Научная статья на тему 'CALORIMETRIC STUDY OF PHASE TRANSITION OF Cu8GeSe6 AND COMPARISON WITH OTHER ARGYRODITE FAMILY COMPOUNDS'

CALORIMETRIC STUDY OF PHASE TRANSITION OF Cu8GeSe6 AND COMPARISON WITH OTHER ARGYRODITE FAMILY COMPOUNDS Текст научной статьи по специальности «Химические науки»

CC BY
32
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Kimya Problemleri
Scopus
CAS
Область наук
Ключевые слова
phase transition / thermodunamic functions / copper-germanium selenide / differential scanning calorimetry / фазовый переход / термодинамические функции / селенид меди-германия / дифференциальная сканирующая калориметрия

Аннотация научной статьи по химическим наукам, автор научной работы — U.R. Bayramova, E.I. Ahmadov, D.M. Babanly, L.F. Mashadiyeva, M.B. Babanly

This work is a continuation of our work on the thermodynamic study of synthetic analogues of the mineral argyrodite. In this work, a calorimetric study of the phase transition of the Cu8GeSe6 compound was carried out using the differential scanning calorimetry (DSC) method. Based on the data of DSC curves of samples of the studied compound with different masses, the temperature and enthalpy of the phase transition from the low-temperature orthorhombic modification to the high-temperature cubic modification were established. Using the Gibbs-Helmholtz equation, the entropy of the phase transition was also calculated and the comparative analysis of the obtained thermodynamic values of the studied compound with other argyrodite phases was carried out.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

КАЛОРИМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ФАЗОВОГО ПЕРЕХОДА Cu8GeSe6 И СРАВНЕНИЕ С ДРУГИМИ СОЕДИНЕНИЯМИ СЕМЕЙСТВА АРГИРОДИТА

Данная работа является продолжением наших работ по термодинамическому исследованию синтетических аналогов минерала аргиродита. Методом дифференциальной сканирующей калориметрии (ДСК) проведено калориметрическое исследование фазового перехода соединения Cu8GeSe6. По данным кривых ДСК образцов исследуемого соединения различной массы определены температура и энтальпия фазового перехода от низкотемпературной орторомбической модификации к высокотемпературной кубической модификации. С помощью уравнения Гиббса-Гельмгольца также была рассчитана энтропия фазового перехода. Проведен сравнительный анализ полученных термодинамических значений исследуемого соединения с другими аргиродитами.

Текст научной работы на тему «CALORIMETRIC STUDY OF PHASE TRANSITION OF Cu8GeSe6 AND COMPARISON WITH OTHER ARGYRODITE FAMILY COMPOUNDS»

396

CHEMICAL PROBLEMS 2023 no. 4 (21) ISSN 2221-8688

UDC 544.31:546.56'661.693/23

CALORIMETRIC STUDY OF PHASE TRANSITION OF Cu8GeSe6 AND COMPARISON WITH OTHER ARGYRODITE FAMILY COMPOUNDS

*U.R. Bayramova, 2E.I. Ahmadov, 3D.M. Babanly, *L.F. Mashadiyeva*, *M.B. Babanly

1 Institute of Catalysis and Inorganic Chemistry, Baku, Azerbaijan H. Javid ave., 113, Baku AZ 1143, 2Baku State University, Azerbaijan Z. Xalilov str., 23, Baku AZ 1148 3Azerbaijan State Oil and Industry University, French-Azerbaijani University (UFAZ), Azadlig ave., 20, Baku AZ 1010, Azerbaijan *e-mail: [email protected]

Received 02.10.2023 Accepted 23.10.2023

Abstract: This work is a continuation of our work on the thermodynamic study of synthetic analogues of the mineral argyrodite. In this work, a calorimetric study of the phase transition of the Cu8GeSe6 compound was carried out using the differential scanning calorimetry (DSC) method. Based on the data of DSC curves of samples of the studied compound with different masses, the temperature and enthalpy of the phase transition from the low-temperature orthorhombic modification to the high-temperature cubic modification were established. Using the Gibbs-Helmholtz equation, the entropy of the phase transition was also calculated and the comparative analysis of the obtained thermodynamic values of the studied compound with other argyrodite phases was carried out.

Keywords: phase transition, thermodunamic functions, copper-germanium selenide, differential scanning calorimetry.

DOI: 10.32737/2221-8688-2023-4-396-403

Introduction

The mineral argyrodite (Ag8GeS6) was the first representative of a large family of compounds which is nowadays called argyrodites. These phases have the general form ul B'n+AT| ~, where m and n are

the valences of cations A and B, respectively. Here, A-cations may be Cu+, Ag+, Cd2+, Hg2+; B-cations are Ga3+, Si4+, Ge4+, Sn4+, P5+, As5+; X-anions are S2-, Se2-, Te2-. They have been studied for a long time for their interesting physical and chemical properties [1-10]. Most of these materials are of special interest due to their phase transitions, which tak e place close to ambient temperature [11,12]. High-temperature modifications, as a rule, crystallize in a cubic structure and have high ionic conductivity. Especially, copper and silver-containing compounds of this family are well-known superionic semiconductors due to

the presence of highly mobile Cu+ and Ag+ ions [13-18]. The tendency of argyrodite phases to undergo multiple phase transitions indicates closely competing thermodynamic states as temperature increases. The thermodynamic characteristics of these transitions for some compounds of the argyrodite family were determined by the EMF method with a solid electrolyte in [19-22]. In [23-25], we studied a number of argyrodite compounds using differential scanning calorimetry (DSC), which is considered to be one of the accurate methods in thermal analysis.

The purpose of this work was to determine the thermodynamic functions of the phase transition of the Cu8GeSe6 compound using the DSC method and compare it with similar data for other compounds of the argyrodite family.

CHEMICAL PROBLEMS 2023 no. 4 (21)

www.chemprob.org

The Cu8GeSe6 compound melts with decomposition at 1083 K and has a phase transition at 333 K [26] (328 K according to [27]). The low-temperature modification LT-Cu8GeSe6 crystallizes in a hexagonal crystal lattice (Space Group P63mc; a = 12.6438(2) Â; c = 11.7570(1) Â) [26, 27], and the high-temperature HT- Cu8GeSe6 has a cubic structure (Space group F-43m; a=10.20 Â) [28].

The thermodynamic properties of the Cu8GeSe6 compound were studied in [22] using the EMF method with the C^RbC^t solid electrolyte and the partial and integral thermodynamic functions of both its crystalline modifications were determined. Next, by combining the obtained data, the thermodynamic functions of the polymorphic transition of this compound were calculated.

Experimental part

The Cu8GeSe6 compound was synthesized by direct alloying of stoichiometric amounts of elemental components of high purity (99.9999%) from Evochem Advanced Materials GMBH (Germany). The synthesis was carried out in evacuated (~10-2 Pa) and sealed quartz ampoules at a temperature of ~1150 K. Taking into account the high elasticity of selenium vapor at the melting temperature of Cu8GeSe6, the synthesis was carried out in a two-zone mode. After synthesis, the sample was annealed at 770 K (100 h). Next, the ampoule was cooled very slowly in the region of the temperature of the polymorphic transformation of the compound (320-370 K), and then subjected to thermal annealing at 320 K (10 hours). This was

done in order to ensure a complete transition of the high-temperature phase to the low-temperature phase in order to minimize the error in enthalpy calculations. The synthesized compound was identified by differential thermal (DTA) and X-ray diffraction analysis (XRD). The thermal effect temperatures in the DTA heating curve were in accordance with the above literature data. XRD was carried out at room temperature on a D8 ADVANCE powder diffractometer with CuKa1 radiation from Bruker. The powder diffraction pattern of the compound (Fig. 1) confirmed the complete transition of the compound to the low-temperature structure.

Commander Sample 10

Fig.1. Powder diffraction pattern of the Cu8SiSe6 compound As can be seen from Fig. 1, the reflection completely coincide with the X-ray data (red peaks we obtained for the synthesized Cu8GeSe6 lines) of the hexagonal structure of this

compound from the crystallographic database (Powder Diffraction File 01-080-1757).

The temperature and heat of phase transition of the Cu8SiSe6 compound were determined using the DSC method on a differential scanning calorimeter DSC400 from Linseis (Germany). The calorimeter was

previously calibrated. The measurements were carried out using the Linseis TA V 2.3.1 program. The heating rate was 3°/min. The process of calorimeter calibration and measurements are described in detail in our previous similar works [23-25].

Results and discussion

In order to improve the accuracy of the study, two samples of the Cu8SiSe6 compound with sample masses of 33.17 and 37.25 mg were

selected. For each sample, 3 DSC curves were recorded in a dynamic heating mode from room temperature to -400 K.

Fig. 2. DSC heating curve for the Cu8GeSe6; sample weight 33.17 mg

Fig. 3. DSC heating curve for the Next, the temperatures of the beginning and end of the peak, as well as the enthalpy of phase transition (A^.t) were determined per 1

Cu8GeSe6; sample weight 37.25 mg mole of studied substance. For example, Figures 2 and 3 show DSC heating curves for samples with masses of 33.17 and 37.25 mg,

respectively. The data on all six DSC curves were nearly identical and differed by no more than 2%. According to [29, 30], in such cases, the error in determining thermal effects is no more than ±4%.

The average value of the experimentally obtained values of the heat of polymorphic

transformation was taken as the final value AHp.t (Table).

Using the combined equation of the 1st and 2nd laws of thermodynamics and taking into account the phase transitions AGa=AGp, the following relation for the entropy of the phase transition was obtained:

ASp, = AHp,./Tp,.

Using the last equation and the values of the enthalpy of the phase transition of the substance and the temperature of the onset of

the peak (330 K) from the DSC data, we calculated the entropy of the phase transition of the compound under study (Table).

Table. Temperatures and thermodynamic functions of phase transitions of argyrodite family

compound s

Compound Tp.t., K AHpt., kJ -mol1 ASp.t., J-mot1 -K1 Ref., method

Cu8SiS6 336 14.85±0.59 44.20±1.77 [23], DSC

Cu8SiSe6 325 14.73±0.59 45.32±1.81 [24], DSC

Cu8GeS6 330 15.54±0.62 47.09±2.88 [23], DSC

12.4±5.1 37.8±14.1 [22], EMF

Cu8GeSe6 330 11.23±0.45 34.03±1.36 This work, DSC

11.9±2.8 35.5±8.4 [22], EMF

Ag8GeS6 495 9.46±0.38 19.11±0.76 [25], ACK

Ag8GeSe6 320 15.4±4.7 46.9±14.8 [19], EMF

321 16.95±0.68 52.80±2.11 [25], DSC

Ag8SnS6 446 8.77±0.35 19.66±0.79 [25], DSC

Ag8SnSe6 355 15.4±4.3 43.4±12.1 [20], EMF

19.67±0.60 55.41±2.22 [25], DSC

The Table also shows thermodynamic functions of phase transitions for other argyrodite family compounds, obtained by two different methods. As can be seen, for the Cu8GeSe6 compound these values are close. The obtained data for other analogs are somewhat different. It should be noted, that calorimetric data are the results of direct measurement of heat flow and have a fairly high accuracy. The relatively high errors in the data obtained by the EMF method are due to the fact that in this method the heat of phase transition is determined from the differences in the slopes of the temperature dependences straight of the EMF of concentration relative to the copper (or

silver) electrode cells for two modifications of studied compounds.

In addition, it should be noted that the enthalpy and entropy values of phase transformations of argyrodite compounds are abnormally high as compared to conventional polymorphic transitions. This is explained as being due to higher degree of disorder in the structure of argyrodite compounds during the phase transformation. During the transition to the high-temperature modification, a rigid anionic frame is formed, which has many empty positions, due to which copper (or silver) cations acquire high mobility. This leads to an additional increase in entropy.

Acknowledgment

This work supported by the Azerbaijan Science Foundation 1(42)-12/10/4-M-10.

Grant No AEF-MCG-2022-

References

1. Lin S., Li W., Pei Y. Thermally insulative thermoelectric argyrodites. Materials Today. 2021, vol. 48, pp. 198-213. https://doi.org/10.10167i.mattod.2021.01.00 7.

2. Li Z., Liu C., Zhang X., Zhang Z., Guo W., Shen L., Long Y. An easily prepared Ag8GeS6 nanocrystal and its role on the performance enhancement of polymer solar cells. Organic Electronics. 2017, vol. 45, pp. 247255. https://doi.org/10.10167j.orgel.2017.03 .029

3. Jin Z., Xiong Y., Zhao K., Dong H., Ren Q., Huang H., Shi X. Abnormal thermal conduction in argyrodite-type Ag9FeS6-Te materials. Materials Today Physics. 2021, vol. 19, pp. 100410-9. https://doi.org/10.1016/j.mtphys.2021.1004 10

4. Fan Y., Wang G., Wang R., Zhang B., Shen X., Jiang P., Zhou X. Enhanced thermoelectric properties of p-type argyrodites Cu8GeS6 through Cu vacanc. Journal of Alloys and Compounds. 2020, vol. 822, pp. 153665-6. https://doi.org/10.1016/jjallcom.2020.1536 65

5. Semkiv I., Ilchuk H., Pawlowski M., Kusnezh V. Ag8SnSe6 argyrodite synthesis and optical properties. Opto-Electronics Review. 2017, vol. 25, no. 1, pp. 37-40. https://doi.org/10.1016/i.opelre.2017.04.00 2

6. Yang C., Luo Y., Xia Y., Xu L., Du Z., Han Z., Li X., Cui J. Synergistic Optimization of the Electronic and Phonon Transports of N-Type Argyrodite Ag8Sn1-xGaxSe6 (x = 0-0.6) through Entropy Engineering. ACS Appl. Mater. Interfaces. 2021, vol. 13, no. 47, pp. 56329-56336.

https://doi.org/10.1021/acsami.1c17548

7. Shen X., Yang C., Liu Y., Wang G., Tan H. A High Temperature Structural and Thermoelectric study of Argyrodite Ag8GeSe6. ACS Appl. Mater. Interfaces. 2019, vol. 11, no. 2. pp. 2168-2176. https://doi.org/10.1021/acsami.8b19819

8. Jin M., Lin S., Li W., Chen Z., Li R., Wang

X. Pei Y. Fabrication and thermoelectric properties of single-crystal argyrodite Ag8SnSe6. Chemistry of Materials. 2019, vol. 31, no. 7, pp. 2603-2610. https://doi .org/10.1021/acs.chemmater.9b00 393

9. Ashirov G.M., Babanly K.N., Mashadiyeva L.F., Yusibov Y.A., Babanly MB. Phase equilibra in the Ag2Se-Ag8GeSe6-Ag8SiSe6 system and characterization of the Ag8Si1-xGexSe6 solid solutions. Chemical Problems, 2023, vol.21, no. 2, pp. 229-241. https://doi.org/10.32737/2221-8688-2023-3-229-241

10. Ghrib T., Al-Otaibi A.L., Almessiere M.A., Assaker I.B., Chtourou R. High thermoelectric figure of merit of Ag8SnS6 component prepared by electrodeposition technique. Chinese Physics Letters. 2015, vol. 32(12): https://doi.org/10.1088/0256-307X/32/12/127402

11. Hahn H., Schulze H., Sechser L. Über einige ternäre Chalkogenide vom Argyrodit-Typ. Naturwissenschaften. 1965, vol. 52, no. 15, pp. 451451. doi:10.1007/bf00627053

12. Gorochov O. Les composés Ag8MX6 (M = Si, Ge, Sn et X = S, Se, Te). Bull. Soc. Chim. Fr. 1968, pp. 2263-2275.

13. Studenyak I., Pogodin A., Studenyak V., Izai V., Filep M., Kokhan O., Kus P. Electrical properties of copper- and silver-containing superionic (Cu1-xAgx)7SiS5I mixed crystals with argyrodite structure. Solid State Ionics. 2020, vol. 345, pp. 115183-6.

https://doi.org/10.1016/j.ssi.2019.115183

14. Heep B.K., Weldert K.S., Krysiak Y., Day T.W., Zeier W.G., Kolb U., Snyder G.J., Tremel W. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag8SiSe6. Chem. Mater. 2017, vol. 29, no. 11, pp. 4833-4839. https://doi .org/10.1021/acs.chemmater.7b00 767

15. Ayoola O.M.; Buldum A.; Farhad S.; Ojo S.A. A Review on the Molecular Modeling

of Argyrodite Electrolytes for All-SolidState Lithium Batteries. Energies. 2022, vol. 15, pp. 7288-7291.

https://doi.org/10.3390/ en15197288

16. Sardarly R.M., Ashirov G.M., Mashadiyeva L.F., Aliyeva N.A., Salmanov F.T., Agayeva R.Sh., Mamedov R.A., Babanly M.B. Ionic conductivity of the Ag8GeSe6 compound. Modern Physics Letters B, 2022, vol. 36, p. 2250171. https://doi.org/10.1142/S021798492250171 8

17. Pogodin A.I., Filep M.J., Studenyak V.I., Symkanych O.I., Stercho I.P., Izai V.Yu., Kokhan O.P., Kus P. Influence of crystal structure disordering on ionic conductivity of Ag7+x(Pi-xGex)S6 single crystals. Journal of Alloys and Compounds. 2022, vol. 926, p. 166873. https://doi.org/10.1016/jjallcom.2022.166 873

18. Onoda M., Wada H., Sato A., Ishii, M. Low-temperature forms of superionic conductors, Cu8GeS6 and Ag7TaS6, and ion conduction path. Journal of Alloys and Compounds, 2004, vol. 383, no. 1-2, pp. 113117. doi:10.1016/j.jallcom.2004.04.018

19. Babanly M.B., Yusibov Y.A., Babanly N.B. The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary Copper and Silver Chalcogenides / Electromotive force and measurement in several systems. Ed.S.Kara. Intechweb.Org. 2011, p.57.

20. Alverdiyev I.Dzh., Bagheri S.M., Imamaliyeva S.Z., Yusibov Y.A., Babanly M.B. Thermodynamic study of Ag8GeSe6 by EMF with an Ag4RbI5 solid electrolyte. Russian Journal of Electrochemistry, 2017, vol. 53, no. 5, pp. 511-554. https://doi.org/10.1134/S102319351705003 2

21. Alverdiev I.Dzh., Imamalieva S.Z., Babanly D.M., Yusibov Yu.A., Tagiyev D.B., Babanly M.B. Thermodynamic study of silver-tin selenides by the EMF method with Ag4RbI5 Solid electrolyte. Russian Journal of Electrochemistry. 2019, vol. 55, no. 5, pp. 467-474.

https://doi.org/10.1134/S1023193519050021

22. Alverdiyev I.J., Imamaliyeva S.Z.,

Akhmedov E.I., Yusibov Yu.A., Babanly M.B. Thermodynamic properties of some ternary compounds of the argyrodite family. Azerbaijan Chemical Journal. 2023, no. 4 (in press).

23. Bayramova U.R., Babanly K.N., Ahmadov E.I., Mashadiyeva L.F., Babanly M.B.. Phase equilibria in the Cu2S-Cu8SiS6-Cu8GeS6 system and thermodynamic functions of phase transitions of the Cu8Si(i-X)GexS6 argyrodite phases. Journal of Phase Equilibria and Diffusion, 2023, vol. 44, pp. 509-519.

https://doi.org/10.1007/s11669-023-01054-

y

24. Bayramova U.R. Determination of the thermodynamic functions of the phase transition of the Cu8SiSe6 compound by the DSC method. Chemical Problems, 2022, vol. 20, no. 2, pp. 116-121. https://doi.org/10.32737/2221-8688-2022-2-116-121

25. Bayramova U.R., Poladova A.N., Mashadiyeva L.F., Babanly M.B. Calorimetric determination of phase transitions of Ag8BX6 (B=Ge, Sn; X=S, Se) compounds. Condensed Matter and Interphases, 2022, vol. 24, no 2, pp. 187195.

https://doi.org/10.17308/kcmf.2022.24/925 8

26. Tomashik V. Copper-germanium-selenium. In Book: Non-Ferrous Metal Ternary Systems. Semiconductor Systems: Phase Diagrams, Crystallographic and Thermodynamic Data. G. Effenberg, S. Ilyenko (Ed.) / Springer-Verlag Berlin Heidelberg. 2005. pp. 288-299. https://doi.org/10.1007/10915981_23

27. Onoda M., Ishii M., Pattison P. et al. Superspace-group approach to the phase transition of Cu8GeSe6. J. Solid State Chem. 1999, vol. 146, pp. 355-362. https://doi.org/10.1006/jssc.1999.8362

28. Moroz V. Section Ag8GeSe6-Cu8GeSe6 of Cu-Ag-Ge-Se system. Izv. Acad. Sciences of the USSR. Inorg. Mater. 1990, vol. 26, pp. 1830-1833. (In Russian)

29. Menczel J., Grebowicz J. The Handbook of Differential Scanning Calorimetry: Techniques and Low Molecular Mass Materials. Elsevier

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Science. 2022. 858 p. Calorimetry. Second Edition. Berlin:

30. Hohne G.W.H., Hemminger W.F. Springer. 2003, 458 p.

Flammersheim H.J. Differential Scanning

КАЛОРИМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ФАЗОВОГО ПЕРЕХОДА Cu8GeSe6 И СРАВНЕНИЕ С ДРУГИМИ СОЕДИНЕНИЯМИ СЕМЕЙСТВА АРГИРОДИТА

1У.Р. Байрамова, 2Э.И. Ахмедов, 3Д.М. Бабанлы, 1Л.Ф. Машадиева*, 1М.Б. Бабанлы

1Институт катализа и неорганической химии, Баку, Азербайджан 2Бакинский государственный университет, Азербайджан 3Азербайджанский государственный университет нефти и промышленности, Французско-Азербайджанский университет (UFAZ), Баку, Азербайджан e-mail: [email protected]

Аннотация: Данная работа является продолжением наших работ по термодинамическому исследованию синтетических аналогов минерала аргиродита. Методом дифференциальной сканирующей калориметрии (ДСК) проведено калориметрическое исследование фазового перехода соединения Cu8GeSe6. По данным кривых ДСК образцов исследуемого соединения различной массы определены температура и энтальпия фазового перехода от низкотемпературной орторомбической модификации к высокотемпературной кубической модификации. С помощью уравнения Гиббса-Гельмгольца также была рассчитана энтропия фазового перехода. Проведен сравнительный анализ полученных термодинамических значений исследуемого соединения с другими аргиродитами.

Ключевые слова: фазовый переход, термодинамические функции, селенид меди-германия, дифференциальная сканирующая калориметрия.

Cu8GeSe6 BÎRL9ÇM9SiNÎN FAZA KEÇiDÎNÎN KALORÎMETRÎK TÖDQiQi УЭ ARQÎRODÎT AÎLaSÎNÎN DÎG9R BÎRL9ÇM9L9RÎ ÎL9 MÜQAYiSÖSi

1U.R. Bayramova, 2E.i. 9hmadov, 3D.M. Babanli, 1L.F. Maçadiyeva*, 1M.B. Babanli

1Kataliz vd Qeyri-üzvi Kimya ïnstitutu, Baki, Azdrbaycan 2Baki Dövldt Universiteti, Baki, Azdrbaycan 3Azdrbaycan Dövldt Neft vd Sdnaye Universiteti, Fransa-Azdrbaycan Universiteti (UFAZ),

Baki, Azdrbaycan *e-mail: [email protected]

Xülasa: Bu i§ bizim argirodit mineralinin sintetik analoqlarinin termodinamik tsdqiqi üzrs apardigimiz i§lsrin davamidir. Cu8GeSe6 birlsçmssinin faza keçidinin kalorimetrik tsdqiqi diferensial skanedici kalorimetriya (DSK) üsulu ils aparilmi§dir. Tsdqiq olunan birlsçmsnin müxtslif kütlsli nümunslsrinin DSK syrilsri ssasinda açagi temperaturlu ortorombik modifikasiyadan yükssk temperaturlu kubik fazaya keçid temperaturu va entalpiyasi müsyysn edilmiçdir. Faza keçidinin entropiyasi da Gibbs-Helmholtz tsnliyi ils hesablanmiçdir. Tsdqiq olunan

birla§manin alda edilmiç termodinamik qiymatlarinin digar argiroditlarla müqayisali tahlili aparilmiçdir.

Açar sözlar: faza keçidi, termodinamik funksiyalar, mis-germanium selenid, diferensial skanedici kalorimetriya.

i Надоели баннеры? Вы всегда можете отключить рекламу.