ТЕХНИКА ФАНЛАРИ ТЕХНИЧЕСКИЕ НАУКИ TECHNICAL SCIENCES
d ) https://dx.doi.org/10.36522/2181-9637-2022-2-14 UDC: 621.398
BOSHQARILUVCHAN CHIQISH KUCHLANISHLI TOK O'ZGARTKICHLARINING DINAMIK
TAVSIFLARI
Boixanov Zailobiddin Urazali o'g'li, Andijon mashinasozlik instituti doktoranti, ORCID: 0000-0001-7915-4210, e-mail: [email protected]
Kirish
Uch fazali asinxron motor reaktiv quvvatining nosimmetrik kattaliklarini nazorat qilish va boshqarish uchun stator chulg'amidan nosimmetrik i1, i2, i3, birlamchi toklar o'tishi natijasida hosil bo'lgan magnit oqimlar ta'sirida tok o'zgartkichi o'lchov chulg'amlari chiqishlarida u (t), u (t), ичик 3(t) kuchlanishlar olinadi. Bu signal ko'rinishidagi chiquvchi kuchlanishni quyi-dagicha yozib olamiz [1, 6-b.]:
U4uk3 (0 = ~Ry3 " КикЗ (0 —
d(P2(t) + w, —+ w. d<m.
dt 5 dt 6 dt '
d01(t) + w, —+ w. d03(O.
dt 4 dt 6 dt '
<*LJf) d(I\{t) + w, —— + w. d<P2(t).
dt 4 dt 5 dt '
(1)
Bu yerda R„„, Rn, R„ L^, Rn, R_ - uch fazali
J y.1 y.2' y.3' y.1 y.2' y.3
tok o'zgartkichining nosimmetrik aktiv va induktiv qarshiliklari; w.x, Wy2, Wy3, - o'lchov elementi sifatidagi o'ramlar soni.
Uch fazali asinxron motorlar kuchla-nishining nosimmetriklik darajasini tavsif-lovchi asosiy sifat ko'rsatkichini teskari ketma-ketlikdagi kuchlanishning koeffitsienti orqali aniqlash mumkin:
k
K2U ~ U-i
(2)
bu yerda U2 U1 - mos ravishda to'g'ri va teskari ketma-ketliklar kuchlanishi.
Uch fazali asinxron motorlarining nosimmetrik kuchlanishi sharoitida ishlashi, qo'shimcha ravishda, teskari ketma-ketlikdagi
Annotatsiya. Ushbu maqolada asinxron motor reaktiv quvvatini nazorat qilish va boshqarish uchun boshqariluvchan chiqish kuchlanishli tok o'zgartkichi-dan foydalanildi. Tok o'zgartkichining ishonchliligi, sezgirligi, o'lchash aniqlik va xatoliklarining dinamik tavsiflari Simulnik dasturidan foydalanilgan holda olindi. Tok o'zgartkichlari, asosan, asinxron motor elektr ta'minoti tizimining normal barqaror ish rejimi davrida ishlaydi. Bu rejimda ba'zi shartli chegaralar bilan tok o'zgartkichlarini tadqiq etishda kirish tokining minimal va maksimal qiymatlari qabul qilinadi, buning uchun aniqlik sinfi (0,1-1,2)Inom deb olinadi. Elektr jihozlar va tarmoqlardagi shikastlanishlar asinxron motor elektr ta'minoti tizimining halokatli ish rejimi-ga olib keladi. Bu holda tok o'zgartkichlari dinamik rejimda ishlaydi. Asinxron motorda qisqa tutashuv-lar elektromagnit tok o'zgartkichlarining dinamik re-jimlarda ishlashiga olib keluvchi asosiy sababdir. Elektromagnit tok o'zgartkichlarining bunday rejimda ishlashi boshqaruv tizimi sxemalaridagi ishlash shart-laridan sezilarli farq qiladi. Agar elektromagnit tok o'zgartkichlari o'lchov maqsadida ishlatilsa, odatda, nominaldan oshmagan birlamchi tokda ishlashi talab etiladi. Bunda asinxron motorning boshqaruv tizim-larida qo'llanuvchi elektromagnit tok o'zgartkichlari nominaldan ancha katta toklarda, o'tish rejimi sha-roitlarida, masalan, qisqa tutashuv va shikastlanish hollarida o'z funksiyalarini bajarishi shart.
Kalit so'zlar: asinxron motor, boshqariluvchan chiqish kuchlanishli tok o'zgartkichi, magnit maydon, ishchi tavsiflar, tok, kuchlanish, quvvat, tezlik va moment.
ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ УПРАВЛЯЕМЫХ ПРЕОБРАЗОВАТЕЛЕЙ ВЫХОДНОГО НАПРЯЖЕНИЯ
Боиханов Заилобиддин Уразали угли,
докторант Андижанского машиностроительного института
ТЕХНИКА ФАНЛАРИ ТЕХНИЧЕСКИЕ НАУКИ TECHNICAL SCIENCES
Аннотация. В этой статье описывается управляемый преобразователь выходного напряжения в ток для контроля и управления реактивной мощностью асинхронного двигателя. Динамические характеристики преобразователя тока были получены с помощью программы Simulink с учетом надежности, чувствительности, точности измерения и погрешности. Преобразователи тока в основном эксплуатируются при нормальной устойчивой работе системы питания асинхронного двигателя. В этом режиме при исследовании преобразователей тока с некоторыми условными пределами принимаются минимальное и максимальное значения входного тока, для которых устанавливается класс точности (0,1-1,2)1ном. Повреждение электрооборудования и сетей может привести к аварийному режиму работы системы электроснабжения асинхронного двигателя, в этом случае преобразователи тока работают в динамическом режиме. Короткие замыкания в асинхронном двигателе являются основной причиной работы электромагнитных преобразователей тока в динамических режимах. Условия работы адаптеров электромагнитного тока в таких режимах существенно отличаются от условий работы в цепях системы управления. Если для целей измерения используются адаптеры электромагнитного тока, то обычно требуется, чтобы они работали при первичном токе, не превышающем номинальный ток, и выполняли свои функции в случае повреждения.
Ключевые слова: асинхронный двигатель, регулируемый выходной адаптер тока, магнитное поле, рабочие характеристики, ток, напряжение, мощность, скорость и момент.
DYNAMIC CHARACTERISTICS OF CONTROLLED OUTPUT VOLTAGE CONVERTERS
Boikhanov Zailobiddin Urazali ugli,
Doctoral Student of
Andijan Machine-Building Institute
Abstract. This article uses a controlled output voltage-to-current converter to control the reactive power of an induction motor. The dynamic characteristics of the current converter were obtained using the Simulink program, taking into account reliability, sensitivity, measurement accuracy and error. Current converters are mainly operated during normal stable operation of the power supply system of an asynchronous motor. In this mode, when studying current transducers with certain conditional limits, the minimum and maximum values of the input
nosimmetrik tokning tarkibiy qismlari paydo bo'lishi bilan murakkablashadi. Bu rotor va stator chulg'amlarida ortiqcha quvvat sarflanishiga olib keladi. Bu esa chulg'amlar qizib ketishi bilan bir qatorda ish muddati va qurilma ishlashining barqarorligiga ham sezilarli ta'sir qiladi. Uch fazali asinxron motorlardagi bunday ortiqcha sarfni qo'shimcha quvvat yo'qotish koeffitsienti yordamida hisoblash mumkin [2, 12-b.]:
Kr =
AP-nes _ 3I^R^+3I2 R2 _
31?
= 1 + k2
2 i
(3)
I.
Bu yerda k2j =— - teskari ketma-ketlikdagi I2
tok koeffitsienti; I, I - mos ravishda to'g'ri ketma-ketlikdagi toklar; R , R2 - mos ravishda to'g'ri ketma-ketlikdagi qarshiliklar; APnes -nosimmetrik tokdagi quvvat sarfi; ДPsjm -to'g'ri ketma-ketlik oqimlari tufayli quvvat yo'qotishlari.
Teskari kuchlanish ketma-ketligining nosimmetrik koeffitsientini quyidagicha yozishi mumkin:
„ _ U2 _ I2*Z2
Ay it — — — -
zu Ux I1*Z1
(4)
Bu yerda Z, Z2 - (3) ifodani mos ravishdagi to'g'ri va teskari ketma-ketliklarning to'la qarshiliklari ko'rinishida yozib olamiz.
(5) ifodada teskari ketma-ketlik oqimini ifodalaymiz:
K = 1 +ВД)2 J=J V—-1.
2 1 r
(5)
(6)
Keyin k2U koeffitsienti quyidagicha ko'rinadi.
Shundan k2U koeffitsientini quyidagicha yozib olamiz:
k2u —
_ Jkr-lZ2
(7)
(6) ifodadan quvvat sarfining koeffitsientini aniqlab olamiz:
Kr = l + (k2UZf)2. (8)
ТЕХНИКА ФАНЛАРИ ТЕХНИЧЕСКИЕ НАУКИ TECHNICAL SCIENCES
Uch fazali asinxron motor nosimmetrik kuchlanish ta'sirida quvvat iste'moli, statorda magnit (sochiluvchi) oqimlari sezilarli ravishda o'zgardi.
Material va metodlar
Uch fazali asinxron motor nosimmetrik kuchlanish sharoitida yuzaga keladigan jara-yonlarni ifodalash uchun ushbu jarayonlarning matematik modeli yaratildi. Matematik model simulnik kengaytmali matlab tizimi (Matrix Laboratory) orqali amalga oshirildi. Nosimmetrik kuchlanish sharoitida uch fazali asinxron motorning simulyatsiya modelida (1-rasm) A, B va D portlari asinxron motor stator chulg'amining kirish qismi hisoblanadi. Simulyatsiyada Tm porti qarshilik momentini hosil qilish uchun kerak bo'ladi.
current are accepted, for which the accuracy class (0.1-1.2)Inom is set. Damage to electrical equipment and networks can lead to emergency operation of the power supply system of an asynchronous motor, in which case the current converters operate in dynamic mode. Short circuits in an asynchronous motor are the main reason for the operation of electromagnetic current converters in dynamic modes. The operating conditions of electromagnetic current adapters in such modes differ significantly from the operating conditions in the control system circuits. If electromagnetic current adapters are used for measurement purposes, they are usually required to operate at a primary current not exceeding the rated current and must perform their functions in the event of a fault.
Keywords: induction motor, variable output current adapter, magnetic field, performance, current, voltage, power, speed and torque.
m-
A
=o—
Voltage Measurement! <з^01
КЗ
Voltage Measurement gg^j
с
-к let
в
в
Asynchronous Machine St Units
<SU№ torrent is_a (AJ>
<Sl»1pr ЯГГГ1 Ü_fe |A)>
«Stator cunert e_e (A)>
< Rotor speed (wm)>
Embedded MATLAB FundiOfl1
Embedded MATLAB Functioo2
► -
В
Em bead ей MATLAB Function^
«ElectrwufcjnMic iw$jt Те (N*m>>
g
В
Voltage Measurement^ о^оз
1-rasm. Uch fazali asinxron motorning nosimmetrik kuchlanish ta'sirida tokni kuchlanishga o'zgartirishning imitatsion modeli
Tadqiqot natijalari
Uch fazali asinxron motor stator chulg'amidagi tokni kuchlanishga o'zgar-tirish modeli to'rtinchi tartibli holat bilan ifodalanadi hamda ikkinchi tartibdagi di-namik xarakteristkalarni olish uchun me-
xanik qismi modellashtirilgan. Uch fazali asinxron motorning nominal parametrlarini quyidagicha ifodalay olamiz: nominal quvvat P = 0,75kW; nominal kuchlanish U = 380K;
n ' ' n '
tarmoq chastotasi f = 50Hz; nominal ay-lanishlar soni n= 1500 ay./daq.
ТЕХНИКА ФАНЛАРИ ТЕХНИЧЕСКИЕ НАУКИ TECHNICAL SCIENCES
2-rasm. Simulyatsiya qilinadigan uch fazali asinxron motorning texnik parametrlari
Uch fazali asinxron motor reaktiv quvvatining nosimmetrik kattaliklarini boshqariluvchan chiqish kuchlanishli tok o'zgartkichining bir qator tajribalar orqali amalga oshirdik. Uch fazali asinxron motorning stator chulg'amida hosil bo'lgan nosimmetrik tokni kuchlanish ko'rinishidagi chiquvchi signal orqali, uch fazali asinxron
motor aylanishlar tezligining grafigi hamda elektromagnit momenti, stator chulg'amida hosil bo'lgan uch fazali nosimmetrik sinusoidal garmonika, chiquvchi kuchlanish ko'rinishidagi signalning ushbu jarayonlarga ustma-ust tusha olishini ifodalaydigan xarakteristikalar olindi [4, 5, 7, 9, 23-32-b., 6-b.].
¡Rotor speed [mn]>
■ / !
I ......ту......
...../......
E_ /
1 !
/
j ! i 1
0 005 ftl 015 01 025 0.3 035 0.1 045 0.5
2 s 1 A 1 I 1
J A
1 j \ч \____
.....у...... .....\ ...._ v\M/V ^лд/w шттш i i
i■ V- V- v Л/--v TV v V V 1
ok oí ais ог 0.25 аз аз5 а« 0.45 os 0
3-rasm. Uch fazali asinxron motor boshqariluvchan chiqish kuchlanishli tok o'zgartkichiga bo'ylama nosimmetrik kuchlanish ta'sir etganda, aylanishlar soni (n)
va moment (M) grafiklari
Uch fazali asinxron motor 0 - 0.3 s vaqt oralig'ida o'zining elektromagnit momentning garmonikasi (3-rasm)dan ko'rinadiki, 0,3 s vaqt o'tgandan keyin barqaror ish rejimiga tushadi. Uch fazaning bir fazasini 0 deb qabul qilsak, qolgan fazalardagi kuchlanish statorda
sochiluvchi magnit maydonni Fo hosil qiladi, lekin asinxron motorining ish parametrlari yomonlashadi hamda nosimmetrik rejimida burchak tezligi (w) oshishi natijasida o'sish taxminan 1% ni tashkil etdi, rotor validagi foydali quvvat P2 taxminan 5% ga kamaydi.
ТЕХНИКА ФАНЛАРИ ТЕХНИЧЕСКИЕ НАУКИ TECHNICAL SCIENCES
Simulnik qilinganda, uch fazali asinxron motorning nosimmetrik rejimdagi barcha faza
kuchlanishlarining vaqtga nisbatan grafigini tuzamiz (4-rasm).
4-rasm. Uch fazali asinxron motorning bo'ylama nosimmetrik kuchlanish ta'sirida hosil
qilingan EYUKlar garmonika grafiklari
Uch fazali asinxron motorga nosimmetrik o'tayotgan nosimmetrik toklar garmonikalari kuchlanish ta'siridan stator chulg'amidan o'zgarishini matlab dasturida ko'ramiz.
5-rasm. Uch fazali asinxron motorga tarmoqdan nosimmetrik kuchlanish berilganda, stator chulg'amidan o'tayotgan tokning vaqtga bog'liq grafigi
Uch fazali asinxron motorga bo'ylama nosimmetrik kuchlanish ta'sir etganda, ishga tushirish 0-0.05 s oralig'ida sodir bo'lyapti. 0-0.3 s oralig'ida motor o'zining turg'un holatiga erishayotganini ko'rish mumkin. 0.3 s dan keyingi a fazada tok kuchi qiymati kamayotgani kuzatiladi.
Bunda iste'mol qilinayotgan reaktiv quvvat qiymati stator paziga aniqlik bilan joylashtirilgandan so'ng tokni kuchlanish ko'rinishidagi signalga o'zgartirish o'zgart-kichi yordamida nazorat qilib boshqarish imkoniyatiga erishish mumkin [13, 14, 17, 12-19-b.].
ТЕХНИКА ФАНЛАРИ ТЕХНИЧЕСКИЕ НАУКИ TECHNICAL SCIENCES
6-rasm. Stator chulg'amiga berilgan nosimmetrik kuchlanishni tokni kuchlanishga o'zgartirish o'zgartkichidan chiquvchi signal orqali tavsiflovchi grafig
Xulosalar
Tarmoqdan kelayotgan nosimmetrik kuchlanish statorda magnit maydoni hosil qiladi. Agar L1 fazada kuchlanish yo'q bo'lib qolsa, sezuvchi element L1 da kuchlanish yo'qligi haqida xabardor bo'ladi. Matlab
dasturida uch fazali asinxron motorni modellashtirish natijasida nosimmetrik kuchlanish ta'siri ish sharoitlarini tahlil qilish, nosimmetriklik darajasini aniq ifodalash va uni nazorat qilish imkonini beradi.
REFERENCES
1. Loukianov A., Rivera J., Alanis A., Raygoza J. Super-twisting sensorless control of linear induction motors. Electrical engineering, computing science and automatic control (CCE), 2012, 9th international conference, 2012, pp. 1-5.
2. Bucci G., Meo S., Ometto A., Scarano M. The control of LIM by a generalization of standard vector techniques. Industrial electronics, control and instrumentation, 1994. IECON'94, 20th international conference, 1994, pp. 623-626.
3. Zhang Z., Eastham T.R., Dawson G.E. Peak thrust operation of linear induction machines from parameter identification. Industry applications conference, 1995. Thirtieth IAS annual meeting, IAS'95, Conference Record of the 1995 IEEE, 1995, pp. 375-379.
4. Da Silva E.F., Dos Santos C.C., Nerys J.W.L. Field oriented control of linear induction motor taking into account end-effects. Advanced motion control, 2004. AMC '04. The 8th IEEE international workshop, 2004, pp. 689-694.
5. Da Silva E.F., Dos Santos E.B., Machado P.C.M., De Oliveria M.A.A. Vector control for linear induction motor. Industrial technology, 2003. IEEE international conference, 2003, vol. 1, pp. 518-523.
6. Rathore A.K., Mahendra S.N. Direct secondary flux oriented control of linear induction motor drive. Industrial technology, 2006. ICIT 2006. IEEE international conference, 2006, pp. 1586-1590.
7. Motlagh S., Fazel S.S. Indirect vector control of linear induction motor considering end effect. Power electronics and drive systems technology (PEDSTC), 2012, 3rd, pp. 193-198.
8. Jeong-Hyoun S., Kwanghee N. A new approach to vector control for a linear induction motor considering end effects. Industry applications conference, 1999. Thirty-fourth IAS annual meeting. Conference record of the 1999 IEEE, 1999, vol. 4, 1999, pp. 2284-2289.
ТЕХНИКА ФАНЛАРИ ТЕХНИЧЕСКИЕ НАУКИ TECHNICAL SCIENCES
9. Makhsudov M.T., Boykhonov Z.U. Issledovaniye elektromagnitnykh preobrazovateley toka v napryazheniye [Research of electromagnetic current-to-voltage converters]. Byulleten' nauki i praktiki -Bulletin of Science and Practice, 2018, vol. 4, no. 3, pp. 150-154. Available at: http://www.bulletennauki. com/mahsudov/ (accessed 03.15.2018).
10. Siddikov I.Kh., Makhsudov M.T., Boikhanov Z.U. Skhema zameshcheniya i analiz raboty asinkhronnogo dvigatelya pri potreblenii reaktivnoy moshchnosti [Substitution scheme and analysis of the operation of an asynchronous motor with the consumption of reactive power]. Glavnyy energetik -Chief Power Engineer, 2021, no. 7.
11 Egamov D.A., Uzakov R., Boikhonov Z.U. Effektivnost' primeneniya «Perenosnogo AVR-0, 4 kV» dlya obespecheniya bespereboynogo elektrosnabzheniya potrebiteley [The effectiveness of the "Portable AVR-0, 4 kV" to ensure uninterrupted power supply to consumers]. 2019.
12. Egamov D.A., Uzakov R., Boykhonov Z.U. Sposoby obespecheniya bespereboynogo elektrosnabzheniya potrebiteley, imeyushchikh odnu sistemu shin 6-10 kV i dva nezavisimykh istochnika pitaniya 6-10 kV [Ways to ensure uninterrupted power supply to consumers with one bus system 6-10 kV and two independent power sources 6-10 kV]. Byulleten' nauki i praktiki - Bulletin of science and practice, 2018, vol. 4, no. 3, pp. 155-159. Available at: http://www.bulletennauki.com/egamov-uzakov/ (accessed 03.15.2018).
13. Kudrin B.I. Power supply of industrial enterprises. Moscow, Intermet Engineering, 2005, p. 672.
14. Andreev V. A. Relay protection and automation of power supply. Moscow, Graduate School, 2006, p. 639.
15. Kakuevitsky L.I., Krupitsky, A.Yu., Sakov A.D., Smirnova T.V. Reference book of the relay of protection and automatics. 2nd ed., revised. and additional. Moscow, Energy, 1968, p. 296.
16. Bubenchikov A.A., Demidova N.G., Komarov A.G., Gorbachev V.V., Bubenchikova T.V. It is possible to use alternative energy sources in the Omsk region. Omsk Scientific Bulletin, 2017, no. 6.
17. Gubina O.A., Malafeev A.V. An analysis of the observability of electric grids by "MES". Intellectual power systems: works of the V International Youth Forum, 2017, October 9-13. Tomsk, 2017, vol. 3, no. 3, pp. 87-90.
18. Lapin N.A., Korolev M.E. The problem of monitoring the quality of electricity. Problems of modern science and education, 2017, no. 1, pp. 44-46.
19. Lukutin B.V., Obukhov S.G. Mikrogidroelektrostantsiya s avtoballastnoy nagruzkoy, reguliruyemoy po chastote vykhodnogo napryazheniya [Microhydro power plant with auto-ballast load, frequency-controlled output voltage]. Elektromekhanika - Electromechanics, 1990, no. 6.
20. Lukutin B.V., Obukhov S.G. Osobennosti raboty mikroGES na asinkhronnyy dvigatel' soizmerimoy moshchnosti [Peculiarities of operation of a microhydroelectric power station for an asynchronous motor of commensurate power]. Elektrotekhnika, 1991, no. 7, pp. 36-40.
21. Konstantinov G.G., Mayorov G.S. Razrabotka i issledovaniye avtonomnogo istochnika elektroenergii na baze mikroGES i asinkhronnogo generatora s kondensatornym vozbuzhdeniyem [Development and research of an autonomous source of electricity based on micro hydroelectric power plants and an asynchronous generator with capacitor excitation]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta - Bulletin of the Irkutsk State Technical University, 2018, no. 10 (141), pp. 92-116. Available at: https://cyberleninka.ru/article/n/razrabotka-i-issledovanie-avtonomnogo-istochnika-elektroenergii-na-baze-mikroges-i-asinhronnogo-generatora-s-kondensatornym (accessed 04.04.2022).
Sadullayev N.N., t.f.d., prof., "Energetika" fakulteti dekani, Buxoro muhandislik-texnologiya instituti.
Taqrizchi: