Научная статья на тему 'CALCULATION OF ION EXCHANGE COLUMN FOR PURIFYING OF LITHIUM HYDROXIDE SOLUTION FROM CHLORINE ANIONS'

CALCULATION OF ION EXCHANGE COLUMN FOR PURIFYING OF LITHIUM HYDROXIDE SOLUTION FROM CHLORINE ANIONS Текст научной статьи по специальности «Химические технологии»

CC BY
37
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ANIONITE IN OH-FORM / LITHIUM HYDROXIDE SOLUTION / ION EXCHANGE / LANGMUIR EQUATION / MASS TRANSFER / MASS EXCHANGE / WORKING CYCLE PERIOD

Аннотация научной статьи по химическим технологиям, автор научной работы — Golovanchikov Alexander B., Zalipaeva Olga A., Sinenko Tatyana N., Prokhorenko Natalia A.

In the article possibility of water solution LiOH tertiary treatment from chlorine anions after electrolysis is viewed. Analyzing the existing purification methods, it is proposed to use the purification of lithium hydroxide in an ion exchange column. A mathematical model and a computational algorithm for ion exchange column having stationary and moving anionite layers AВ-17-08 in ОН-form are given. Relationships of the main parameters such as working cycle period, usage ratio of ionite exchange volume and specific ratio of solution being purified per 1 kg ionite for standard column have been received. The curves of the chlorine anions density in ionite depending on its layer height in the solution being purified in the middle and at the end of the working cycle period are given. In the article recommendations on prevention of ionite granules abrasion during the operation in ion exchange columns are given.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «CALCULATION OF ION EXCHANGE COLUMN FOR PURIFYING OF LITHIUM HYDROXIDE SOLUTION FROM CHLORINE ANIONS»

междисциплинарные исследования

interdisciplinary research

DOI: 10.12731/2658-6649-2021-13-2-245-261 UDC 661.183.123.3

CALCULATION OF ION EXCHANGE COLUMN FOR PURIFYING OF LITHIUM HYDROXIDE SOLUTION FROM CHLORINE ANIONS

A.B. Golovanchikov, O.A. Zalipaeva, T.N. Sinenko, N.A. Prokhorenko

In the article possibility of water solution LiOH tertiary treatmentfrom chlorine anions after electrolysis is viewed. Analyzing the existing purification methods, it is proposed to use the purification of lithium hydroxide in an ion exchange column. A mathematical model and a computational algorithm for ion exchange column having stationary and moving anionite layers AB-17-08 in ОН-form are given. Relationships of the main parameters such as working cycle period, usage ratio of ionite exchange volume and specific ratio of solution being purified per 1 kg ionite for standard column have been received. The curves of the chlorine anions density in ionite depending on its layer height in the solution being purified in the middle and at the end of the working cycle period are given. In the article recommendations on prevention of ionite granules abrasion during the operation in ion exchange columns are given.

Keywords: anionite in OH-form; lithium hydroxide solution; ion exchange; Langmuir equation; mass transfer; mass exchange; working cycle period

For citation. Golovanchikov A.B., Zalipaeva O.A., Sinenko T.N., Prokhorenko N.A. Calculation of Ion Exchange Column for Purifying of Lithium Hydroxide Solution from Chlorine Anions. Siberian Journal of Life Sciences and Agriculture, 2021, vol. 13, no. 2, pp. 245-261. DOI: 10.12731/2658-6649-2021-13-2-245-261

РАСЧЕТ ИОНООБМЕННОЙ КОЛОННЫ ДЛЯ ОЧИСТКИ РАСТВОРА ГИДРОКСИДА ЛИТИЯ ОТ АНИОНОВ ХЛОРА

А.Б. Голованчиков, О.А. Залипаева, Т.Н. Синенко, Н.А. Прохоренко

Рассмотрена возможность доочистки водного раствора LiOH от анионов хлора после электролиза. При анализе существующих методов очистки предложено использовать очистку гидроксида лития в ионообменной колонне. Составлена математическая модель и алгоритм расчета ионообменной колонны с неподвижным и движущимся слоем анионита АВ-17-08 в ОН-форме. Получены зависимости основных параметров: времени рабочего цикла, степени использования обменной емкости ионита и удельного объема очищаемого раствора на 1кг ионита для стандартной колонны. Получены и проанализированы графики зависимости концентрации анионов хлора в ио-ните от высоты его слоя в очищаемом растворе в середине и в конце времени рабочего цикла. Даются рекомендации по предотвращению истирания гранул ионита во время эксплуатации ионообменных колонн.

Ключевые слова: анионит в ОН-форме; раствор LiOH; ионообмен, уравнение Ленгмюра; массоотдача и массопередача, рабочее время цикла

Для цитирования. Голованчиков А.Б., Залипаева О.А., Синенко Т.Н., Про-хорент Н.А. Расчет ионообменной колонны для очистки раствора гидроксида лития от анионов хлора // Siberian Journal of Life Sciences and Agriculture. 2021. Т. 13, № 2. C. 245-261. DOI: 10.12731/2658-6649-2021-13-2-245-261

Introduction

Being a polymerization catalyst, lithium hydroxide is used in the production of batteries and in pharmacology for the synthesis of various lithium salts, which are used to treat animals and humans. Lithium hydroxide is used as a carbon dioxide absorber. The results of direct measurements confirming the greenhouse effect increasing caused by the concentration of carbon dioxide rise in the atmosphere are known [16]. The largest sources of emissions of greenhouse gas are agriculture, various production, transportation, processing and consumption of fossil fuels, burning of biomass, etc. The absorption of carbon dioxide and its further use is necessary to preserve the natural balance [20].

A lot of works are devoted to the problems of lithium hydroxide purification and regeneration. Authors of a number of articles [15, 18, 19] consider the problem of LiOH production through electrodialysis from its natural brine. Energy consumption of electrodialyzer is rather high and current consumption in the purification process of lithium hydroxide solution requires special operation safety rules. Current provides water electrolysis. Oxygen is emitted on the anode and hydrogen is emitted on the cathode. The process is of special fire and explosion hazards. Danger of emergencies and accidents, explosions and fires is high, they can occur in case of a technological condition violation, in case of electrolytic gas leakages, especially hydrogen and oxygen being mixed in explosive proportions inside units of equipment.

Ion exchange membranes used in electrodialysis have high current resistance. Membrances, containing ionite powder heterogeneous with surface impurity, need cleaning. Moreover the membrane cleaning is rather complicated and expensive process. It needs additional expenditure. Homogenous membranes have low mechanical strength [8]. Membranes selectivity falls because of their sensitivity to abrasive materials. When ion exchange membrane is used, a concentrated polarization takes place near its active layer. It makes membrane selectivity lower too. Field of application of ion exchange membranes is limited and application of nanotechnologies is predicted to enforce the strength of the membranes [6]. To prevent pollution of membranes LiOH solution should be purified from weighted and colloidal particles. In this connection electrodialysis is used in low capacity industries.

Scientists are seeking new technologies for lithium extraction from brines [17]. In our opinion it is necessary to pay more attention to the purification of the LiOH solution in ion exchange columns. Ion exchange columns have high productivity. LiOH purification in ion exchange columns doesn't need additional expenditure for previous clearing of solution and current.

According to the organizational and technical structure, ion exchange columns of continuous and periodic action are used in industry. The calculation methods of the columns are anologous to the calculation methods of other mass transfer devices [11-14].

An industrial method for obtaining an aqueous solution of sodium hydroxide by electrolysis of a solution of table salt is widely used and it becomes necessary to refine the obtained hydroxides from chlorine anions [9, 10].

Producing lithium hydroxide from LiCl solution by means of electrolytic method results in obtaining substance which contains up to 2,5 kg/m3 of chlorine anions. The chlorine anions concentration is to be reduced to 0,078 kg/m3

that is 32 times less in accordance with regulations. In this case level of tertiary treatment is to be around 97%.

Purpose

Aim of this work is modeling and calculation for ion exchange column both periodic and uninterrupted actions intended for purification lithium hydroxide water solution from chlorine anions.

Calculation methods for ion exchange column

It is appropriate to use anionite granules AB-17-08 in OH - form for the both ion exchange columns of the uninterrupted and periodic action. In this case exchange reaction takes place [7, 8]

ROH + Cl- ^ RCl+ + OH , and ions of chlorine are removed from the solution. Then they are substituted with ions OH-produced through electrolysis. Thus ions of chlorine are not just removed from the solution but ions of OH are inserted instead of them. It slightly contributes to the electrolysis substance LiOH in desired solution.

In the article algorithm for calculation of ion exchange column with stationary anionite layer is used, which we've described for cation and anion columns in a number of works [3, 5, 6]. The physical picture of the change in its concentration is given on the Fig. 1.

q v u

Fig. 1. Diagram of changes in ions of chlorine concentration at the moment t. in j-m ionite layer at height Ah and time Ax, for which solution passes through the ionite layer in the column of periodic action.

Algorithm for calculating an ion exchange column with a stationary anion-ite layer.

1. Equation of equilibration line (signs for parameters and their size are given in Table 1 [7]:

x* = rrr, (1)

1 + bc

kpxo t KD ~1 under the conditions a =-, b = —— h x= x *.

c c 0 H

H H

2. Sherwood number of the outer mass transfer for the solution is viewed as a function of defining Reynolds and Schmidt criteria:

Sh=2 + l,5(Sc) '^(l-eJRe. (2)

3. Surface coefficient of outer mass transfer

(3)

«3

and volume coefficient of mass exchange

^ = 6Mz£o). (4)

4. Dividing the whole ionite layer «-equal in height parts Ah (Fig. 1) in accordance with mass exchange equation for the ions being extracted in layer having thickness Ah at a height hj(j,n)

qvCj At = qvck.Ax+ kvAV(Cj-c*)Ao/o, (5)

you ought to find out the concentration c for the calculated moment of each layer Ah.

5. Final concentration of the extracted ions of chlorine in ionite for the layer h. at the moment t can be determined in accordance with material balance

j '

X„t=X,!t+-—-(CHi - C«i). (6)

* 1 3600A G ' '

6. Using equation of equilibration line (1) we find equilibrium concentration

*

C if—, (7)

under the conditions c**> cHjat the moment t.and the ionite layer(s) j looses its ability to exchange ions and after that it functions as a filter.

7. The calculations are finished under the condition c > c .

k j=n K

Algorithm for calculation of the ion exchange column of the uninterrupted action

1. Concentration of chlorine ions in ionite at the exit

x = 0,99 x*. (8)

K H v '

2 Ionite consumption

G = qv(9)

XK~XU

3. Calculation of transference units number (TUN)

TUN^—^. (10)

¡=1 c-c*

4. Height of the moving ionite layer

H= (u TUN) Av. (11)

5. Volume of the moving ionite layer

71 D2H

V =-—. (12)

4

(13)

6. Average time of ionite existence in the column

G

7. Speed of the ionite movement from top to bottom of the column

H

U =-. (14)

3600-c

8. Specific consumption of ionite for 1 m3 of solution being purified

y = qr/G. (15)

9. Calculation of chlorine ions profiles (on height) for the solution being purified and in ionite

a) Ah=H/m,

b) c=c , x=x ,

y 1 H 1 H

c) cpl=xi/(a2-b2xi),

d) c2=cl(1-kV Ah/U)+(kVAh/U)c*,

e) X2=x-(ql/Gv)(c-c,);

f) readdressing: x=x2 , c=c2 and repeating «m» - times of items (b-f) and corresponding concentrations accordingly;

g) calculations are over after «m» - times repetitions.

Results of calculations and discussion of the results

Shown in Fig. 2 profiles of chlorine ions concentrations in the solution (a) and in ionite (b) according to ionite layer height in the middle (t = 4 hours) and at the end of the working cycle period (t= 8 hours) for the column with 1m diameter with stationary ionite layer (curves 1 and 2) and with moving ionite layer (curves 3) are given.

Fig. 2. Drawings of chlorine ions concentrations in the solution (a) and in a layer of grains (b) at the height of ionite: 1 - in four hours after the working cycle beginning; 2 - in eight hours at the end of the working cycle; 3 - in the antiflow ion exchange column of uninterrupted action.

Table 1.

Initial and reference data, calculation parameters

№ Parameter Value

Initial data

1 Productivity on the solution being purified, qV , m3/h 1

2 Initial concentration of chlorine anions in the solution, ch, kg/ m3 2,5

3 Final acceptable concentration of chlorine anions in the solution, 7,8-10-2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

C, kg/ m3

4 Pressure, P, atm. 1,033

5 Temperature, t, °C 30

6 Solution density, p^ , kg/ m3 1280

7 Solution viscosity, ¡i, P/sec 0,055

8 Coefficient of chlorine anions diffusion in the solid, Dc m2/sec. 1,610-9

9 Constant of anionite equilibrium at 30°C, kp 1,2

10 Equivalent diameter of anionite particles, d^ m 6-10-4

11 Full anionite exchange tank AB-17-8, x0*, kgA/ kg 1,725

12 Ion mass Cl, M, kg/ kmole 35,5

13 Specific volume of dry anionite, u, m3/kg 3-10-3

14 The particles density filling, p0, kg/ m3 340

15 Coefficient of chlorine anions diffusion in the ionite particles, Du, 2,9-10-10

m2/sec

16 Particle layer porousness, s0 0,4

17 Height of the layer H, m 0,7

18 Column diameter D, m 1

Calculation parameters for the column of periodic action

1 Fictitious solution speed u, m/sec 3,54-10-4

2 Reynold's number, Re 4,94-10-3

3 Schmidt number, Sc 26855

4 Sherwood number, Sh 4,44

5 Coefficient of outer surface mass transference, Bc , m/sec 1,1810-5

6 Volume coefficient of mass exchange, kV, 1/sec 7,M0-2

7 Constant of equilibration line (1) a and b correspondingly, m3/kg 5,76-10-2 8-10-2

8 Equilibrium concentration in ionite corresponding to the initial concentration of ions of chlorine in the solution, x*, kgA/ kg 0,12

9 Equilibrium concentration in ionite corresponding to the finite concentration of ions of chlorine in the solution, x*, kgA/ kg 4,465-10-3

10 The initial concentration of ions of chlorine in ionite after regeneration, x, kgA/ kg 3,795^10-3

Continuation of the table

11 Volume of ionite layer, Vc, m3 0,3925

12 Mass of ionite layer, Mr , kg 218,06

13 Maximum ionite particles absorption of chlorine ions, M. kgA 25,34

14 Maximum working cycle period, Tm , hour 10,46

15 Working cycle period, t, hour 7,99

16 Specific consumption of ionite for 1 m3 of solution being purified, y* m3/kg 0,0367

Calculation parameters for the column of the uninterrupted action

1 Concentration of chlorine ions in ionite at the exit from the column, x, kgA/ kg 1,18810-1

2 Ionite consumption, G, kgA/ hour 21,06

3 Transference units number, TUN 33,95

4 Ionite volume in the column, V m3 0,133

5 Height of the moving ionite layer, h, m 0,169

6 Initial concentration of chlorine ions in ionite after regeneration, xH , kgA/ kg 3,795-10-3

7 Time of ionite movement in the column, t., hour 2,144

8 Speed of ionite movement in the column, U, m/sec 2,19-10-5

9 Specific consumption of ionite for 1 m3 of the solution being purified , y, m3/kg 0,0475

According to the graphs of the drawing the height of the moving layer of ionite in the column of the periodic action (curves 1 and 2) doesn't go over / of its whole layer height. The rest part of its height is either saturated fully (i.e. it is in a dynamical equilibrium relative to the initial concentration of chlorine ions being trapped in the solution) or it doesn't participate in the ion exchange process. It is evident that the curves 1a and 1b correspond to the concentration of ions of chlorine in the middle of the working cycle period (t=4 hours). 100 mm ionite layer has been used at the entrance. Ionite at height 100^300mm participates in ion exchange process and the upper 200 mm of the ionite layer aren't involved in the process. At the end of the working cycle period (t=8 hours) the upper layer of ionite with height 200 mm participates in ion exchange. The lowest part of the layer (300 mm) is saturated with ions of chlorine so it doesn't participate in the ion exchange process.

In the moving layer of ionite column of uninterrupted action in the ion exchange process participates only active layer having height Hx=170mm (Fig.2, curves 3a and 3b). Its height is less than height of the active layer of ionite with stationary layer (200 mm). The hydraulic resistance of stationary layer of ionite

(№=300 mm) is almost 3 times increase than the height of the layer of ionite in the ion exchange column of the periodic activity. 2/3 of its height doesn't participate in ion exchange and the solution is not filtered through it. Moreover, efficiency of ion exchange column of uninterrupted action is 30% superior to efficiency of the column working periodically (the last lines of Table 1). It is derived from the fact that usage of the exchange capacity of the lower ionite layers in column of periodic action equals 100%, that is x=xh*=0,12 and in column of uninterrupted action it equals x =0,1188 (Fig. 2b).

Fig. 3. Equilibrium (1) and working (2) lines of the ion exchange process in the column of uninterrupted action (calculation results, Table 1).

Significant disadvantage of the moving ionite layer is that the process is to be implemented in a unit of equipment with boiling layer [2, 4]. The disadvantage of globules and grains attrition can be avoided. The globules and grains should be coated with textile material. In this case attrition resistance will be twice higher (in accordance with experimental data).

Conclusion

Analysis of existing methods of LiOH water solution tertiary treatment from chlorine anions has been made. It is suggested to purify LiOH in ion exchange column. Calculations of ion exchange columns of periodic action and of un-

interrupted action showed the advantages of the latter one. It is explained to a greater degree with the usage of the exchange capacity of the ionite. In the process the hydraulic resistance of the moving ionite layer is 3 times less than that of the stationary layer. It proportionally leads to energy savings. Graphs of the dependence of the chlorine anion concentration in ionite at height of its layer are given. It is recommended to prevent attrition of ionite granules in ion exchange columns during the operation with coating of each globule with thinned textile or knitted material. It reduces the attrition of the globules and increases their operation by more than an order.

The study was funded by RFBR, project number 19-38-90002. Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта №19-38-90002.

References

1. Volkov V. V., Mchedlishvili B. V., Roldugin V. I., Ivanchev S. S., Yaroslavtsev A. B. Membrany i nanotekhnologii [Membranes and nanotechnologies]. Rossi-yskie nanotekhnologii [Russian nanotechnologies], 2008, vol. 3, no. 11-12, pp. 67-99. http://www.memtech.ru/index.php/ru/glavnaya/publications/98-mem-brany-i-nanotekhnologii

2. Golovanchikov A. B., Dobryakov A. V., Efremov M. Yu., Belyaeva Yu. L., Kar-aeva A. E., Dul'kin B. A. Patent №2361662 RF Adsorbent dlya ochistki gazov i zhidkostey ot vrednykh primesey [Adsorbent for purifying of gases and liquids from hazardous admixtures], 2009.

3. Golovanchikov A. B., Efremov M. Yu., Dul'kina N. A. Odnovremennaya ion-oobmennaya ochistka vody ot ionov zhestkosti i zheleza [Simultaneous ion exchange water purification from hardness and iron ions]. Ekologicheskie sistemy ipribory [Ecological systems and apparatuses], 2011, no. №3, pp. 24-28. http:// eco.tgizd.ru/ru/arhiv/169

4. Golovanchikov A. B., Tkhi Tkhyui Zyong Le, Tkhi Tkhan' Van Le «Rubashka» dlya granul adsorbenta [Coating for adsorbent granules]. Fundamental'nye issle-dovaniya [Fundamental Research], 2008, №11. https://fundamental-research.ru/ ru/article/view?id=3912

5. Golovanchikov A. B., Shibitov N. S, Shibitova N. V., Aleksandrin D. R. Mod-elirovanie ionoobmennoy kolonny dlya ochistki rastvora gidroksida natriya ot ionov khlora [Modelling of ion exchange column for purifying of sodium hydroxide solution from chlorine ions]. Izvestiya Volgogradskogo gosudarstven-nogo tekhnicheskogo universiteta: Seriya «Aktual'nye problemy upravleniya.

vychislitel'noy tekhniki i informatiki v tekhnicheskikh sistemakh> [News of Volgograd State Technical University: Actual problems of management and computer science in technical systems], 2015, no. 2(157), pp. 15-18. https://www. vstu.ru/uploadiblok/files/izvestiya/archive/2/2015-02.pdf

6. Golovanchikov A. B., Shibitov N. S, Shibitova N. V., Novozhenin A. V. Och-istka shchelochnogo rastvora ot ionov khlora v massoobmennoy kolonne peri-odicheskogo deystviya [Purification of the alkaline solution from chlorine ions in a batch mass transfer column]. Izvestiya Volgogradskogogosudarstvennogo tekhnicheskogo universiteta: Seriya «Reologiya, protsessy i apparaty khimi-cheskoy tekhnologii» [Proceedings of the Volgograd State Technical University: Series "Rheology, Processes and apparatuses of Chemical Technology"], 2015, no. 1 (154), pp. 27-31. http://www.vstu.ru/uploadiblok/files/izvestiya/ar-chive/9/2015-01.pdf

7. Dytnerskiy Yu. I. Protsessy i apparaty khimicheskoy tekhnologii: uchebnik. Ch. 2: Massoobmennye protsessy i apparaty [Processes and apparatuses for the chemical technology: textbook, Part 2, Mass exchange processes and apparatuses]. M.: Khimiya, 2002. 368 p.

8. Radionov A. I., Klushin V. N. Tekhnikazashchity okruzhayushchey sredy [Technology of environment protection], 2nd edition. M.: Khimiya, 1989. 512 p.

9. Furman A. A., Shtraybman S. S. Prigotovlenie i ochistka rassola [Preparation and purification of brine]. M.: Khimiya, 1966. 358 p.

10. Yakimenko L. M., Pasmanik N. I. Spravochnikpo proizvodstvu khlora, kaus-ticheskoy sody i osnovnykh khlorproduktov [Reference book on production of chlorine, caustic soda and basic chlorine products]. M.: Khimiya, 1976, 437 p.

11. Golovanchikov A. B., Zalipaeva O. A., Sinenko T. N., Shibitova N. V., Prokho-renko N. A., Cherikova K. V. Calculation of optimal flow of ionite during water treatment in the column of continuous action. E3S Web of Conferences. Vol. 161: International Conference on Efficient Production and Processing (ICEPP-2020) (Prague, Czech Republic, February 27-28, 2020), ed. by J. Smyatskaya. Publisher: EDP Sciences, 2020. 5 p. https://doi.org/10.1051/e3sconf/202016101084

12. Golovanchikov A. B., Zalipaeva O. A., Prokhorenko N. A., Shibitova N. V., Merentsov N. A. Equations of working lines in packed columns with regard to longitudinal diffusion. Journal of Physics: Conference Series. 2020. Vol. 1553: VI Int. Scientific and Practical Conf. «Virtual Simulation, Prototyping and Industrial Design 2019 (VSPID-2019)» (Tambov, Russia, 16-18 October, 2019). 7 p. https://doi.org/10.1088/1742-6596/1553/1Z012020

13. Golovanchikov A. B., Prokhorenko N. A., Shibitova N. V., Romanenko M. D., Zalipaeva O. A. Simulation of the process of rectification with the account of

longitudinal diffusion. Journal of Physics: Conference Series. 2019. Vol. 1278: V International Scientific and Practical Conference «Virtual Simulation, Prototyping and Industrial Design 2018» VSPID 2018 (Tambov, Russian Federation, 14-16 November, 2018). Tambov State Technical University. 8 p. https://doi. org/10.1088/1742-6596/1278/1/012027

14. Golovanchikov A. B., Churikova V. I., Zalipaeva O. A. Calculation of a packed column for absorption of hydrogen sulfur from gases formed by separation of crude oil. E3S Web of Conferences. Vol. 126: International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2019) (Sevastopol, Russia, September 9-13, 2019), ed. by S. Bratan. Publisher: EDP Sciences, 2019. 8 p. https://doi.org/10.1051/e3sconf/201912600070

15. Chenxiao Jiang, Yaoming Wang, Qiuyue Wang, Hongyan Feng, and Tongwen Xu*Production of Lithium Hydroxide from Lake Brines through Electro-Elec-trodialysis with Bipolar Membranes (EEDBM) / Laboratory of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China. Ind. Eng. Chem. Res., 2014, 53(14), 6103-6112, https://doi.org/10.1021/ie404334s

16. Hannah, L., P. R. Roehrdanz, P. A. Marquet, B. J. Enquist, G. Midgley, W. Foden, J. C. Lovett, R. Corlett, D. Corcoran, S. Butchart, B. Boyle, X. Feng, B. Maitner, J. Fajardo, B. J. McGill, C. Merow, N. Morueta-Holme, E. A. Newman, D. S. Park, J.-C. Svenning. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography, 2020, vol. 43, no. 7, pp. 943-953. https://doi.org/10.1111/ecog.05166

17. Victoria Flexer, Celso Fernando Baspineiro, Claudia Inés Galli, Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of The Total Environment, 2018, vol. 639, pp. 1188-1204. https://doi.org/10.1016/j.scito-tenv.2018.05.223

18. V. C. E. Romero, M. Tagliazucchi, V. Flexer, E. J. Calvo, Sustainable electrochemical Extraction of Lithium from Natural Brine for Renewable Energy Storage. Journal of The Electrochemical Society, 2018, vol. 165, no. 10, pp. A2294-A2302. https://doi.org/10.1149/2.0741810jes

19. Yunfeng Song, Zhongwei Zhao, Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques. Separation and Purification Technology, 2018, vol. 206, pp. 335-342. https://doi.org/10.1016/). seppur.2018.06.022

20. Record Complexity in the Polycatenation of Three Porous Hydrogen-Bonded Organic Frameworks with Stepwise Adsorption Behaviors Yu-Lin Li, Eugeny V.

Alexandrov, Qi Yin, Lan Li, Zhi-Bin Fang, Wenbing Yuan, Davide M. Proserpio, and Tian-Fu Liu. Journal of the American Chemical Society, 2020, vol. 142, no. 15, pp. 7218-7224. https://doi.org/10.1021/jacs.0c02406

Список литературы

1. Волков В. В., Mчедлишвили Б. В., Ролдугин В. И., Иванчев С. С., Ярос-лавцев А. Б. Mембрaны и нанотехнологии // Российские нанотехноло-гии. 2008. Т. 3, .№11-12. С. 67-99. http://www.memtech.ru/index.php/ru/ glavnaya/publications/98-membrany-i-nanotekhnologii

2. Голованчиков А. Б., Добряков А. В., Ефремов M. Ю., Беляева Ю. Л., Караева А. Э., Дулькин Б. А. Патент №2361662 РФ. Адсорбент для очистки газов и жидкостей от вредных примесей. 2009.

3. Голованчиков А. Б., Ефремов M. Ю., Дулькина H. А. Одновременная ионообменная очистка воды от ионов жесткости и железа // Экологические системы и приборы. 2011. №3. С. 24-28. http://eco.tgizd.ru/ru/ arhiv/169

4. Голованчиков А.Б., Тхи Тхюи Зыонг Ле, Тхи Тхань Ван Ле «Рубашка» для гранул адсорбента // Фундаментальные исследования. 2008. №11. https://fundamental-research.ru/ru/article/view?id=3912

5. Голованчиков А. Б., Шибитов H. С, Шибитова H. В., Александрин Д. Р. Mоделировaние ионообменной колонны для очистки раствора ги-дроксида натрия от ионов хлора // Известия ВолгГТУ Серия «Актуальные проблемы управления вычислительной техники и информатики в технических системах». 2015. №2(157). С. 15-18. https://www.vstu.ru/ uploadiblok/files/izvestiya/archive/2/2015-02.pdf

6. Голованчиков А. Б., Шибитов H. С, Шибитова H. В., Швоженин А. В. Очистка щелочного раствора от ионов хлора в массообменной колонне периодического действия // Известия Волгоградского государственного технического университета: Серия «Реология, процессы и аппараты химической технологии». 2015. №1(154). С. 27-31. http://www.vstu.ru/ uploadiblok/files/izvestiya/archive/9/2015-01.pdf

7. Дытнерский Ю. И. Процессы и аппараты химической технологии: учебник. Ч. 2: Maссообменные процессы и аппараты. M.: Химия, 2002. 368 с.

8. Радионов А. И. Клушин В. H. Техника защиты окружающей среды 2-е изд. перераб и доп. M.: Химия, 1989. 512 с.

9. Фурман А. А., Штрайбман С. С. Приготовление и очистка рассола. M.: Химия, 1966. 358 с.

10. Якименко Л. М., Пасманик Н. И. Справочник по производству хлора, каустической соды и основных хлорпродуктов. М.: Химия, 1976. 437 с.

11. Golovanchikov A. B., Zalipaeva O. A., Sinenko T. N., Shibitova N. V., Prokhorenko N. A., Cherikova K. V. Calculation of optimal flow of ionite during water treatment in the column of continuous action // E3S Web of Conferences. Vol. 161: International Conference on Efficient Production and Processing (ICEPP-2020) (Prague, Czech Republic, February 27-28, 2020), ed. by J. Smyatskaya. Publisher: EDP Sciences, 2020. 5 p. https:// doi.org/10.1051/e3sconf/202016101084

12. Golovanchikov A. B., Zalipaeva O. A., Prokhorenko N. A., Shibitova N. V., Merentsov N. A. Equations of working lines in packed columns with regard to longitudinal diffusion // Journal of Physics: Conference Series. 2020. Vol. 1553: VI Int. Scientific and Practical Conf. «Virtual Simulation, Prototyping and Industrial Design 2019 (VSPID-2019)» (Tambov, Russia, 16-18 October, 2019). 7 p. https://doi.org/10.1088/1742-6596/1553/1/012020

13. Golovanchikov A. B., Prokhorenko N. A., Shibitova N. V., Romanenko M. D., Zalipaeva O. A. Simulation of the process of rectification with the account of longitudinal diffusion // Journal of Physics: Conference Series. 2019. Vol. 1278: V International Scientific and Practical Conference «Virtual Simulation, Prototyping and Industrial Design 2018» VSPID 2018 (Tambov, Russian Federation, 14-16 November, 2018). Tambov State Technical University. 8 p. https://doi.org/10.1088/1742-6596/1278/1/012027

14. Golovanchikov A. B., Churikova V. I., Zalipaeva O. A. Calculation of a packed column for absorption of hydrogen sulfur from gases formed by separation of crude oil // E3S Web of Conferences. Vol. 126: International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2019) (Sevastopol, Russia, September 9-13, 2019), ed. by S. Bratan. Publisher: EDP Sciences, 2019. 8 p. https://doi.org/10.1051/ e3sconf/201912600070

15. Chenxiao Jiang, Yaoming Wang, Qiuyue Wang, Hongyan Feng, and Tongw-en Xu*Production of Lithium Hydroxide from Lake Brines through Electro-Electrodialysis with Bipolar Membranes (EEDBM) / Laboratory of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China // Ind. Eng. Chem. Res., 2014, vol. 53, no. 14, pp. 6103-6112. https://doi.org/10.1021/ie404334s

16. Hannah, L., P. R. Roehrdanz, P. A. Marquet, B. J. Enquist, G. Midgley, W. Foden, J. C. Lovett, R. Corlett, D. Corcoran, S. Butchart, B. Boyle, X. Feng, B. Maitner, J. Fajardo, B. J. McGill, C. Merow, N. Morueta-Holme, E. A.

Newman, D. S. Park, J.-C. Svenning. 30% land conservation and climate action reduces tropical extinction risk by more than 50% // Ecography, 2020, vol. 43, no. 7, pp. 943-953. https://doi.org/10.1111/ecog.05166

17. Victoria Flexer, Celso Fernando Baspineiro, Claudia Inés Galli, Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing // Science of The Total Environment, 2018, vol. 639, pp. 1188-1204. https://doi.org/10.1016/j.sci-totenv.2018.05.223

18. V. C. E. Romero, M. Tagliazucchi, V Flexer, E. J. Calvo, Sustainable electrochemical Extraction of Lithium from Natural Brine for Renewable Energy Storage // Journal of The Electrochemical Society, 2018, vol. 165, no. 10, pp. A2294-A2302. https://doi.org/10.1149/2.0741810jes

19. Yunfeng Song, Zhongwei Zhao, Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques // Separation and Purification Technology, 2018, vol. 206, pp. 335-342. https://doi. org/10.1016/j.seppur.2018.06.022

20. Record Complexity in the Polycatenation of Three Porous Hydrogen-Bonded Organic Frameworks with Stepwise Adsorption Behaviors Yu-Lin Li, Eugeny V. Alexandrov, Qi Yin, Lan Li, Zhi-Bin Fang, Wenbing Yuan, Davide M. Pro-serpio, and Tian-Fu Liu // Journal of the American Chemical Society, 2020, vol. 142, no. 15, pp. 7218-7224. https://doi.org/10.1021/jacs.0c02406

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

DATA ABOUT THE AUTHORS

Alexander B. Golovanchikov, Doctor of Technical Sciences, Professor of the Department "Processes and Apparatuses of Chemical and food production"

Volgograd State Technical University

28, Lenin Ave., Volgograd, 400005, Russian Federation

pahp@vstu.ru

Olga A. Zalipaeva, Ph. D., Associate Professor of the Department "Processes and Apparatuses of Chemical and Food Production"

Volgograd State Technical University

28, Lenin Ave., Volgograd, 400005, Russian Federation

zalipaevaolga@yandex.ru

Tatyana N. Sinenko, Ph. D., Associate Professor of the Department "Foreign Languages"

Volgograd State Technical University

28, Lenin Ave., Volgograd, 400005, Russian Federation TNSinenko@mail.ru

Natalia A. Prokhorenko, Senior lecturer of the Department "Processes and Apparatuses of Chemical and Food Production"

Volgograd State Technical University

28, Lenin Ave., Volgograd, 400005, Russian Federation

natasha292009@yandex.ru

ДАННЫЕ ОБ АВТОРАХ Голованчиков Александр Борисович, д.т.н., профессор кафедры «Процессы и аппараты химических и пищевых производств»

Волгоградский государственный технический университет пр. Ленина, 28, г. Волгоград, 400005, Российская Федерация pahp@vstu.ru

Залипаева Ольга Александровна, к.т.н., доцент кафедры «Процессы и аппараты химических и пищевых производств»

Волгоградский государственный технический университет пр. Ленина, 28, г. Волгоград, 400005, Российская Федерация zalipaevaolga@yandex.ru

Синенко Татьяна Николаевна, к.п.н., доцент кафедры «Иностранные языки»

Волгоградский государственный технический университет пр. Ленина, 28, г. Волгоград, 400005, Российская Федерация TNSinenko@mail.ru

Прохоренко Наталья Андреевна, старший преподаватель кафедры «Процессы и аппараты химических и пищевых производств»

Волгоградский государственный технический университет пр. Ленина, 28, г. Волгоград, 400005, Российская Федерация natasha292009@yandex.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.