for X € N , only the first Laurent coefficients P . The expressions for the residues are rather complicated and not interesting for us, even more because they turn out to be not concentrated at S .

If X + 1 ^ k ^ 2X + 1 (so that k>l and f ^ -1 ), then

(m) I w \

PAA-k = (-1)k+m ^ a-m(X - k) pm, and if X + 1 ^ l ^ 2k + 1 (so that k < l and f ^ 0 ), then

(m)

Px,-x-i+l=(-1)i+m 1 vxm> o Ax-i.

Therefore, the operator i^k intertwines T-x-1+k with Lxm restricted to Y*k(D).

Let now A € -1/2 + N. This case is similar to such a case for m = 0. The pole i is of the second order.

If k ^ l, then

p(m) (-1)k+m

PA= 2 k! P-m(f) £A,k ,

pA? v = -smE -nn C(mn)v ■ *l-n(p),

n=0

and if k ^ l, then

■^(m) (_-\)l+m , , ^

V o ( 1) c(m) A

px,t = 2-ji-Zx,i o Ax-i,

pxm p = smE -l- d^p ■ s(k-n)(p),

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

where a-m(i) is the residue of a-m(a) at a = i (Air is the residue of Aa at a = t ) and

^(m) f Ci"n\ n< 2I + 1,

",n I Ctn - D0(m!-2,-i, n > 2i + 1,

D(m) f Dm, n< -2I - 1

{ D°t,n - C°t,n+2t+1, n ^ -2l - 1. Theorem 3.4. Up to a factor, the composition of the operators Qx,m and ^x^ is the Poisson transform P(mx^_2 x-k '■

Q. e(m) = q(m) . P(m) (3i6)

Qx,m ?x,k = qx,k P-x-2,x~k,

k

where

q? = 1 (-1)k+m k! a-m(-X - 1 + k) A(?)(X), (3.17)

A(m)(A)= 1 (2A 2k + 1)nA±m±HiA-m±21

Ak (A) = -(2A - 2k + 1) kW(2A + 2 - k) .

Proof. Taking the residue of both sides of (3.3) at a = A - k and using (3.13), we obtain (3.16), where

q{m = (-1)k+m ki aJx - k) Resa=x-k A(m)(A,a).

The latter residue is equal to

v—kTT *

Finally, computing the product a-m(a) a-m(—a — 1), we obtain expression (3.17). □

Remark. Formula (3.3) seems to contain a contradiction: indeed, the Poisson transform Pm_2 , in the right hand side has poles at the points a = A + 1 +1 and a = —A — 2 — k (k,l € N), but the left hand side seems to have no poles at these points. In fact, the left hand side does have poles at these points; the poles in question are poles of distributions; the left hand side, regarded as a distribution, assigns to a function f € D(D) the scalar

(Q{m P{m\ f )d = (P{m\ QXmf )d,

but the function Q{,mf has asymptotics Ci + C2 p2{+2 when p — 0, and the function p2{+2

m _

§ 4. Fourier transform

together with the leading terms p { « 2 and p {+tJ 1 of pa™ gives the desired poles.

Let A, a € C and m € Z . We define the Fourier transform associated with the canonical representation R{,m as the map F{m«_ : D(D) —D(S) by the following formula

(F^f) (s) = s-m j (1 — zz)2a,2m p{-« f (z)dxdy.

The integral converges absolutely for Re (A — a) > —1, Re (A + a) > —2 and can be meromorphically continued in a and A .

Theorem 4.1. The Poisson and the Fourier transform are conjugate to each other:

(F{m_f, p)s = (f,pm_2wp)d.

This allows to transfer statements about the Poisson transform to the Fourier transform. The Fourier transform interacts with the intertwining operators as follows:

A, Fm = a - m(a) F{mJa - v

F-mU« Q{m = A((A, a) F^.

It has poles in a at the points

a = —A — 2 — k, a = A + 1 + l (k,l € N). (4.1)

All poles are simple, except the case —2A — 3 € N and the pole i belongs to both sequences (4.1), i.e 0 ^ k,l ^ —2A — 3 and k +1 = —2A — 3 .In this case i is of the second order.

For the Laurent coefficients of the Fourier transform we use a similar notation as in case of the Poisson transform.

m_ m_

The first Laurent coefficient (i.e. F{m_ if I is of the first order and F{ ^ if i is of the second order) intertwines R{ m with T

m_ m_ Let us write down F{ ^ and F{,№ explicitly.

If the pole i belongs to one of the sequences (4.1), then it is simple and

t-{-2-k = 2(—1)m a-m(—A — 2 — k) b<$,

FS+i+l = — 2(—1)m A-{-2-i b

where bm is a "boundary" operator D(D) — D(S) which is defined in terms of the Taylor coefficients cn of f as follows:

bti_(f) = E W{-m---k*-n (s-mcn).

n=o

theorem 4.1 now gives:

Theorem 4.2. The operators and b(m) are conjugate to each other (up to a factor):

(f, ({m)-2k p)D = 1( — 1)k k. (b(3(f), p)s.

The operator bmk intertwines R{,m with T-{-2-k. It is meromorphic in A. For fixed k = 1,2,... it has poles (simple) at the points:

k3

A = -k - 1, -k - 1/2,

2

( k poles in total). A scalar Ao G -2 - N/2 is a pole for b^k if

-Aq - 1 < k < -2Ao - 3.

In particular, let A0 G-2 - N. Denote by ^mk the residue of bm at A = A0 . Then (cf. § 3) (we omit the index 0) for A G-2 - N and -A - 1 ^ k ^ -2A - 3 we have

-2X-3-k

t$(f) = - £ w-mU-kk-n (s-mcn).

Let the pole i belong th both sequences (4.1). This happens when —2A — 3 € N . Then i = —A — — 2 — k = k + 1 +1, where k,l € N , so that k +1 = —2A — 3, l — k = 2i + 1. This pole is of the second order.

Let i €—2 — N . As in § 3 we write only down the first Laurent coefficient: if —A — 1 ^ k (then k>l and i ^ —1), then

Sm) 1

sFm)

FX,-X-2-k = 2 (-1)m a-m(-A - 2 - k) bXkk

and if -A - 1 ^ l (then k < l and f ^ 0 ), then

2

Let f G -5/2 - N .If k < l, then

(m)

F(m) 1 m F.m)

FX,X+1+l = -ô (-1)m F-X-2-l bX,l .

Fx , n = (-1)m F-m(f) b™ 1l

FXmjf = - 1e cm (s-mci-n),

2 n=o

and if k ^ l, then

(m)

fy. = (-1)m f-x-2-i b

(m)

X= (-1) F-X-2-l bx,l k

I(m) (s

n=o

FXm)f = 1e ds (s-m ck-n).

REFERENCES

1. Molchanov V.F., Grosheva L.I. Canonical and boundary representations on the Lobachevsky plane // Acta Applied Mathematics, 2002. V. 73. P. 59-77.

2. Grosheva L.I. Canonical representations on sections of linear bundles on the Lobachevsky plane // Tambov University Reports. Series: Natural and Technical Sciences. Tambov, 2007. V. 12. Iss. 4. P. 436-438.

Received 4 September 2017

Grosheva Larisa Igorevna, Tambov State University named after G. R. Derzhavin, Tambov, the Russian Federation, Candidate of Physics and Mathematics, Associate Professor of the Functional Analysis Department, e-mail: gligli@mail.ru

УДК 517.98

DOI: 10.20310/1810-0198-2017-22-6-1218-1228

КАНОНИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ НА ПЛОСКОСТИ ЛОБАЧЕВСКОГО В СЕЧЕНИЯХ ЛИНЕЙНЫХ РАССЛОЕНИЙ

© Л. И. Грошева

Тамбовский государственный университет им. Г.Р. Державина 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33 E-mail: gligli@mail.ru

Мы описываем канонические представления, связанные с сечениями линейных расслоений, соответствующие граничные представления и преобразования Пуассона и Фурье. Ключевые слова: плоскость Лобачевского; канонические представления; обобщенные функции; граничные представления; преобразования Пуассона и Фурье

СПИСОК ЛИТЕРАТУРЫ

1. Molchanov V.F., Grosheva L.I. Canonical and boundary representations on the Lobachevsky plane // Acta Applied Mathematics, 2002. V. 73. P. 59-77.

2. Грошева Л.И. Канонические представления в сечениях линейных расслоений на плоскости Лобачевского // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2007. Т. 12. Вып. 4. С. 436-438.

Поступила в редакцию 4 сентября 2017 г.

Грошева Лариса Игоревна, Тамбовский государственный университет им. Г.Р. Державина, г. Тамбов, Российская Федерация, кандидат физико-математических наук, доцент кафедры функционального анализа, e-mail: gligli@mail.ru

For citation: Grosheva L.I. Canonical and boundary representations on the Lobachevsky plane associated with linear bundles. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki - Tambov University Reports. Series: Natural and Technical Sciences, 2017, vol. 22, no. 6, pp. 1218-1228. DOI: 10.20310/1810-0198-2017-22-6-1218-1228 (In Engl., Abstr. in Russian).

Для цитирования: Грошева Л.И. Канонические представления на плоскости Лобачевского в сечениях линейных расслоений // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2017. Т. 22. Вып. 6. С. 1218-1228. DOI: 10.20310/1810-0198-2017-22-6-1218-1228.

i Надоели баннеры? Вы всегда можете отключить рекламу.