Научная статья на тему 'Calculation of deformations of a cantilever-frame planar truss model with an arbitrary number of panels'

Calculation of deformations of a cantilever-frame planar truss model with an arbitrary number of panels Текст научной статьи по специальности «Строительство и архитектура»

CC BY
264
41
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Вестник МГСУ
ВАК
RSCI
Ключевые слова
ПЛОСКАЯ ФЕРМА / РАМА / ПРОГИБ / ИНДУКЦИЯ / MAPLE / АНАЛИТИЧЕСКОЕ РЕШЕНИЕ / КОНСОЛЬ / PLANAR TRUSS / FRAME / DEFLECTION / INDUCTION / ANALYTICAL SOLUTION / CONSOLE

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Buka-Vaivade Karina, Kirsanov Mikhail N., Serdjuks Dmitrijs O.

Introduction. By method of induction using three independent parameters (numbers of panels) formulas for deflection under different types of loading are derived. Curves based on the derived formulas are analyzed, and the asymptotic of solutions for the number of panels are sought. The frame is statically definable, symmetrical, with descending braces. The problem of deflection under the action of a load evenly distributed over the nodes of the upper chord, a concentrated load in the middle of the span, and the problem of shifting the mobile support is considered. Materials and methods. The calculation of forces in the truss bars is performed in symbolic form using the method of cutting nodes and operators of the Maple computer mathematics system. The deflection is determined by the Maxwell Mohr formula. Operators of the Maple computer mathematics system are used for composing and solving homogeneous linear recurrent equations that satisfy sequences of coefficients of the required dependencies. The stiffness of all truss bars is assumed to be the same. Results. All the obtained dependencies have a polynomial form for the number of panels. To illustrate the obtained solutions and their qualitative analysis, curves of the deflection dependence on the number of panels are constructed. Conclusions. A scheme of a statically definable three-parameter truss is proposed that allows an analytical solution of the problem of deflection and displacement of the support. The obtained dependences can be used in engineering practice in problems of structural rigidity optimization and for evaluating the accuracy of numerical solutions.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Расчет деформаций модели плоской фермы консольно-рамного типа с произвольным числом панелей

Введение. Методом индукции по трем независимым параметрам (числам панелей), характеризующим пропорции конструкции и ее частей, дается вывод формул для прогиба при различных типах нагружения. Анализируются кривые, построенные по выведенным формулам, разыскивается асимптотика решений по числу панелей. Рама -статически определимая, симметричная, с нисходящими раскосами в простой решетке ригеля и консолей. Конструкция имеет подвижную и неподвижную опоры. Рассмотрены: задача о прогибе под действием нагрузки, равномерно распределенной по узлам верхнего пояса, сосредоточенной нагрузки в середине пролета и задача о смещении подвижной опоры. Материалы и методы. Расчет усилий в стержнях фермы произведен в символьной форме с использованием метода вырезания узлов и операторов системы компьютерной математики Maple. Прогиб определен по формуле Максвелла Мора с учетом только сжимающих и растягивающих усилий в стержнях. По результатам последовательности аналитических расчетов ферм с различным числом панелей в ригеле, консолях и опорных фермах методом индукции выведены итоговые расчетные формулы для прогиба и смещения опоры. Операторы специального пакета genfunc системы компьютерной математики Maple использованы для составления и решения однородных линейных рекуррентных уравнений, которым удовлетворяют последовательности коэффициентов искомых зависимостей. Жесткость всех стержней фермы принимается одинаковой. Результаты. Все полученные зависимости имеют полиномиальную по числу панелей форму. Для иллюстрации полученных решений и их качественноого анализа построены кривые зависимости прогиба от числа панелей. Выводы. Предложена схема статически определимой трехпараметрической фермы, допускающая аналитическое решение задачи о прогибе и смещении опоры. Полученные зависимости могут быть использованы в инженерной практике в задачах оптимизации конструкции по жесткости и для оценки точности численных решений.

Текст научной работы на тему «Calculation of deformations of a cantilever-frame planar truss model with an arbitrary number of panels»

УДК 624.072.336.2 DOI: 10.22227/1997-0935.2020.4.510-517

Calculation of deformations of a cantilever-frame planar truss model with an arbitrary number of panels

Karina Buka-Vaivade1, Mikhail N. Kirsanov2, Dmitrijs O. Serdjuks1

1 Riga Technical University (RTU); Riga, Latvia; 2 National Research University "Moscow Power Engineering Institute " (MPEI); Moscow, Russian Federation

ABSTRACT

Introduction. By method of induction using three independent parameters (numbers of panels) formulas for deflection under different types of loading are derived. Curves based on the derived formulas are analyzed, and the asymptotic of solutions for the number of panels are sought. The frame is statically definable, symmetrical, with descending braces. The problem of deflection under the action of a load evenly distributed over the nodes of the upper chord, a concentrated load in the middle of the span, and the problem of shifting the mobile support is considered.

Materials and methods. The calculation of forces in the truss bars is performed in symbolic form using the method of cutting nodes and operators of the Maple computer mathematics system. The deflection is determined by the Maxwell -Mohr formula. Operators of the Maple computer mathematics system are used for composing and solving homogeneous linear recurrent equations that satisfy sequences of coefficients of the required dependencies. The stiffness of all truss bars is assumed to be the same.

Results. All the obtained dependencies have a polynomial form for the number of panels. To illustrate the obtained solutions and their qualitative analysis, curves of the deflection dependence on the number of panels are constructed. Conclusions. A scheme of a statically definable three-parameter truss is proposed that allows an analytical solution of the 0 0 problem of deflection and displacement of the support. The obtained dependences can be used in engineering practice in

g g problems of structural rigidity optimization and for evaluating the accuracy of numerical solutions.

tv СЧ

KEYWORDS: planar truss, frame, deflection, induction, Maple, analytical solution, console

К Ф U 3

> trt FOR CITATION: Buka-Vaivade K., Kirsanov M.N., Serdjuks D.O. Calculation of deformations of a cantilever-frame planar truss

model with an arbitrary number of panels. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2020; 15(4):510-517.

p Расчет деформаций модели плоской фермы консольно-рамного типа

СО Ю DOI: 10.22227/1997-0935.2020.4.510-517

I

а? ф с произвольным числом панелей

¡1 —■ ^

о

§ ь 1 Рижский технический университет (РТУ); г. Рига, Латвия; со

4 2 Национальный исследовательский университет «Московский энергетический институт»

й ^ (НИУ «МЭИ»); г. Москва, Россия

К. Бука-Вайваде1, М.Н. Кирсанов2, Д.О. Сердюк1

от "

ОТ 2 АННОТАЦИЯ

с Введение. Методом индукции по трем независимым параметрам (числам панелей), характеризующим пропорции ^ О конструкции и ее частей, дается вывод формул для прогиба при различных типах нагружения. Анализируются кри-^ § вые, построенные по выведенным формулам, разыскивается асимптотика решений по числу панелей. Рама — ста-££ й тически определимая, симметричная, с нисходящими раскосами в простой решетке ригеля и консолей. Конструкция Я3 | имеет подвижную и неподвижную опоры. Рассмотрены: задача о прогибе под действием нагрузки, равномерно расо) ° пределенной по узлам верхнего пояса, сосредоточенной нагрузки в середине пролета и задача о смещении под-

т- вижнои опоры.

^ £ Материалы и методы. Расчет усилии в стержнях фермы произведен в символьной форме с использованием метода

ОТ вырезания узлов и операторов системы компьютерной математики Maple. Прогиб определен по формуле Максвел-

• • ла - Мора с учетом только сжимающих и растягивающих усилий в стержнях. По результатам последовательности

(j Э аналитических расчетов ферм с различным числом панелей в ригеле, консолях и опорных фермах методом индукции

js у выведены итоговые расчетные формулы для прогиба и смещения опоры. Операторы специального пакета genfunc

х S системы компьютерной математики Maple использованы для составления и решения однородных линейных рекур-

S рентных уравнений, которым удовлетворяют последовательности коэффициентов искомых зависимостей. Жесткость

I- £ всех стержней фермы принимается одинаковой.

Ф Ф U >

© Karina Buka-Vaivade, Mikhail N. Kirsanov, Dmitrijs O. Serdjuks, 2020 Распространяется на основании Creative Commons Attribution Non-Commercial (CC BY-NC)

Результаты. Все полученные зависимости имеют полиномиальную по числу панелей форму. Для иллюстрации полученных решений и их качественноого анализа построены кривые зависимости прогиба от числа панелей. Выводы. Предложена схема статически определимой трехпараметрической фермы, допускающая аналитическое решение задачи о прогибе и смещении опоры. Полученные зависимости могут быть использованы в инженерной практике в задачах оптимизации конструкции по жесткости и для оценки точности численных решений.

КЛЮЧЕВЫЕ СЛОВА: плоская ферма, рама, прогиб, индукция, Maple, аналитическое решение, консоль

ДЛЯ ЦИТИРОВАНИЯ: Бука-Вайваде К., Кирсанов М.Н., СердюкД.О. Calculation of deformations of a cantilever-frame planar truss model with an arbitrary number of panels // Вестник МГСУ. 2020. Т. 15. Вып. 4. С. 510-517. DOI: 10.22227/1997-0935.2020.4.510-517

INTRODUCTION

Planar trusses, as a rule, are the supporting components of the frames of spatial structures. Ignoring the work of links1, the calculation of the spatial truss can be replaced by the calculation of individual planar trusses. Deflection calculation, the most difficult part of the design calculation in a practical sense, is usually performed numerically in known numerical packages based on the finite element method, including taking into account the nonlinearity of the problem [1-6] and dynamics. Accurate solutions in the form of simple formulas that depend on all design parameters are always a good help for such calculations. The more parameters are included in analytical solutions, the more valuable such formulas are. For example, the Kachurin's formula is widely known [7]. Formulas for some planar trusses with an arbitrary number of panels were obtained by V.A. Ignatiev [8]. The most effective method was an inductive method for obtaining formulas for deflection taking into account the number of panels. The monograph [9] provides more than 70 exact solutions to the problem of deformation of various statically definable flat trusses of beam, arch, and frame types obtained by induction using one or two integer parameters that characterize the number of panels in the structure. In [9] did not include (or did not include completely) the works [10-16], which also use the induction method for obtaining solutions in symbolic form. In [17, 18], the double induction method is used to derive the deflection formula. An overview of some works on this topic can be found in [19].

The main aim of this paper is to derive a formula for the deflection of a frame-type truss with three independent parameters that characterize the number of panels. A cantilever frame scheme is proposed (Fig. 1). A truss is a regular one to which the inductive method is applicable. For the first time, the problem of finding ("hunting") statically definable regular trusses was raised by R.G. Hutchinson and N.A. Fleck [20, 21].

Fig. 1. Frame, m = 5, n = 4, k = 2

General problems of periodic bar structures are described in [22]. Analytical solutions can be used to solve structural optimization problems [23-29].

In this paper, we consider a truss consisting of a crossbar with 2n panels, two consoles with k panels in each, and support trusses with m panels in height. Together with three rigid bars that model supports, the truss contains ns = 8(n + m + k) + 5 bars.

MATERIALS AND METHODS

Calculating the vertical offset of node C (Fig. 2) performed using the Maxwell-Mohr's formula

"s -3 S S I A = P Y^LL ,

M EF

(1)

< DO

<d е t с

Î.Ï

G Г сС

У

o со

§ СО

y 1

J CD

^ I

n °

S 3 o

=s (

о §

E w § 2

n g

S 6

Г œ t (

S ) fi

1 Kirsanov N.M. Connections in the metal frame of an

industrial building. Voronezh, VISI, 1990; 26. URL: http:// vuz.exponenta.ru/PDF/ book/SV/sv.html (rus.).

where lj and Sj is the length and force in the j-th bar from the action of the load, Sj — is the force from the unit force applied to the Central node C in the direction of the desired movement, E is the elastic modulus of the bars, F is the cross-sectional area.

Summation is performed on all the frame bars, except for the three support ones, which are accepted

<D

01

« DO

■ T

s □

s У с о

<D Ж ,,

M 2 О О 10 10 О О

Fig. 2. The scheme of the truss, the load on the top chord, m = 3, n = 4, k = 2

o o

N N

o o

tM N

H <D

U 3

> in

C M

HQ in

il <D <1J

O £

o

o _

g<

o

CO

™ O

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

o

ro

o

o

o

Ln CO CD

o

I

CD CD

iD

SI 0 (0 ® o u >

Fig. 3. The block diagram of the program

as non-deformable. The solution is searched for in an analytical form, so the efforts in the bars included in (1) must also be searched for in the form of formulas. The truss is statically definable, so it is most convenient to find it from the General system of equilibrium equations for all nodes (internal hinges). The coefficients in this system are the guiding cosines of the forces. The calculation is performed using the program [17, 18], written in the Maple language (Fig. 3).

At the beginning (block 1), the program enters the estimated number of cycles Nmax, which is sufficient for the program to allocate common terms of the sequence of coefficients of the desired formula for deflection. The dimensions of the structure and the load value are not set, these values are undefined parameters of the problem. In block 2, the coordinates of the hinges are set. Entering coordinates for arbitrary parameters m, n, k is performed in cycles. In this problem, the hinges are numbered first along the inner and then along the outer contour of the truss (Fig. 4). Here is a fragment of the program with a set of coordinates, for example, the hinges of the left truss-rack:

> x[1]:=k*a:y[1]:=0:

> for i to m do x[i+1]:=k*a+a; y[i+1]:=h*i; end;

Fig. 4. The scheme of truss, m = n = k = 2

The structure of the connection of nodes (hinges) and bars in block 3 is set by special vectors containing the numbers of the ends of the bars. Vectors for entering bars along the internal and external contour of the truss have the form:

> m1:=m+n:

> for i to 2*m1 do

N[i]:=[i, i+1]; end:

> for i to 2*m1+4*k+2 do

N[i+2*m1]:=[i+2*m1+1, i+2*m1+2]; end:

Here N is a conditional vector with the number of the corresponding bar and coordinates equal to the numbers of nodes at its ends. The effort values do not depend on the choice of the directions of these vectors. In block 4, the vector B of the right part of the system of equilibrium equations GS = B is created, where G is the matrix of the system's coefficients, and S is the vector of forces in all the truss bars, including the three reference ones. A uniform load on the upper chord nodes is introduced into the even elements of the vector:

> for i from 2*m1+m+k+2 to 3*m1+3*k+n+4 do B[2*i]:=1: end:

The matrix G of the node equilibrium equations is formed from the guiding cosines of the forces determined based on the specified geometry of the structure and the order of connecting bars. Odd rows of the matrix correspond to the projection of forces on the x axis, even-projections on the y axis, in the same block, the system of equations is solved. The inverse matrix method is used. In the Maple system, this is surprisingly simple. Maple works with matrices as with numbers:

G1:=1/G: S:=G1.B

Here G1 is the inverse matrix. The matrix is multiplied by a column using the dot symbol.

In block 5, using the Maxwell-Mohr's formula (1), an expression for deflection is found. It turns out that the type of solution does not change for trusses with different numbers n and m (a consequence of the regularity property of the construction):

A = P (Ca3 + C2c3 + C3h3 )/(h2 EF), (2)

RESULTS

In the first of three cycles, the cycle for the number of panels n, the program outputs a sequence of coefficients before the cubes a3, c3 and h3. For example, for a coefficient C with m = k = 1, we have numbers: 3, 51/2, 92, 475/2, 507, 1911/2,... . The rgf_findrecur operator gives the following equation

C1,n = 5C1,n—1 — 10C1,n-2 + 10C1,n-3 — 5C1,n—4 + C1,n-5.

Its solution has the form

C = (n +1)2 (5n2 + 10n - 6)/12.

The calculation for m = 2, 3, 4 in the second cycle shows that this coefficient does not change. In the k loop we get

k = 2: C1 = (n +1)2(5n2 + 10n-30)/12,

k = 3 : C1 = (n +1)2(5n2 + 10n-66)/12,

k = 4: C1 = (n +1)2(5n2 + 10n-114)/12,

k = 5 : C1 = (n +1)2(5n2 + 10n-174)/12,

Generalization by k only concerns the last term in these expressions. As a result, for random n, m, k we get

C = (n +1)2(5n2 + 10n- 6k2 -6k + 6)/12. (3)

Similarly, for two other coefficients in (2) we get

C2 = (n +1)2 / 2,

C3 = (n2 + 2mn + 3m + 2km -1)/2.

(4)

where c = <Ja2+~h2 is the length of the brace. Elements of coefficient sequences are highlighted by the coeff operator.

Block 6, which searches for common sequence members, is executed after the completion of a cycle of n deflection calculations. There is one problem here. If the cycle is not long enough, then the operator for detecting the recurrent equation for sequence elements does not give a plausible answer. In this case, you should increase Nmax and continue the cycle. According to the operation condition of the rgf_findrecur operator for composing recurrent equations, the length of the sequence under study must be even. Block 6 gives an answer for solving the problem with random n, but fixed values of m and k. To get a formula that is valid for any n, m, k, you need to create two more external cycles for m and k, thus performing a triple induction. The need for triple induction is the main problem fot this truss, due to the fact that the maple system performs character transformations very slowly, especially for large-size matrices.

The proposed formula output algorithm can be easily adapted to other loads. In the case of a load applied to the middle of the span to the node of the lower chord, the right part of the system of equations has the form

i: = m + n + 1: B[2*i]: = 1

Obviously, the consoles remain unloaded, and the number of panels k does not affect the deflection in any way. Induction over n and m gives the following expressions for coefficients in (2):

C1 = (n + 1)(2n2 + 4n + 3)/ 6,

C2 = (n +1)/2, (5)

C3 = (n + m -1)/2.

The left support of the structure is movable and under the action of a vertical load it is displaced. The offset value is calculated in the same program:

8 A = P (a3 + A2c3 + A3h3)/(haEF), A1 = (4(1 + 2m)n3 + 3(3 + 8m)n2 +

+ (5 - 6k2 - 6k - 12mk2 - 12mk + 22m)n -- 6m(k2 + k -1))/6, A2 = m(2n +1),

A3 = m (m + 1)(2k + 2n + 3)/ 2.

< DO

<d e

t o

i x

G 1 cC

o </> § S

y -»■

J to

^ I

n °

S 3 o

zs (

o §

E w § 2

n g

s 6

A CD

r 6 t ( go

s ) ¡i

(D

01

(6)

№ DO

■ T

s □

s y c o

(D * ,,

M 2

O O

N) 10

O O

o o

N N O O N N

H <D

U 3

> in

C M

HQ in

il <D <1J

Verification of the derived formulas can be performed either in numerical mode, or simply by changing the order of the parameters m, n, k in the induction process.

The obtained dependencies have a relatively simple form and are easily analyzed. Consider, for example, the case when the total number of panels in the crossbar and consoles is constant. Let n + k = 20. We also fix the span length L = 2na = 100 m and the total load evenly distributed across the nodes of the upper chord Psum = P(2n + 2k + 2). The dependence of the dimensionless deflection A' = AEF / (PsumL) on the number of panels n (Fig. 5) shows that for small n and, consequently, large k (long consoles), the deflection

is negative — the middle of the span is raised by the forces applied to the consoles. If the number n increases (the consoles are shortened), the crossbar in the middle naturally bends down. Almost the same effect is obtained, if you do not fix the span (the distance between the support of trusses), but the total length of the structure L = 2a(n + k +1) = 100 m. The curves also have a common intersection point for different heights, but their convexity is directed downward (Fig. 6).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The analytical form of the solution using Maple methods allows us to find some of its asymptotics. For independent values of n and m, we have the following asymptotes of the solution (3, 4): lim A'/ n = h / (2 L),

lim A'/ k = -L2 (n +1)2 / (32n3h2). Note that if in the

k ^^

first case the slope of the asymptote increases with decreasing span length L = 2na, then in the second case (unlimited increase in console lengths) this dependence is reversed. The solution (6) of the problem of shifting the left movable support under the action of a vertical uniform load applied to the upper chord has similar asymptotes:

lim 5'/ n = h2 m(m + 3)/L2,

lim 8'/ k = -L (n + m) / (8n2 h).

k ^^

Here §' = 8EF/(PsumL) is a dimensionless offset. When 8' > 0, the support A (Fig. 2) is shifted to the left. The asymptotics of solving problem (6) for the number of panels m at a fixed height H = mh is nonlinear:

Fig. 5. Dependence of the deflection on the number of panels, m = 3, L = 2na = 100 m

lim 8'/ m2 =

L(2n + 1)(2n2 + 5n + 6 - 3k2 - 3k) 24n2 (n + k + 1)H '

O g —■ "t^ o

o cj

CD <f

S = ™ 5

iD

in

o

o

LO CO CD

o

I

CD CD

in

iD

I

SI

O (0

® a>

Fig. 6. Dependence of the deflection on the number of panels,

£ £ m = 3, L = 2a(n + k + 1) = 100 m

DISCUSSION AND CONCLUSIONS

The considered frame-type truss has a simple lattice for which it is easy to obtain internal forces values using standard methods, such as the cross-section method. The Ritter's cross section is available for almost all bars in the structure, except for only three bars above the truss supports. In spite of this, the method of cutting out nodes with the compilation of the matrix of the equilibrium equation of all nodes is used to get formulas for the deflection and displacement of the support. This is justified, firstly, by the fact that the reactions of the supports are determined simultaneously with the internal forces, and secondly, by using a computer program with free independent parameters (the number of panels), the result for the internal forces and, consequently, for the deflection is obtained automatically. This allows to get a series of solutions for which the desired formulas are derived by induction. For the solutions found, some asymptotics

m

characteristics are revealed that give estimates of deflection or displacement with an extreme increase in the number of panels. As an illustration of the application of solutions, the paper presents a solution to the problem of the ratio of the number of panels in the crossbar and consoles. The characteristic point of intersection of curves corresponding to zero or very small deflection

is found. Analytical solutions obtained by the induction method are convenient both for other, more complex problems of optimizing structures and for evaluating numerical solutions, especially since the accuracy of the analytical solution does not depend on the number of panels. For large-span structures, where the number of panels is very large, this is especially important.

REFERENCES

1. Rybakov V.A., Gamayunova O.S. The stressstrain state of frame constructions' elements from thin-walled cores. Construction of Unique Buildings and Structures. 2013; 7(12):79-123. (rus.).

2. Rybakov V.A., Al Ali M., Panteleev A.P., Fedotova K.A., Smirnov A.V. Bearing capacity of rafter systems made of steel thin-walled structures in attic roofs. Magazine of Civil Engineering. 2017; 76(8): 28-39. DOI: 10.18720/MCE.76.3

3. Mathieson C., Roy K., Clifton G., Ahmadi A., Lim J.B.P. Failure mechanism and bearing capacity of cold-formed steel trusses with HRC connectors. Engineering Structures. 2019; 201:109741. DOI: 10.1016/j.engstruct.2019.109741

4. Villegas L., Moran R., Garcia J.J. Combined culm-slat Guadua bamboo trusses. Engineering Structures. 2019; 184:495-504. DOI: 10.1016/j. engstruct.2019.01.114

5. Dong L. Mechanical responses of snap-fit Ti-6Al-4V warren-truss lattice structures. International Journal of Mechanical Sciences. 2020; 173:105460. DOI: 10.1016/j.ijmecsci.2020.105460

6. Vatin N.I., Havula J., Martikainen L., Sinelnikov A.S., Orlova A.V., Salamakhin S.V. Thin-walled cross-sections and their joints: tests and fem-modelling. Advanced Materials Research. 2014; 945949:1211-1215. DOI: 10.4028/www.scientific.net/ AMR.945-949.1211

7. Marutyan A.S., Grigoryan M.B. Minimum height of steel trusses and their cross systems, including modules of coverings and overlappings of the Pyatigorsk type. Modern science and innovations. 2013. 1(1):52-62. (rus.).

8. Galishnikova V.V., Ignatiev V.A. Regular rod systems. Theory and methods of calculation. Volgograd, VolgGASU Publ., 2006; 551. (rus.).

9. Kirsanov M.N. Planar Trusses: Schemes and Formulas. Cambridge Scholars Publishing. Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK, 2019; 206.

10. Egorov S.S. The inductive method of solving the problem of deflection of the symmetric core structures of complex shape in the system Maple for arbitrary number of panels. Science Almanac. 2017; 3-3(29):254-257. URL: http://ucom.ru/doc/na.2017.03.03.254.pdf DOI: 10.17117/na.2017.03.03.254

11. Rakhmatulina A.R., Smirnova A.A. The formula for the deflection of a truss loaded at half-span by a uniform load. Postulat. 2018; 3:2.

12. Rakhmatulina A.R., Smirnova A.A. Two-parameter derivation of the formula for deflection of the console truss. Postulat. 2018; 5:22.

13. Kitaev S.S. Derivation of the formula for the deflection of a cantilevered truss with a rectangular diagonal grid in the computer mathematics system Maple. Postulat. 2018; 5:43.

14. Rakhmatulina A.R., Smirnova A.A. Analytical calculation and analysis of planar springel truss.

Structural mechanics and structures. 2018; 2(17):72-79. < BI

(D <D

15. Arutyunyan V.B. Calculation of the deflection of &2 a statically indeterminate beam truss. Postulat. 2018; 6:42. k |

16. Arutyunyan V.B. Calculation of the deflection g of a decorative lattice of a truss with an arbitrary number S n of panels under the load in the middle of the span. C y Postulat. 2017; 7:3. M .1

17. Arutyunyan V.B. Double induction for t S deriving a formula for deflecting a frame truss with an § 1 arbitrary number of panels. Postulat. 2018; 7:5. q 7

18. Kirsanov M.N., Buka-Vaivade K. Analytical | 6 calculation of the deflection of the rod frame with an § 5

O CJ1

arbitrary number of panels. Structural mechanics and c p

structures. 2019; 3(22):21-28. | )

19. Tinkov D.V. Comparative analysis of analytical q ^ solutions to the problem of truss structure deflection. a N Magazine of Civil Engineering. 2015; 5:66-73. § 3 DOI: 10.5862/MCE.57.6 (rus.). | g

20. Hutchinson R.G., Fleck N.A. Microarchitec- r 6 tured cellular solids — the hunt for statically deter- t ( minate periodic trusses. ZAMM. 2005; 85(9):607-617. t | DOI: 10.1002/zamm.200410208 r |

CD CD

21. Hutchinson R.G., Fleck N.A. The structural • C performance of the periodic truss. Journal of the I O Mechanics and Physics of Solids. 2006; 54(4):756-782. S 1 DOI: 10.1016/j.jmps.2005.10.008 1 £

22. Zok F.W., Latture R.M., Begley M.R. £ B Periodic truss structures. Journal of the Mechanics and S § Physics of Solids. 2016; 96:184-203. DOI: 10.1016/ u < j.jmps.2016.07.007 1 *

23. Degertekin S.O., Lamberti L., Ugur I.B. . Sizing, layout and topology design optimization of 00 truss structures using the Jaya algorithm. Applied 0 o

Soft Computing. 2018; 70:903-928. DOI: 10.1016/ j.asoc.2017.10.001

24. Tinkov D.V., Safonov A.A. Design optimization of truss bridge structures of composite materials. Journal of Machinery Manufacture and Reliability. 2017; 46(1):46-52. DOI: 10.3103/S1052618817010149

25. Serpik I.N., Alekseytsev A.V. Optimization of flat steel frame and foundation posts system. Magazine of Civil Engineering. 2016; 61(1):14-24. DOI: 10.5862/ MCE.61.2 (rus.).

26. Serpik I.N., Alekseytsev A.V. Optimization of frame structures with possibility of emergency actions. Magazine of Civil Engineering. 2013; 9:23-29. DOI: 10.5862/MCE.44.3 (rus.).

27. Kaveh A., Laknejadi K. A hybrid evolutionary graph-based multi-objective algorithm for layout optimization of truss structures. ActaMechanica. 2013; 224(2):343-364. DOI: 10.1007/s00707-012-0754-5

28. Degertekin S.O., Lamberti L., Ugur I.B. Discrete sizing/layout/topology optimization of truss structures with an advanced Jaya algorithm. Applied Soft Computing. 2019; 79:363-390. DOI: 10.1016/ j.asoc.2019.03.058

29. Nie R., He B., Yan S., Ma X. Optimization design method for mesh reflector antennas considering the truss deformation and thermal effects. Engineering Structures. 2020; 208:110253. DOI: 10.1016/j. engstruct.2020.110253

Received February 10, 2020.

Adopted in a revised form on March 6, 2020.

Approved for publication March 29, 2020.

О о

N N О О

tV N * *

к ai u з

> (Л

с и ta in

¡1 ф <и

о ё —■

о о

со <т 8 «

<л ю

о

о

ю со

СП

о

I

СП СП

ю

¡1 w

г

О (0 Ф Ф СО >

B I o N o t e s : Karina Buka-Vaivade — Master of Science in Engineering, researcher at the Institute of Structural Engineering and Reconstruction; Riga Technical University (RTU); 6B/6A Kipsalas st., Riga, LV-1048, Latvia; Scopus: 57193744331, ResearcherID: AAD-5973-2020, ORCID: 0000-0001-7296-8158; karina.buka-vaivade@rtu.lv;

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Mikhail N. Kirsanov — Doctor of Physical and Mathematical Sciences, Professor of Department of robotics, mechatronics, dynamics and strength of machines; National Research University "Moscow Power Engineering Institute" (MPEI); 14 Krasnokazarmennaya st., Moscow, 111250, Russian Federation; ID RISC: 118571, Scopus: 16412815600, ResearcherID: H-9967-2013, ORCID: 0000-0002-8588-3871, IstinaResearcherID: 2939132; c216@ya.ru;

Dmitrijs O. Serdjuks — D.Sc.Eng., Professor, Professor of the Department of Structural Engineering; Riga Technical University (RTU); 6B/6A Kipsalas st., Riga, LV-1048, Latvia; Scopus: 6508223358, ORCID: 0000-00021843-3061; dmitrijs.serdjuks@rtu.lv.

ЛИТЕРАТУРА

1. Рыбаков В.А.,Гамаюнова О.С. Напряженно-деформированное состояние элементов каркасных сооружений из тонкостенных стержней // Строительство уникальных зданий и сооружений. 2013. № 7 (12). С. 79-123.

2. Rybakov VA, Al Ali M, Panteleev A.P., Fedo-tova K.A., Smirnov A.V. Bearing capacity of rafter systems made of steel thin-walled structures in attic roofs // Magazine of Civil Engineering. 2017. No. 76 (8). Pp. 28-39. DOI: 10.18720/MCE.76.3

3. Mathieson C., Roy K., Clifton G., Ahmadi A., Lim J.B.P. Failure mechanism and bearing capacity of cold-formed steel trusses with HRC connectors // Engineering Structures. 2019. Vol. 201. P. 109741. DOI: 10.1016/j.engstruct.2019.109741

4. Villegas L., Moran R., Garcia J.J. Combined culm-slat Guadua bamboo trusses // Engineering Structures. 2019. Vol. 184. Pp. 495-504. DOI: 10.1016/j. engstruct.2019.01.114

5. Dong L. Mechanical responses of snap-fit Ti-6Al-4V warren-truss lattice structures // International Journal of Mechanical Sciences. 2020. Vol. 173. P. 105460. DOI: 10.1016/j.ijmecsci.2020.105460

6. Vatin N.I., Havula J., Martikainen L, Sinel-nikov A.S., Orlova A.V., Salamakhin S.V. Thin-walled cross-sections and their joints: tests and fern-modelling // Advanced Materials Research. 2014. No. 945949. Pp. 1211-1215. DOI: 10.4028/www.scientific.net/ AMR.945-949.1211

7. Марутян А.С., Григорьян М.Б. Минимальная высота стальных ферм и их перекрестных систем, включая модули покрытий и перекрытий типа «Пятигорск» // Современная наука и инновации. 2013. № 1 (1). С. 52-62.

8. Галишникова В.В., Игнатьев В.А. Регулярные стержневые системы. Теория и методы расчета. Волгоград : ВолгГАСУ, 2006. 551 с.

9. Kirsanov M.N. Planar trusses: schemes and formulas. Cambridge Scholars Publishing. Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK, 2019. 206 с.

10. Egorov S.S. The inductive method of solving the problem of deflection of the symmetric core structures of complex shape in the system Maple for arbitrary number of panels // Science Almanac. 2017. No. 3-3 (29). Pp. 254-257. URL: http://

ucom.ru/doc/na.2017.03.03.254.pdf DOI: 10.17117/ na.2017.03.03.254

11. Rakhmatulina A.R., Smirnova A.A. The formula for the deflection of a truss loaded at half-span by a uniform load // Postulat. 2018. No. 3. P. 2.

12. Rakhmatulina A.R., Smirnova A.A. Two-parameter derivation of the formula for deflection of the console truss // Postulat. 2018. No. 5. P. 22.

13. Kitaev S.S. Derivation of the formula for the deflection of a cantilevered truss with a rectangular diagonal grid in the computer mathematics system Maple // Postulat. 2018. No. 5. P. 43.

14. Rakhmatulina A.R., Smirnova A.A. Analytical calculation and analysis of planar springel truss // Structural mechanics and structures. 2018. № 2 (17). Pp. 72-79.

15. Arutyunyan V.B. Calculation of the deflection of a statically indeterminate beam truss // Postulat. 2018. No. 6. P. 42.

16. Arutyunyan V.B. Calculation of the deflection of a decorative lattice of a truss with an arbitrary number of panels under the load in the middle of the span // Postulat. 2017. No. 7. P. 3.

17. Arutyunyan V.B. Double induction for deriving a formula for deflecting a frame truss with an arbitrary number of panels // Postulat. 2018. No. 7. P. 5.

18. Kirsanov M.N, Buka-Vaivade K. Analytical calculation of the deflection of the rod frame with an arbitrary number of panels // Structural mechanics and structures. 2019. Vol. 3. No. 22. Pp. 21-28.

19. Тиньков Д.В. Сравнительный анализ аналитических решений задачи о прогибе ферменных конструкций // Инженерно-строительный журнал. 2015. № 5 (57). С. 66-73. DOI: 10.5862/MCE.57.6

20. Hutchinson R.G., Fleck N.A. Microarchitec-tured cellular solids — the hunt for statically determinate periodic trusses // ZAMM. 2005. Vol. 85. Issue 9. Pp. 607-617. DOI: 10.1002/zamm.200410208

21. Hutchinson R.G., Fleck N.A. The structural performance of the periodic truss // Journal of the Me-

Поступила в редакцию 10 февраля 2020 г. Принята в доработанном виде 6 марта 2020 г. Одобрена для публикации 29 марта 2020 г.

Об авторах: Карина Бука-Вайваде — магистр технических наук, научный сотрудник Института строительства и реконструкции; Рижский технический университет (РТУ); LV-1048, Латвия, г. Рига, ул. Кипсалас 6B/6A; Scopus: 57193744331, ResearcherID: AAD-5973-2020, ORCID: 0000-0001-7296-8158; karina. buka-vaivade@rtu.lv;

Михаил Николаевич Кирсанов — доктор физико-математических наук, профессор кафедры робототехники, мехатроники, динамики и прочности машин; Национальный исследовательский университет (НИУ «МЭИ»); 111250, г. Москва, ул. Красноказарменная, д. 14; РИНЦ ID: 118571, Scopus: 16412815600, ResearcherID: H-9967-2013, ORCID: 0000-0002-8588-3871, IstinaResearcherID: 2939132; c216@ya.ru; c216@ya.ru;

Дмитрий Олегович Сердюк — доктор технических наук, профессор кафедры строительных конструкций; Рижский технический университет (РТУ); LV-1048, Латвия, г. Рига, ул. Кипсалас 6B/6A; Scopus: 6508223358, ORCID: 0000-0002-1843-3061; dmitrijs.serdjuks@rtu.lv.

chanics and Physics of Solids. 2006. Vol. 54. Issue 4. Pp. 756-782. DOI: 10.1016/j.jmps.2005.10.008

22. Zok F.W, Latture R.M., Begley M.R. Periodic truss structures // Journal of the Mechanics and Physics of Solids. 2016. Vol. 96. Pp. 184-203. DOI: 10.1016/ j.jmps.2016.07.007

23. Degertekin S.O., Lamberti L., Ugur I.B. Sizing, layout and topology design optimization of truss structures using the Jaya algorithm // Applied Soft Computing. 2018. Vol. 70. Pp. 903-928. DOI: 10.1016/j. asoc.2017.10.001

24. Tinkov D.V., Safonov A.A. Design optimization of truss bridge structures of composite materials // Journal of Machinery Manufacture and Reliability. 2017. Vol. 46. Issue 1. Pp. 46-52. DOI: 10.3103/ S1052618817010149

25. СерпикИ.Н., АлексейцевА.В. Оптимизация системы стальной плоской рамы и столбчатых фундаментов // Инженерно-строительный журнал. 2016. № 1 (61). С. 14-24. DOI: 10.5862/MCE.61.2

26. Серпик И.Н., Алексейцев А.В. Оптимизация рамных конструкций с учетом возможности запро-ектных воздействий // Инженерно-строительный журнал. 2013. № 9 (44). С. 23-29. DOI: 10.5862/ MCE.44.3

27. Kaveh A., Laknejadi K. A hybrid evolutionary graph-based multi-objective algorithm for layout optimization of truss structures // Acta Mechanica. 2013. Vol. 224. Issue 2. Pp. 343-364. DOI: 10.1007/s00707-012-0754-5

28. Degertekin S.O., Lamberti L., Ugur I.B. Discrete sizing/layout/topology optimization of truss structures with an advanced Jaya algorithm // Applied Soft Computing. 2019. Vol. 79. Pp. 363-390. DOI: 10.1016/j.asoc.2019.03.058

29. Nie R., He B, Yan S., Ma X. Optimization design method for mesh reflector antennas considering the truss deformation and thermal effects // Engineering Structures. 2020. Vol. 208. P. 110253. DOI: 10.1016/ j.engstruct.2020.110253

< DO

<d е t с

i G Г

сС

У

0 со n CO

1 s

У 1

J to

^ I

n °

S> 3 o

zs (

о n

E w

о CO

n M n 0

r 6 t (

SS ) i

<D

01

« DO

■ T

s У с о

<D Ж ,,

О О 10 10 О О

i Надоели баннеры? Вы всегда можете отключить рекламу.