Научная статья на тему 'CALCULATION OF THE ALIGNMENT OF THE AGRICULTURAL AN-2 AIRCRAFT WITH A REPLACING PISTON ENGINE TO TURBOPROP'

CALCULATION OF THE ALIGNMENT OF THE AGRICULTURAL AN-2 AIRCRAFT WITH A REPLACING PISTON ENGINE TO TURBOPROP Текст научной статьи по специальности «Строительство и архитектура»

CC BY
12
3
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ALIGNMENT / ENGINE INSTALLATION / MAXIMUM TAKE-OFF WEIGHT / PISTON AND TURBOPROP ENGINE / ЦЕНТРОВКА / УСТАНОВКА ДВИГАТЕЛЯ / МАКСИМАЛЬНАЯ ВЗЛЕТНАЯ МАССА / ПОРШНЕВОЙ И ТУРБОВИНТОВОЙ ДВИГАТЕЛЬ

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Shokirov R, Sаgdiеv Т.

The article presents calculation of the alignment an-2 agricultural aircraft with a proposed modernizing turboprop engine installation on different conditions like maximum take-off weight with full commercial load and fuel, in case of full refueling, with full commercial load, with an empty airplane without load and fuel.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

РАСЧЕТ ЦЕНТРОВКИ СЕЛЬСКОХОЗЯЙСТВЕННОГО САМОЛЕТА АН-2 С ЗАМЕНЕННЫМ ПОРШНЕВЫМ ДВИГАТЕЛЕМ НА ТУРБОВИНТОВОЙ

В статье представлен расчет центровки сельскохозяйственного самолета Ан-2, с предложенным усовершенствованным замененным поршневого двигателя на турбовинтовой в различных условиях полёта: таких как максимальная взлетная масса с полной коммерческой загрузкой и топлива, в случае полной заправки, с полной коммерческой загрузкой, а также при отсутствии груза - пустом самолете без нагрузки и топлива.

Текст научной работы на тему «CALCULATION OF THE ALIGNMENT OF THE AGRICULTURAL AN-2 AIRCRAFT WITH A REPLACING PISTON ENGINE TO TURBOPROP»

УДК. 629.735.33

Shokirov R. - master student of Tashkent State Technical University after I.Karimov Department of Technical maintenance of aircraft and equipment

Sagdiev Т. - Associate Professor Department of Technical maintenance of aircraft and equipment Tashkent State Technical University after I.Karimov

Uzbekistan, Tashkent

CALCULATION OF THE ALIGNMENT OF THE AGRICULTURAL AN-2 AIRCRAFT WITH A REPLACING PISTON ENGINE TO TURBOPROP

Abstract: the article presents calculation of the alignment an-2 agricultural aircraft with a proposed modernizing turboprop engine installation on different conditions like maximum take-off weight with full commercial load and fuel, in case offull refueling, with full commercial load, with an empty airplane without load and fuel.

Key words: alignment, engine installation, maximum take-off weight, piston and turboprop engine.

Шокиров Р. студент магистратуры кафедра «Техническая эксплуатация воздушных судов и

оборудования» Сагдиев Т., к.т.н.

зав. кафедрой «Техническая эксплуатация воздушных судов и

оборудования» ТГТУ им. И. Каримова Узбекистан, г. Ташкент РАСЧЕТ ЦЕНТРОВКИ СЕЛЬСКОХОЗЯЙСТВЕННОГО САМОЛЕТА АН-2 С ЗАМЕНЕННЫМ ПОРШНЕВЫМ ДВИГАТЕЛЕМ

НА ТУРБОВИНТОВОЙ

Аннотация: В статье представлен расчет центровки сельскохозяйственного самолета Ан-2, с предложенным усовершенствованным замененным поршневого двигателя на турбовинтовой в различных условиях полёта: таких как максимальная взлетная масса с полной коммерческой загрузкой и топлива, в случае полной заправки, с полной коммерческой загрузкой, а также при отсутствии груза - пустом самолете без нагрузки и топлива.

Ключевые слова: центровка, установка двигателя, максимальная взлетная масса, поршневой и турбовинтовой двигатель.

Calculation of the alignment of the aircraft.

The proposed modification of the An-2 aircraft design with the replacement of a piston engine to a turboprop requires recalculation of the layout or alignment

in different flight conditions, since a change in the design elements entails a change in the calculated alignment relative to the base version. In this regard, one of the most important tasks of the airplane configuration is the determination of the center of mass (CM) of the aircraft and its reduction to this position relative to the average aerodynamic chord of the wing in which:

1. In the variant of the most rear position of the CM, the following condition would be ensured:

Xm.b.a — X F — m^

z. per

Where: X m . b . a - maximum back alignment;

X F - relative coordinate plane of focus;

FCy

m..per - Permissible degree (supply) of the longitudinal static stability of the

aircraft

2. In the variant of the most forward CM position, the conditions for sufficiency of deviation of elevator rudders or a stabilizer would be provided for balancing the aircraft in take-off or landing mode with deflected wing mechanization. _

In the first approximation, Xf - defined the following dependence:

X F - XXFw.hs + A X Fhs

Where: X f.... - Coordinate of the aircraft focus without HS « 0,2.. .0,22

A XFh - Displacement of the aircraft focus by the presence of HS = 0,18.0,2 s

X F « 0,4

Then:

When calculating the alignment, the determining condition is:

XP < X h — mCy

.r-, F m.b.a z

Cy

Where: m z . p er- Permissible degree (supply) of the longitudinal static stability of the aircraft

Cy - for subsonic passenger aircraft = - 0,15 mZ

0,4 < X h + 0,15

7 m.b.a ~

Then:

The alignment of the aircraft along the horizontal axis is determined -OX

(Fig. 1).

As the origin in the calculation of alignment taking fuselage nose, in order to coordinate all the goods have been positive. In this case, the OX axis is usually combined with the construction horizontal (axis) of the fuselage. An alignment sheet is compiled for the calculation of the alignment.

Fig. 1 Location of the axes OX and OY in the calculation of the aircraft.

Coordinates of loads are taken from the layout drawing, which is a longitudinal section of the aircraft along the axis of symmetry in scale. In the centering calculations of the first approximation, the masses of the second approximation are taken as the initial masses.

In doing so, we take:

1. The position of the center of mass of the wing (0.4 ... 0.42) • ba

2. The position of the center of mass of the fuselage is 0.5 • Lf

3. Center of mass of fuel - in the center of the fuel side wing area on a planned projection.

4. The mass of pilots is 160 kg.

5. Center of mass equipment and control - 0,5 • Lf

The alignment of the aircraft is calculated for the following main options:

1. The maximum permissible take-off mass is the total commercial load and

2. Airplane with full refueling, but without commercial load (ferry variant).

3. The aircraft with full commercial load without fuel (landing version).

4. Empty aircraft without load and fuel (parking option). As a result of calculations, it is necessary to have:

If this value is not obtained, then it is necessary to mix the wing with respect to the fuselage and the alignment of the aircraft is determined again.

After calculating Dmi xi and Dmi, we obtain the coordinate of the center of

mass:

fuel.

Хт.ь. a = 0,23 K 0,27

The value of the centering is determined by the formula:

т —

Х - Х

т а

b

a

Where: Xa - the distance from the origin to the beginning of the ba 1. For maximum take-off weight with full commercial load and fuel. Table 2 Airplane alignment list.

Name of the masses of groups. mi xi mi xi

dN m dN*m

1. Wing. 1309 5,088 6660,192

2. fuselage. 424,5 6,36 2699,82

3. Horizontal stabilizer. 95,4 10,812 1031,4648

4. Vertical stabilizer 39,5 10,812 427,074

5. The rear landing gear. 40,4 10,812 436,8048

6. The main landing gear. 229,1 2,544 582,8304

7.Power plant. 417 1,272 530,424

8. Equipment and control systems 371,4 6,36 2362,104

9. Fuel. 906,7 5,2 4714,84

10. Commercial load 1500 5,406 8109

11. Service load 160 2,544 407,04

Amount. 5493 27961,594

CALCULATION:

27961,594

X —-— 5,09 m

m 5493

— 5 09 — 4 53 Xm - 5,09 4,53 - 0,23 2,4

2. In case of full refueling, without commercial load (ferry variant).

Table 3 Airplane alignment list.

Name of the masses of groups. mi xi mi xi

dN m dN*m

1. Wing. 1309 5,088 6660,192

2. fuselage. 424,5 6,36 2699,82

3. Horizontal stabilizer. 95,4 10,812 1031,4648

4. Vertical stabilizer 39,5 10,812 427,074

5. The rear landing gear. 40,4 10,812 436,8048

6. The main landing gear. 229,1 2,544 582,8304

7.Power plant. 417 1,272 530,424

8. Equipment and control systems 371,4 6,36 2362,104

9. Fuel. 906,7 5,2 4714,84

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

10. Service load 160 2,544 407,04

Amount. 3993 19852,594

CALCULATION:

19852,594 „ _

X —-^-— 4,97м

т 3993

— 4,97 - 4,53

.^X т -

2,4

- 0,184

3. With full commercial load, but without fuel (landing option). Table 4 Airplane alignment list.

Name of the masses of groups. mi xi mi xi

dN m dN*m

1. Wing. 1309 5,088 6660,192

2. fuselage. 424,5 6,36 2699,82

3. Horizontal stabilizer. 95,4 10,812 1031,4648

4. Vertical stabilizer 39,5 10,812 427,074

5. The rear landing gear. 40,4 10,812 436,8048

6. The main landing gear. 229,1 2,544 582,8304

7.Power plant. 417 1,272 530,424

8. Equipment and control systems 371,4 6,36 2362,104

9. Commercial load 1500 5,406 8109

10. Service load 160 2,544 407,04

Amount. 4586,3 23246,754

CALCULATION:

x = 23246,754 = m X m = 5,°6 - 4,53 = 0,224 m 4586,3 2,4

4. With an empty airplane without load and fuel (parking option). Table 5 Airplane alignment list.

Name of the masses of groups. mi xi mi xi

dN m dN*m

1. Wing. 1309 5,088 6660,192

2. fuselage. 424,5 6,36 2699,82

3. Horizontal stabilizer. 95,4 10,812 1031,4648

4. Vertical stabilizer 39,5 10,812 427,074

5. The rear landing gear. 40,4 10,812 436,8048

6. The main landing gear. 229,1 2,544 582,8304

7.Power plant. 417 1,272 530,424

8. Equipment and control systems 371,4 6,36 2362,104

9. Service load 160 2,544 407,04

Amount. 3086,3 15137,754

CALCULATION:

15137,754 _ -rz 4,9 - 54,53

X =---= 4,9 m Xt =—--— = 0,156

m 3086,3 2,4

As the center of mass of the aircraft, we choose the value obtained when calculating the first variant with the maximum admissible take-off mass - full commercial load and fuel.

Therefore, Xm = 5.09 m

The obtained calculated results and comparative characteristics allow qualitatively and quantitatively assess changes in the aircraft centering on different flight conditions, as well as continue research on the feasibility of further modifying the design of the An-2 aircraft.

List of used literatures:

1. Pogosyan. M.A. Aviation design. - Moscow. Innovation Mechanical engineering, 2018. -250 p.

2. Badyagin A.A. Design of light aircraf. - M. Mechanical engineering, 1978. -122 p.

УДК 004.052

Umirzakov R.R. teacher 3rd year student Usenova S.

Tashkent Institute of Chemical Technology

Uzbekistan, Tashkent USE OF ELECTRONIC TEXTBOOKS (EXAMPLES TOPIC: DETERMINING THE INTERSECTION OF SURFACES WITH THE SITUATION IN A PARTICULAR PLANE)

Annotation: This article discusses the use of electronic textbooks on the topic "Determining the intersection of surfaces with a certain plane."

Keywords: computer, textbook, electronic resources, situation, task

Умирзацов Р.Р. преподаватель Усенова С. студент 3 курса

Ташкентский химико-технологический институт

Узбекистан, г. Ташкент ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ УЧЕБНИКОВ (ПРИМЕРЫ ТЕМА: ОПРЕДЕЛЕНИЕ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ С СИТУАЦИЯ В ЧАСТНОМ ПЛОСКОСТЬЮ)

Аннотация: В данной статье рассматривается использование электронных учебников на тему «Определение пересечения поверхностей с определенной плоскостью».

Ключевые слова: компьютер, учебник, электронный ресурсы, ситуация, задача

"Defining the intersection of surfaces with a plane in a particular case" to describe the solution of the problem by means of a sequential method, and the student gets a little easier to accept the subject. For example, if you find the true size of the rectangular pyramid below, you can determine where it is crossed with the P plane and ask for the issue.

i Надоели баннеры? Вы всегда можете отключить рекламу.