2023. 19(1). 3-16
Строительная механика инженерных конструкций и сооружений Structural Mechanics of Engineering Constructions and Buildings
ISSN 1815-5235 (Print), 2587-8700 (Online)
http://journals.rudn.ru/structural-mechanics
Расчет и проектирование строительных конструкций Analysis and design of building structures
DOI 10.22363/1815-5235-2023-19-1-3-16 EDN: FFMQQR UDC 624.012
RESEARCH ARTICLE / НАУЧНАЯ СТАТЬЯ
Calculation of the formation of normal cracks in a reinforced concrete element based on the deformation theory of plasticity of concrete by G.A. Geniev
Ngoc Tuyen Vu1 , Natalia V. Fedorova2
lMoscow State University of Civil Engineering (National Research University), Moscow, Russian Federation
2Research Institute of Building Physics of the Russian Academy ofArchitecture and Building Sciences, Moscow, Russian Federation H [email protected]
Article history
Received: October 7, 2022 Revised: December 21, 2022 Accepted: December 25, 2022
For citation
Vu N.T., Fedorova N.V. Calculation of the formation of normal cracks in a reinforced concrete element based on the deformation theory of plasticity of concrete by G.A. Geniev. Structural Mechanics of Engineering Constructions and Buildings. 2023 ;19(1): 3—16. http://doi.org/10.22363/1815-5235-2023-19-1-3-16
Abstract. The authors present a refined method of determining the moment of cracking in reinforced concrete bar constructions using the diagram of deformation of concrete built on the basis of the deformation theory of plasticity by G.A. Geniev in which the stress and strain invariants of concrete are linked by nonlinear dependences. In the resulting defining equations, the hypothesis of flat sections, as well as the premise of reaching the limit values of concrete deformations on the stretched fibers of the cross-section are used. Stresses in concrete are determined through deformation values in accordance with the nonlinear deformation diagram of concrete. On the basis of the assumptions accepted, analytical dependences for determining the moment of cracking in the sections of bending elements with single and double reinforcement have been acquired. The formulas obtained were used in the analysis of various factors influence on crack resistance of bendable reinforced concrete elements. It was found out that the moment of crack formation practically does not change when percentage of reinforcement of longitudinal tensile or compressed reinforcement changes. The most effective method of crack resistance improvement is the increase of concrete strength. The proposed methodology is verified by comparison with experimental results on reinforced concrete prototypes. It is concluded that the use of the diagram of nonlinear deformation of concrete on the basis of the theory of plasticity by G.A. Geniev allows to estimate more strictly the crack resistance of reinforced concrete rod elements.
Keywords: deformation diagrams, plasticity, relative deformations, reinforced concrete structures, cracking moment
Ngoc Tuyen Vu, Candidate of Technical Sciences, senior lecturer, Department of Fundamental Education, Moscow State University of Civil Engineering (National Research University), 26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation; ORCID: 0000-0001-5755-8345, Scopus Author ID: 57215934802, eLIBRARY SPIN-code: 5948-4496; [email protected]
Natalia V. Fedorova, Doctor of Technical Sciences, Professor, leading researcher, Department No. 40 "Perspective Priority Directions in Construction Equipment", Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences; 21 Lokomotivny Proezd, Moscow, 127238, Russian Federation; ORCID: 0000-0002-5392-9150, Scopus Author ID: 57196437054, ResearcherID: 0-8119-2015, eLIBRARY SPIN-code: 3365-8320; [email protected]
© Vu N.T., Fedorova N.V.. 2023
I This work is licensed under a Creative Commons Attribution 4.0 International License https://creativecommons.Org/licenses/by-nc/4.0/legalcode
Расчет по образованию нормальных трещин в железобетонном элементе на основе деформационной теории пластичности бетона Г.А. Гениева
Н.Т. Ву1 , Н.В. Федорова2
1Национальный исследовательский Московский государственный строительный университет, Москва, Российская Федерация 2Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук, Москва, Российская Федерация Н [email protected]
Аннотация. Представлена уточненная методика определения момента тре-щинообразования в железобетонных стержневых конструкциях с использованием диаграммы деформирования бетона, построенной на основе деформационной теории пластичности Г.А. Гениева, в которой инварианты напряженного и деформированного состояния бетона связаны между собой нелинейными зависимостями. В полученных определяющих уравнениях использованы гипотеза плоских сечений, а также предпосылка о достижении на растянутых волокнах поперечного сечения предельных значений деформаций бетона. Напряжения в бетоне определяются через значения деформаций в соответствии с нелинейной диаграммой деформирования бетона. На основе принятых предпосылок получены аналитические зависимости для определения момента трещинообразования в сечениях изгибаемых элементов с вариантами одиночного и двойного армирования. Полученные формулы применялись при анализе влияния различных факторов на трещиностойкость изгибаемых железобетонных элементов. Установлено, что при изменении процента армирования продольной растянутой или сжатой арматуры момент образования трещин практически не меняется. Наиболее эффективным методом повышения трещиностойкости является увеличение прочности бетона. Предложенная методика верифицирована сравнением с экспериментальными результатами на железобетонных опытных образцах. Сделан вывод о том, что использование диаграммы нелинейного деформирования бетона на основе теории пластичности Г.А. Гениева позволяет более строго оценить трещино-стойкость железобетонных стержневых элементов.
Ключевые слова: диаграммы деформирования, пластичность, относительные деформации, железобетонные конструкции, момент трещинообразования
Introduction
It is known that in reinforced concrete structures under the action of loads and impacts, the formation of cracks is allowed due to partial or complete removal of the stretched concrete zone from the work [1-4]. The work of many scientists, such as V.I. Murashev [5], A.A. Gvozdev [6], A.S. Zalesov [7], V.N. Baikov [8], N.I. Karpenko [9], E.N. Kodysh [10], N.N. Trekin [11], V.A. Eryshev [12; 13], Vl.I. Kolchunov [14], A.G. Tamrazyan et al. [15] was devoted to the solution of this problem in different periods of time. A number of methods has been developed for determining the moment of crack formation, and successfully implemented in regulatory documents of different generations. Nevertheless, accurate prediction of the crack formation process has not lost its relevance and is important for improving the design of safe reinforced concrete structures, and in some cases it is critical and excludes the possibility of their further operation (for example, waterproof structures, structures operated in ground water, reservoirs, silos, coating shells [16-18], etc. ). The accurate determination of the moment of crack formation for structures made of high-strength reinforced concrete and fiber reinforced concrete is of particular importance [19-22]. As shown in [23] the range of deformation to failure is relatively short and does not exceed 25-30% in such structures after the formation of cracks. Such studies
Ву Нгок Туен, кандидат технических наук, старший преподаватель, кафедра фундаментального образования, Национальный исследовательский Московский государственный строительный университет, Российская Федерация, 129337, Москва, Ярославское шоссе, д. 26; ORCID: 0000-00015755-8345, Scopus Author ID: 57215934802, eLIBRARY SPIN-код: 5948-4496; [email protected]
Федорова Наталия Витальевна, доктор технических наук, профессор, ведущий научный сотрудник, отдел № 40 «Перспективные приоритетные направления в строительной технике», Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук, Российская Федерация, 127238, Москва, Локомотивный пр-д, д. 21; ORCID: 0000-0002-5392-9150, Scopus Author ID: 57196437054, ResearcherlD: 0-8119-2015, eLIBRARY SPIN-код: 3365-8320; [email protected]
История статьи
Поступила в редакцию: 7 октября 2022 г. Доработана: 21 декабря 2022 г. Принята к публикации: 25 декабря 2022 г.
Для цитирования
Vu N.T., Fedorova N.V. Calculation of the formation of normal cracks in a reinforced concrete element based on the deformation theory of plasticity of concrete by G.A. Geniev // Строительная механика инженерных конструкций и сооружений. 2023. Т. 19. № 1. С. 3-16. http://doi.org/10.22363/1815-5235-2023-19-1-3-16
are also relevant for conventional mass-designed structures, since the formation of cracks entails a significant change in the parameters of the limit states of the second group - stiffness, crack opening, which in many cases become decisive when assigning reinforcement and the level of prestressing. In this regard, studies aimed at clarifying the level of load at which cracks form in the structure continue to be relevant
In the previous Russian Construction Standards and Regulations (SNiP) 2.03.01-84*1 the structural model for determining the force perceived by the cross-sections of the bending elements normal to the longitudinal axis during the formation of cracks was built on the basis of the following provisions. The hypothesis of flat sections (Bernoulli's hypothesis) is adopted when the calculated section is deformed. It was assumed that at the moment of cracking, the relative deformation of the extreme stretched fiber of concrete reaches a maximum value equal to 2Rbtser / Eb, and the stress in tensile concrete, regardless of its deformations, was assumed to be constant and
equal to the tensile strength of concrete Rbt,ser. The stresses in the concrete at the compressed zone are determined taking into account the elastic deformations of the concrete, i.e. the stress diagram in the compressed zone has a triangular shape (Figure 1, a). According to the accepted provisions, the moment perceived by the section normal to the longitudinal axis of the element during the formation of a crack is determined by the formula:
M crc = Rbt,serWpl- (1)
The concept of elastic-plastic moment of resistance is introduced in order to take into account plastic deformations of tensile concrete Wpl:
Figure 1. Schemes of the stress diagram in the cross section of the element when calculating it according to the formation of cracks normal to the longitudinal axis of the element: a - according to SNiP 2.03.01.84*; b - according to SP 63.13330.20182
In the new code of rules currently in force SP 63.13330.2018, in contrast to SNiP 2.03.01.84*, some excellent starting points for constructing a calculation model are adopted: the stress diagram in the tensile zone of concrete takes a trapezoidal shape with stresses not exceeding the design values of concrete resistance stretching Rbt,ser; the relative deformation of the extreme stretched fiber of concrete is taken equal to its limit value Ebtut = 0,00015 (Figure 1, b).
From the point of view of the theory of elasticity, the above approaches for determining the moment of cracking in the cross section of reinforced concrete elements violate the generalized Hooke's law for concrete [24]. It has also been proved by experimental data that the actual diagram of concrete stresses in the tensile and compressed zone differs from the accepted one and has a curvilinear shape even with a low level of loading [25-30]. Therefore, such approaches, described in domestic standards in order to simplify the calculation
1 SNiP 2.03.01.84*. Concrete and reinforced concrete structures. Moscow: USSR Gosstroi Publ.; 1989. 84 p. (In Russ.)
2 SP 63.13330.2018. Concrete and reinforced concrete structures. Main provisions. Moscow: Ministry of Construction and Housing and Communal Services of the Russian Federation; 2018. 124 p. (In Russ.)
apparatus, are conditional. In this regard, it is of interest to quantify the noted assumptions and develop a variant of a more rigorous calculation model, taking into account the plastic deformations of concrete to determine the limiting force perceived by the sections of bending elements normal to the longitudinal axis during the formation of cracks. The solution of the problem under consideration in this paper is based on the deformation theory of plasticity of concrete by G.A. Geniev.
Method
The stress-strain state of a bent reinforced concrete element before the formation of cracks will be determined based on the following assumptions:
1. Sections remain flat during bending, i.e. deformations along the height of the element change according to a linear law [31].
2. The stresses in the concrete of the compressed and tensile zones are determined taking into account the inelastic deformations described by the deformation theory of plasticity of concrete by G.A. Geniev [32; 33].
3. The condition for the formation of a crack in the section is the equality of the limiting deformations on the stretched side of concrete to the value of the limiting tensile strength of concrete sbt ult.
4. Stresses in tensile reinforcement are taken depending on the relative deformations as for an elastic body.
In accordance with the adopted second hypothesis, the invariants of the stressed and deformed state of
concrete are interconnected by nonlinear dependencies:
T = G0
'ir ^
2r, y
(3)
where the initial shear modulus Go is determined by the formula
Go =
Eb
2 (1 + v):
(4)
r, r - intensity of shear deformations and its limiting value respectively.
To determine the moment of formation of normal cracks, consider the case of pure bending of a reinforced concrete rod, for which only normal stresses occur in the cross section. In this case, we have the following boundary conditions: ox ^ 0, o2 = o3.
Let us express the intensity of concrete shear deformations and its limiting value in terms of the main deformations:
r=JfV (i - s2 )2+(s2 - s3 )2+( - si )2 = ij| V (i - )2+(si - ^ )2+(si - si )2 = J2 (1 (5)
r ' = ^ "V)S1>ulf (6)
Let us express in (1) the intensity of shear stresses, the square of which is numerically equal to the second invariant of the stress deviator:
T = -j=yl( -o2)2 + ( -03)2 + (03 -Gj)2 =-j=yj( -0)2 +(0-0)2 +(0-Gj)2 =^33 (7)
Putting formulas (4)-(7) in (3) we get a nonlinear relationship between the main stress and the main deformation of concrete S1 in cross section with pure bending:
( \
V
2е
1,ult
= Eb
Formula (8) for compressed and tensile concrete can be written as
(zb) = Eb
( \ i
V
2s
b,ult
sb;
(8)
(9)
Msbt) = Eb
1 - Sb. "
2s
V bt,ult J
sbf
Here, the ultimate strains of concrete in tension and compression are determined by the formulas
s b,ult = 2
R
b.ser
(10)
(ii)
Sbt,ult 2
R
(12)
In accordance with the accepted third and fourth prerequisites for calculating the stress and strain diagrams in the cross section of a reinforced concrete element, they have the form shown in Figure 2.
Figure 2. The adopted scheme for the distribution of strains and stresses in the section of the element when determining the moment of cracking
Using the accepted first premise, we determine the deformation of compressed concrete at a distance xb from the neutral axis:
xt
s b =
h - x
'bt,ult •
(13)
Similarly, we determine the deformation of tensile concrete at a distance xbt from the neutral axis:
h - x
'bt.ult
b
b
Using formulas (11) and (13) into formula (9), we obtain the dependence of the stress of compressed concrete on Xb:
Gb ( xb ) =
Rbt,ser[2Rb,ser (h - X) - Rbt,ser]
(i5)
Rb,ser ( - X)
Similarly, putting (12) and (14) into formula (10), we obtain the stress of tensile concrete, depending on Xbt:
Rbt,serXbt [2 (h - X)- Xbt ]
Gbt( xbt) = ■
(h - x )2
(i6)
We also determine the deformations of tensioned and compressed reinforcement from the first premise about flat sections:
_ h X as vbt,ser
S s _ ^ £bt„it _
h-x
_ 2Rbt,ser h-x-as ; bt'ult E h-x '
(i7)
x-a
Ssc -" S
h-x
2Rbt,ser x a~
bt,„lt
Eb h-x
(i8)
From the condition that the sum of the projections of all longitudinal forces is equal to zero, we obtain the following expression:
h-x
2 X _ a Es S A + J Gbt (xbt ) M (xbt )_ J Gb (xb ) M (xb ) + E Ssc AS•
(i9)
Using formulas (15)-(18) into formula (19) we get
(i+ß)bx3 + 3 [2a( As + A/ ) + bh] x2 + 6[a( Asas - A/a's ) - ah(2As + A/ ) - bh +2h {bh2 + 3a[As (h - as ) + A'a's ]} _ 0,
x +
(20)
here,
F R
a _ E ; ß _ ^
Eb Rb ser
(2i)
From the solution of the cubic equation (20), the height of the compressed zone of the section is determined. After that, we can determine the moment of internal forces relative to the zero line. It will be equal to the external moment:
h-x
Mcrc _ EsS sAs (h-x-as )+ J Gbt (xbt ) bxbtd (xbt ) + J Gb (xb ) bxbd (b ) + Es Ssc AS (x - aS ) •
(22)
Being used in formula (22) the found formulas for stresses in concrete and deformations in reinforcement, we obtain:
x
x
M 2о/ДмеГ ^ 5SbtRbt r ^ в/ [в,ser (h - x)- 3Rbt,serx] ^ 2aJ'sRbt,ser
Mcrc =—j-+-6-+- -7T,-^- + -' ^
h - x 6 4 (h - X) h -x
где
Js = A (h - x - as )2 (24)
moment of inertia of tensile reinforcement to the neutral axis;
b (h - x )2 2
St -(25)
static moment of tensioned concrete to the neutral axis;
bx3
Jb =— (26)
moment of inertia of compressed concrete to the neutral axis;
J[ = A/ ( x - a/) (27)
moment of inertia of compressed reinforcement to the neutral axis.
Let us consider a special case of a single reinforcement. In this case, when As = a/ = 0, the equation for determining the height of the compressed zone takes the form
(1 + p)bx3 + 3 (2aAs + bh) x2 + 6 [aAs (as - 2h) - bh2 ] x + 2h \bh2 + 3aAs (h - as)] = 0. (28)
The moment of cracking is determined by the expression:
M 20/At,ser ^ 5^btRbt,ser ^ PJb [BRb,ser (h - x)- 3Rbt,serx]
M crc = h-+-6-+--7Г,-^- • (29)
h - x 6 4 (h - x)
Results and discussion
According to the obtained calculated dependences, the calculation of the moment of crack formation in a reinforced concrete bending element of a rectangular section with section dimensions: height h = 200 mm, width b = 100 mm was performed. A short load action was considered. A500 class reinforcement with modulus of elasticity is adopted Es = 2 -105 MPa. At the same time, the percentage of reinforcement of the longitudinal
tensile reinforcement varied ps = As / bh from 0,2 to 4%, percentage of reinforcement of longitudinal compression reinforcement p/ = A/ / bh ot 0,2 go 4%, and the class of concrete varied from B10 to B100.
By analyzing the results of the calculation, it was established (Figure 3) that with an increase in the percentage of reinforcement p by 20 times, the value of the height of the compressed zone of concrete x slightly increases by 1.18 times when calculated according to the calculated dependencies SP 63.13330.2018 and by 1.13 times when calculated using formula (20). In this case, the relationship between them is linear (Figure 3, a).
c
Figure 3. Influence of the percentage of reinforcement of longitudinal tension reinforcement:
a — on the height of the compressed zone of concrete; b - maximum stress in compressed concrete Oi,max; c - moment of cracking; according to the proposed method; ° according to SP 63.13330.2018
b
а
A similar linear relationship is observed between the percentage of reinforcement with longitudinal tensile reinforcement and the stress in the upper compressed fiber of concrete (Figure 3, b). Quantitative maximum compressive stress Ob,max slightly depends on |is .
Insignificant changes are observed in the quantitative values of the moment of cracking in the considered reinforced concrete element Mcrc at different values of reinforcement percentage |is . With an increase in the percentage of reinforcement |is by 20 times moment of cracking, perceived by the section, calculated according to SP 63.13330.2018, increases by 1.45 times, and calculated by the method under consideration -by 1.66 times. An analysis of the influence of the percentage of reinforcement with longitudinal compressed reinforcement was also carried out on the stressed state of the reinforced concrete section at the time of crack formation (Figure 4). It has been established that the height of the compressed zone of concrete x decreases with an increase in the percentage of reinforcement (see Figure 4, a), but this decrease is insignificant and when calculating according to SP 63.1330.2018 and when calculated by formula (18) equals to 1.17 times. The maximum stress in the concrete of the compressed zone is practically independent of the percentage of reinforcement (see Figure 4, b). In this case, the moment of cracking, determined according to SP 63.1330.2018, increases by 3.6 times. The value of this moment, calculated by the above method, does not change (Figure 4, c). The independence of the value of the moment of cracking from the percentage of reinforcement by longitudinal compressive reinforcement can be explained as follows. As the percentage of reinforcement increases from the equilibrium equation in the direction of the normal to the cross section (see Figure 2), the height of the compression zone will decrease. In this case, an additional compressive force occurs in the concrete compression zone, caused by the compressed reinforcement. Therefore, the value of the moment of cracking, calculated by integrating the compressive stress in concrete and reinforcement over the area of the compressed zone, will practically not change.
c
Figure 4. Influence of the percentage of reinforcement of longitudinal compression reinforcement:
- on the height of the compressed zone of concrete x: b — maximum stress in compressed concrete ot.nnx; c - moment of cracking Mcr according to the proposed method; ° according to SP 63.13330.2018
Analysis of the change in the height of the compressed zone of concrete, the maximum compressive stress in concrete, as well as the moment of cracking, depending on the class of concrete used, showed the following (Figure 5). The height of the compressed zone of the section of the element, calculated according to SP 63.13330.2018 and according to the proposed method, does not depend on the value of the concrete class (Figure 5, a)
The value of the maximum compressive stress in concrete Ob.max when changing the class of concrete, it increases significantly according to the proposed method, and when calculating according to SP 63.13330.2018 this value is practically unchanged (Figure 5, b).
The values of the moments of cracking in the calculation for SP 63.13330.2018 and according to the proposed method, depending on the class of concrete, they change significantly (Figure 5, c). t can be seen from the graphs that with a 10-fold increase in the class of concrete, the moment of cracking increases when calculating according to SP 63.13330.2018 by 3,93 times and when calculating according to the proposed method -3.95 times.
Investigating the dependence of the cracking moment on the above factors, we can conclude that reinforcement does not play a significant role in improving the crack resistance of reinforced concrete structures. The most effective way to increase the crack resistance of reinforced concrete elements is to increase the class of concrete used. The difference between the moments of cracking, calculated according to SP 63.13330.2018 and according to the proposed method, depending on various factors, varies from 9.3 to 16.7%.
To assess the degree of reliability of the obtained dependences, a numerical comparison was made of the results of calculating the fracture toughness moment calculated by the proposed method with the experimental data of Vl.I. Kolchunov, Al-Hashimi Omar [34], obtained using modern tools, which allowed a more detailed and accurate study of the process of crack formation in reinforced concrete structures. The results of a comparison of experimental data on the moment of crack formation, calculation data obtained by formula (23), and according to the method of SP 63.13330.2018 for beams with a section of 100^250 mm, with a total length of 1200 mm, supported on two supports and loaded with concentrated loads, from ordinary and lightweight concrete are presented in Table.
b
a
a
c
Figure 5. Influence of concrete class:
a - on the height of the compressed zone of concrete; b - maximum stress in compressed concrete; c — moment of cracking; according to the proposed method; ° according to SP 63.13330.2018
As follows from the table, the calculated value of the moment of crack formation according to SP 63.13330.2018 turned out to be significantly underestimated compared to the experimental values by an average of 30% for beam structures made of lightweight autoclaved cellular concrete and by 22.5% for beams made of heavy concrete. When calculating according to the proposed method, the agreement between the calculated and experimental average values of the moment of crack formation is closer.
b
а
Calculation results of the cracking moment in bending elements
Construction code Concrete Reinforcement Load of first crack formation, kg Mexp crc MSP crc M' crc
kHm kHm Asp, % kHm At, %
E2-1-2 Heavy concrete B25: Rb = 23 MPa, Eb =25 330 MPa 4010 A240 Rs = 380 MPa 2400 4.8 3.6 25.1 3.9 16.8
E5-1-2 Heavy concrete B25: Rb = 23 MPa, Eb = 25 330 MPa 4010 A240 Rs = 380 MPa 2300 4.6 3.6 20.3 3.9 15.6
Ea-4 Autoclaved cellular concrete Rb = 3.5 MPa 208 A240 Rs = 300 MPa 1150 2.3 1.6 30 1.8 20.1
Note: Mcerxcp ,McSrp ,Mc'rc - the moment of fracturing, respectively experimental, by SP 63.13330.2018 and the proposed method; Agp - the discrepancy between the experimental data and the results of calculations by SP 63.13330.2018; A t - the same and the calculation results in accordance with the received formula (23).
From this we can conclude that the use in the calculation of the diagram and analytical dependences of the nonlinear deformation of concrete, obtained on the basis of the theory of plasticity by G.A. Geniev, allows a more rigorous assessment of the crack resistance of bent reinforced concrete elements.
Conclusion
1. An alternative variation of the calculation model was proposed and analytical dependencies were obtained to determine the moment of crack formation in a reinforced concrete bending element reinforced with double reinforcement based on the deformation theory of plasticity of concrete by G.A. Geniev.
2. The numerical analysis of the influence of the percentage of reinforcement of longitudinal tensioned and compressed reinforcement and the class of concrete on the moment of cracking in reinforced concrete bending elements showed the different influence of these factors when using the SP 63.13330.2018 method for calculation and the dependences of the proposed version of the calculation model. The quantitative values of the moment of cracking when calculated according to the proposed formulas with Integrals are higher from 9.3 to 16.7% compared to the calculation according to SP 63.13330.2018. At the same time, the calculated values obtained by the proposed method are closer to the values of the cracking moment obtained experimentally for beams made of heavy and light concretes.
References
1. Al-Fakih A., Hisbany Mohd Hashim M., Alyousef R., Mutafi A., Hussein Abo Sabah S., Tafsirojjaman T. Cracking behavior of sea sand RC beam bonded externally with CFRP plate. Structures. 2021;33:1578-1589. http://doi.org/10.1016/JISTRUC.2021.05.042
2. Nasser H., Vandewalle L., Verstrynge E. Effect of pre-existing longitudinal and transverse corrosion cracks on the flexural behaviour of corroded RC beams. Construction and Building Materials. 2022;319:126141. http://doi.org/10.1016/J.C0NBUILDMAT.2021.126141
3. Jebasingh Daniel J. Experimental and numerical study on the cracking behavior and flexural strength of RC shallow beams with rectangular opening and varying length. Structures. 2022;40:460-468. http://doi.org/10.1016/JISTRUC.2022.04.040
4. Nayak C.B., Narule G.N., Surwase H.R. Structural and cracking behaviour of RC T-beams strengthened with BFRP sheets by experimental and analytical investigation. Journal of King Saud University - Engineering Sciences. 2022;34(6):398-405. http://doi.org/10.1016/J.JKSUES.2021.01.001
5. Murashev V.I. Crack resistance, stiffness and strength of reinforced concrete. Moscow: Mashstroyizdat Publ.; 1950. (In Russ.)
6. Gvozdev A.A., Borishansky M.S. To the question of the calculation of bending elements according to the stage of destruction. Project and Standard. 1934;(8):7-12. (In Russ.)
7. Zalesov A.S., Mukhamediev T.A., Chistyakov E.A. Calculation of crack resistance of reinforced concrete structures according to new regulatory documents. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2002;(5):15-19. (In Russ.)
8. Baikov V.N., Sigalov E.E. Reinforced concrete structures. General course. Moscow: Stroyizdat Publ.; 1991. (In Russ.)
9. Karpenko N.I., Radaikin O.V. On the improvement of concrete deformation diagrams for determining the moment of cracking and breaking moment in bending reinforced concrete elements. Construction and Reconstruction. 2012;41(3):10-16. (In Russ.)
10. Trekin N.N., Kodysh E.N., Trekin D.N. Improvement of the method for assessing the crack resistance of bent reinforced concrete elements. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2020;601(1):61-64. (In Russ.)
11. Trekin N.N., Kodysh E.N., Trekin D.N. Calculation of the formation of normal cracks based on the deformation model. Industrial and Civil Construction. 2016;(7):74-78. (In Russ.)
12. Yeryshev V.A., Kazakov M.Yu. To the method of determining the moment of cracking of bent reinforced concrete elements by a nonlinear deformation model. Bulletin NGIEI. 2017;79(12):32-42. (In Russ.)
13. Mukhamediev T.A. Taking into account the inelastic properties of concrete when calculating reinforced concrete structures for the formation of cracks. Structural Mechanics and Analysis of Constructions. 2018;280(5):24-29. (In Russ.)
14. Kolchunov Vl.I. Numerical-analytical method in reinforced concrete mechanics. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(6):525-533. (In Russ.) http://doi.org/10.22363/1815-5235-2022-18-6-525-533
15. Tamrazyan A.G., Chernik V.I., Matseevich T.A., Manaenkov I.K. Analytical model of deformation of reinforced concrete columns based on fracture mechanics. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(6):573-583. http://doi.org/10.22363/1815-5235-2022-18-6-573-583
16. Li Z., Zhu H., Du C., Gao D., Yuan J., Wen C. Experimental study on cracking behavior of steel fiber-reinforced concrete beams with BFRP bars under repeated loading. Composite Structures. 2021;267:113878. http://doi.org/10.1016/J.C0MPSTRUCT.2021.113878
17. Wei C., Zhang Q., Yang Z., Li M., Cheng Z., Bao Y. Flexural cracking behavior of reinforced UHPC overlay in composite bridge deck with orthotopic steel deck under static and fatigue loads. Engineering Structures. 2022;265:114537. http://doi.org/10.1016/J.ENGSTRUCT.2022.114537
18. Cui S., Xu X., Chen Z., Zeng G., Ouyang Q., Li G. Effect of different sizing agent-treated basalt fibers on bending and cracking performance of reinforced BFRC beams. Construction and Building Materials. 2023;365:130037. http://doi.org/10.1016J.C0NBUILDMAT.2022.130037
19. Zhao M., Li C., Su J., Shang P., Zhao S. Experimental study and theoretical prediction of flexural behaviors of reinforced SFRELC beams. Construction and Building Materials. 2019;208:454-463. http://doi.org/10.1016J.C0NBUILDMAT.2019.03.037
20. Luo J., Shao X., Fan W., Cao J., Deng S. Flexural cracking behavior and crack width predictions of composite (steel + UHPC) lightweight deck system. Engineering Structures. 2019;194:120-137. http://doi.org/10.1016/J.ENGSTRUCT.2019.05.018
21. Glodkowska W., Ziarkiewicz M. Cracking behavior of steel fiber reinforced waste sand concrete beams in flexure - experimental investigation and theoretical analysis. Engineering Structures. 2018;176:1-10. http://doi.org/10.1016/J.ENGSTRUCT.2018.08.097
22. Ismail M.K., Hassan A.A.A., AbdelAleem B.H., El-Dakhakhni W. Flexural behavior and cracking of lightweight RC beams containing coarse and fine slag aggregates. Structures. 2023;47:1005-1019. http://doi.org/10.1016/JISTRUC.2022.1L065
23. Travush V.I., Karpenko N.I., Kolchunov Vl.I., Kaprielov S.S., Demyanov A.I., Bulkin S.A., Moskovtseva V.S. Results of experimental studies of complex-stressed beams of circular cross-section made of high-strength fibro-reinforced concrete. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(4):290-297. http://doi.org/10.22363/1815-5235-2020-16-4-290-297
24. Korsun V.I., Karpenko S.N., Makarenko S.Yu., Nedorezov A.V. Modern strength criteria for concrete under volumetric stress conditions. Construction and Reconstruction. 2021;97(5):16-30. (In Russ.)
25. Fedorova N.V., Vu N.T., Medyankin M.D., Phan D.Q. Determination of the Viscosity modulus of concrete under static-dynamic loading regimes. International Scientific Siberian Transport Forum. 2022;403(1):1294-1302.
26. Yuan P., Xiao L., Wang X., Xu G. Failure mechanism of corroded RC beams strengthened at shear and bending positions. Engineering Structures. 2021;240:112382. http://doi.org/10.1016/J.ENGSTRUCT.2021.112382
27. Yu X.Y., Jiang C., Zhang W.P. Failure mode-based calculation method for bending bearing capacities of corroded RC beams strengthened with CFRP sheets. Engineering Structures. 2022;271:114946. http://doi.org/10.1016/J.ENGSTRUCT.2022.114946
28. Zinoviev V.N. Dilatation effect and state diagram of concrete under uniaxial and triaxial compression. Part 2. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2015;(2):27-31. (In Russ.)
29. Zinoviev V.N., Smolyagov O.O., Grigoriev A.A. Methods for studying microcrack formation in concrete under uniaxial compression. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2014;(1):27-31. (In Russ.)
30. Zinoviev V.N. Combined state diagram and parametric levels of microcracking in concrete. Part 3. Beton i Zhelezobeton [Concrete and reinforced Concrete]. 2015;(3):28-31. (In Russ.)
31. Kolchunov V.I., Yakovenko I.A. On the use of the hypothesis of flat sections in reinforced concrete. Construction and Reconstruction. 2011;38(6):16-23. (In Russ.)
32. Geniev G.A. Variant of the deformation theory of plasticity of concrete. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 1969;(2):18-19. (In Russ.)
33. Geniev G.A., Kissyuk V.N., Tyupin G.A. Theory of plasticity of concrete and reinforced concrete. Moscow: Stroyizdat Publ.; 1974. (In Russ.)
34. Kolchunov V.I., Al-Hashimi O.I., Protchenko M.V. Rigidity of reinforced concrete structures in bending with transverse and longitudinal forces. Construction and Reconstruction. 2021;(6):5-19. (In Russ.)
Список литературы
1. Al-Fakih A., Hisbany Mohd Hashim M., Alyousef R., Mutafi A., Hussein Abo Sabah S., Tafsirojjaman T. Cracking behavior of sea sand RC beam bonded externally with CFRP plate // Structures. 2021. Vol. 33. Pp. 1578-1589. http://doi.Org/10.1016/J.ISTRUC.2021.05.042
2. Nasser H., Vandewalle L., Verstrynge E. Effect of pre-existing longitudinal and transverse corrosion cracks on the flexural behaviour of corroded RC beams // Construction and Building Materials. 2022. Vol. 319. Article 126141. http://doi.org/10.1016/J.C0NBUILDMAT.2021.126141
3. Jebasingh D.J. Experimental and numerical study on the cracking behavior and flexural strength of RC shallow beams with rectangular opening and varying length // Structures. 2022. Vol 40. Pp. 460-468. http://doi.org/10.1016/J.ISTRUC.2022.04.040
4. Nayak C.B., Narule G.N., Surwase H.R. Structural and cracking behaviour of RC T-beams strengthened with BFRP sheets by experimental and analytical investigation // Journal of King Saud University - Engineering Sciences. 2022. Vol. 34. No. 6. Pp. 398-405. http://doi.org/10.1016/J.JKSUES.2021.01.001
5. Мурашев В.И. Трещиноустойчивость, жесткость и прочность железобетона. М.: Машстройиздат, 1950. 268 c.
6. Гвоздев А.А., Боришанский М.С. К вопросу о расчете изгибаемых элементов по стадии разрушения // Проект и стандарт. 1934. № 8. С. 7-12.
7. Залесов А.С., Мухамедиев Т.А., Чистяков Е.А. Расчет трещиностойкости железобетонных конструкций по новым нормативным докуменам // Бетон и железобетон. 2002. № 5. С. 15-19.
8. Байков В.Н., Сиголов Э.Е. Железобетонные конструкции. Общий курс. М.: Стройиздат, 1991. 767 c.
9. Карпенко Н.И., Радайкин О.В. К совершенствованию диаграмм деформирования бетона для определения момента трещинообразования и разрушающего момента в изгибаемых железобетонных элементах // Строительство и реконструкция. 2012. T. 41. № 3. С. 10-16.
10. Трекин Н.Н., Кодыш Э.Н., Трекин Д.Н. Совершенствование метода оценки трещиностойкости изгибаемых железобетонных элементов // Бетон и железобетон. 2020. Т. 601. № 1. С. 61-64.
11. Трекин Н.Н., Кодыш Э.Н., Трекин Д.Н. Расчет по образованию нормальных трещин на основе деформационной модели // Промышленное и гражданское строительство. 2016. № 7. С. 74-78.
12. Ерышев В.А., Косков М.Ю. К методике определения момента трещинообразования изгибаемых железобетонных элементов по нелинейной деформационной модели // Вестник НГИЭИ. 2017. Т. 79. № 12. С. 32-42.
13. Мухамедиев ТА. Учет неупругих свойств бетона при расчете железобетонных конструкций по образованию трещин // Строительная механика и расчет сооружений. 2018. Т. 280. № 5. С. 24-29.
14. Колчунов Вл.И. Численно-аналитический метод в механике железобетона // Строительная механика инженерных конструкций и сооружений. 2022. Т. 18. № 6. С. 525-533. http://doi.org/10.22363/1815-5235-2022-18-6-525-533
15. Тамразян А.Г., Черник В.И., Мацеевич Т.А., Манаенков И.К. Аналитическая модель деформирования железобетонных колонн на основе механики разрушения // Строительная механика инженерных конструкций и сооружений. 2022. Т. 18. № 6. С. 573-583. http://doi.org/10.22363/1815-5235-2022-18-6-573-583
16. Li Z., Zhu H., Du C., Gao D., Yuan J., Wen C. Experimental study on cracking behavior of steel fiber-reinforced concrete beams with BFRP bars under repeated loading // Composite Structures. 2021. Vol. 267. Article 113878. http://doi.org/10.1016/J.C0MPSTRUCT.2021.113878
17. Wei C., Zhang Q., Yang Z., Li M., Cheng Z., Bao Y. Flexural cracking behavior of reinforced UHPC overlay in composite bridge deck with orthotropic steel deck under static and fatigue loads // Engineering Structures. 2022. Vol. 265. Article 114537. http://doi.org/10.1016/J.ENGSTRUCT.2022.114537
18. Cui S., Xu X., Chen Z., Zeng G., Ouyang Q., Li G. Effect of different sizing agent-treated basalt fibers on bending and cracking performance of reinforced BFRC beams // Construction and Building Materials. 2023. Vol. 365. Article 130037. http://doi.org/10.1016/J.C0NBUILDMAT.2022.130037
19. Zhao M., Li C., Su J., Shang P., Zhao S. Experimental study and theoretical prediction of flexural behaviors of reinforced SFRELC beams // Construction and Building Materials. 2019. Vol. 208. Pp. 454-463. http://doi.org/10.1016/J.C0NBUILDMAT.2019.03.037
20. Luo J., Shao X., Fan W., Cao J., Deng S. Flexural cracking behavior and crack width predictions of composite (steel + UHPC) lightweight deck system // Engineering Structures. 2019. Vol. 194. Pp. 120-137. http://doi.org/10.1016/J.ENGSTRUCT.2019.05.018
21. Glodkowska W., Ziarkiewicz M. Cracking behavior of steel fiber reinforced waste sand concrete beams in flexure - experimental investigation and theoretical analysis // Engineering Structures. 2018. Vol. 176. Pp. 1-10. http://doi.org/10.1016/J.ENGSTRUCT.2018.08.097
22. Ismail M.K., Hassan A.A.A., AbdelAleem B.H., El-Dakhakhni W. Flexural behavior and cracking of lightweight RC beams containing coarse and fine slag aggregates // Structures. 2023. Vol. 47. Pp. 1005-1019. http://doi.org/10.1016/J.ISTRUC.2022.11.065
23. Travush V.I., Karpenko N.I., Kolchunov Vl.I., Kaprielov S.S., Demyanov A.I., Bulkin S.A., Moskovtseva V.S. Results of experimental studies of complex-stressed beams of circular cross-section made of high-strength fibro-reinforced concrete // Строительная механика инженерных конструкций и сооружений. 2020. T. 16. № 4. С. 290-297. http://doi.org/10.22363/1815-5235-2020-16-4-290-297
24. Корсун В.И., Карпенко С.Н., Макаренко С.Ю., Недорезов А.В. Современные критерии прочности для бетонов при объемных напряженных состояниях // Строительство и реконструкция. 2021. Т. 97. № 5. С. 16-30.
25. Fedorova N. V., Vu N.T., Medyankin M.D., Phan D.Q. Determination of the viscosity modulus of concrete under static-dynamic loading regimes // International Scientific Siberian Transport Forum. 2022. Vol. 403. No. 1. Pp. 1294-1302.
26. Yuan P., Xiao L., Wang X., Xu G. Failure mechanism of corroded RC beams strengthened at shear and bending positions // Engineering Structures. 2021. Vol. 240. http://doi.org/10.1016/J.ENGSTRUCT.2021.112382
27. Yu X.Y., Jiang C., Zhang W.P. Failure mode-based calculation method for bending bearing capacities of corroded RC beams strengthened with CFRP sheets // Engineering Structures. 2022. Vol. 271. Article 114946. http://doi.org/10.1016/J.ENGSTRUCT.2022.114946
28. Зиновьев В.Н. Эффект дилатации и диаграмма состояний бетона при одноосном и трехосном сжатии. Ч. 2 // Бетон и железобетон. 2015. № 2. С. 27-31.
29. Зиновьев В.Н., Смолягов О.О., Григорьев А.А. Методы исследования микротрещинообразования бетона при одноосном сжатии // Бетон и железобетон. 2014. № 1. С. 27-31.
30. Зиновьев В.Н. Объединенная диаграмма состояний и параметрические уровни микротрещинообразования бетона. Ч. 3 // Бетон и железобетон. 2015. № 3. С. 28-31.
31. Колчунов В.И., Яковенко И.А. Об использовании гипотезы плоских сечений в железобетоне // Строительство и реконструкция. 2011. Т. 38. № 6. С. 16-23.
32. Гениев Г.А. Вариант деформационной теории пластичности бетона // Бетон и железобетон. 1969. № 2. С. 18-19.
33. Гениев Г.А., Киссюк В.Н., Тюпин Г.А. Теория пластичности бетона и железобетона. М.: Стройиздат, 1974.
316 c.
34. Колчунов В.И., Аль-Хашими О.И., Протченко М.В. Жесткость железобетонных конструкций при изгибе с поперечной и продольной силами // Строительство и реконструкция. 2021. № 6. С. 5-19.