-►
ПРИРОДОПОЛЬЗОВАНИЕ
УДК 620.97
ПЛ. Москвин
БИОТОПЛИВО ДЛЯ АВТОМОБИЛЕЙ И ПРОБЛЕМЫ ЕГО ПРИМЕНЕНИЯ
Биотопливо — это топливо из возобновляемого сырья. Оно бывает твердое (например, дрова) и жидкое. С применением дров как биотоплива в мире нет технологических проблем: дрова жгут в котлах, которые есть практически повсеместно. Развиваются технологии сжигания угля, торфа, газа, да и атомная энергия при нормальном подходе экологична и дает «чистое» электричество и/или тепловую энергию. Проблема сейчас в нехватке энергии для автомобилей и транспорта [4].
На производство топлива из возобновляемого сырья обратили внимание сравнительно недавно ввиду ухудшения экологической ситуации в мире и исчерпаемости запасов углеводородов. Биотопливо считается реальной альтернативой нефтяному топливу. Разработки и исследования ведутся в различных направлениях, технологии и способы получения биотоплива совершенствуются. Сконцентрируем внимание на существующих видах и перспективных направлениях развития биотоплива.
Биоэтанол — это биотопливный заменитель бензина. Производится из зерновых культур (по большей части — из пшеницы в Англии, сахарной свеклы и маиса, соевых бобов и сахарного тростника в США и Южной Америке [9]).
Топливный этанол не содержит воды и производится укороченной дистилляцией (две ректификационные колонны, а не пять, как для спирта, применяемого в пищевой промышленности). Биоэтанол нейтрален с точки зрения выброса парниковых газов. Содержащийся в этаноле кислород способствует более полному сжиганию углеводородов топлива. Присутствие в бензине всего 10 % этанола позволяет уменьшить выхлопы аэрозольных частиц до 50 %,
а выбросы угарного газа — на 30 %. Кроме того, с помощью генной инженерии создаются новые клоны дрожжей, которые более стойки к пагубным последствиям алкоголя и способны вырабатывать на 50 % больше этанола во время 21-часового периода. Эта технология сможет существенно увеличить эффективность производства топливного этанола из кукурузы и растительных отходов.
Согласно оценкам экспертов, к 2030 году выпуск биотоплива в мире составит 150 млн т, при ежегодном приросте производства 7—9 %. При этом предпочтение будет иметь биоэтанол, так как себестоимость его производства снижается быстрее, чем биодизеля.
Биодизель — биотопливный заменитель дизельного топлива. Получают его из масел зерновых культур (чаще всего из семян рапса в Англии и пальмового масла в Юго-Восточной Азии). Биодизелыюе топливо привлекло внимание исследователей сравнительно недавно, но быстро приобрело важное значение. Согласно стандарту США биодизельным топливом считаются мо-ноалкиловые эфиры жирных кислот, получаемых из растительного или животного сырья. Важнейшее достоинство применения биодизелыюго топлива — замена продуктов нефтепереработки на природное возобновляемое сырье [9].
Наиболее распространенным топливом этого типа является так называемый рапсметило-вый эфир, который в заметном количестве используется в Швеции, ФРГ, Франции и других странах. Его можно добавлять к дизельному топливу в концентрации до 30 % без дополнительной модификации двигателя. В западноевропейских странах принято решение об обязательной добавке 5 % рапсметилового эфира в дизельное
топливо, но в некоторых странах, например в Швеции, его используют как самостоятельное топливо. Стоимость топлива на основе рапсме-тилового эфира в настоящее время примерно в два раза выше, чем нефтяного дизельного топлива, но можно полагать, что объемы производства метилированных растительных масел будут увеличиваться, и это приведет к снижению их себестоимости до приемлемого уровня.
Широкие испытания рапсметилового эфира и его добавок к дизельному топливу в США и Европе показали, что при их использовании снижается эмиссия углеводородов и СО, а интенсивность образования оксидов азота остается без изменения.
Топливный потенциал масличных культур (на 1 т сырья) значительно выше, чем у других культур. Расчеты показывают, что энергетические затраты на производство рапсовых семян составляют 17700 МДж/га, на извлечение масла — 700 МДж/га, энергия же, полученная от масла, — 22200 МДж/га. Таким образом, энергетическая прибыль с каждого гектара составляет 3800 МДж (по энергетической ценности это соответствует 110 л дизельного топлива).
Исходя из литературных данных и проведенных исследований можно выделить следующие основные преимущества биологического дизельного топлива:
возобновляемость;
замкнутый круговорот углекислого газа; использование соломы рапса в качестве топлива в фермерском хозяйстве;
отсутствие серы и токсичных веществ; незначительный выброс загрязнителей (за исключением закиси азота);
рапсовое масло — самое распространенное растительное масло и наиболее устойчивое к влиянию низких температур (без добавок — минимум до минус 10°С);
рапс задерживает питательные вещества в почве, улучшает ее структуру, поддерживает плодородие, хорошо перерабатывает органические удобрения;
при производстве рапсового масла получают такие ценные побочные продукты, как глицерин и жмых;
рапс — отличный медонос (с 1 га посевов пчелы собирают до 90 кг меда);
рапсовое масло нетоксично, не загрязняет грунтовые воды и водоемы (при утечках полнос-
тью разлагается в почве в течение трех недель), обеспечивает рекультивацию радиоактивно зараженных земель;
рапсовое масло — самое безопасное горючее (точка воспламенения 325°С);
использование биотоплива не снижает ресурс двигателя, но уменьшает эмиссию вредных веществ на 25—50 % и парниковый эффект (до минимума), освобождает (хотя бы частично) от нефтяной зависимости.
Главные недостатки этого вида топлива: закоксовывание форсунок, отложения углерода в камере сгорания и смолистых веществ на фильтрах;
быстрый износ колец;
повышенное выделение закиси азота в сравнении с традиционным дизельным топливом (на 12 % больше, чем для дизелей с неразделенной камерой сгорания, и на 10 %, чем для дизелей с вихревой камерой);
биотопливо из рапсового масла более агрессивно, чем обычное дизельное топливо по отношению к резиновым деталям автомобиля или трактора и лакокрасочному покрытию кузова;
в силу того, что МЭРМ — кислородосодер-жащее соединение, низшая теплота сгорания эфиров несколько меньше, чем у дизельного топлива, и, как следствие, на 2,5 % меньше эффективный КПД.
Две рассмотренные выше формы — это так называемое «биотопливо первого поколения», так как они получены из сырого материала, который можно использовать в пищевом производстве [1].
Вторичное биотопливо. Одним из последних достижений современной альтернативной энергетики стало биотопливо второго поколения, которое получают различными методами, в том числе пиролизом биомассы. Технология получила название biomass to liquids (BtL). BtL производят из древесины и отходов деревообработки (при этом промежуточный продукт — биогаз). Преимущество этого вида топлива перед биоэтанолом и биодизелем в том, что, в отличие от упомянутых продуктов, при производстве BtL древесина полностью перерабатывается. BtL может производиться из любого вида биомассы, к тому же, по заявлению производителей этого топлива, для перевода автомобилей на него не требуется модификация современных двигателей. Быстрый пиролиз позволяет превратить биомассу в жидкость, которую легче и дешевле
транспортировать, хранить и использовать. Согласно исследованиям концернов Daimler Chrysler и Volkswagen синтетическое биотопливо не требует специальной доработки существующих автомобильных двигателей и модернизации сетей заправочных станций. Оно практически не содержит углекислого газа, серы и ароматических углеводородов.
Многие машины используют в качестве топлива природный газ. Для него также существует альтернативное топливо из возобновляемого сырья. Биогаз — биотопливная замена природного газа. Его получают из органических отходов, включая отходы животноводческих хозяйств и мусор, полученный от муниципальных, коммерческих и индустриальных источников, прошедшие процесс анаэробного разложения. В Соединенном Королевстве биогаз производится из отходов животноводства, а также за счет выделяющегося на свалках газа.
Для получения биогаза можно использовать растительные и хозяйственные отходы, навоз, сточные воды и другие подобные источники. В процессе ферментации жидкость в резервуаре стремится к разделению на три фракции. Верхняя — корка, образованная из крупных частиц, увлекаемых поднимающимися пузырьками газа, через некоторое время может стать достаточно твердой и будет мешать выделению биогаза. В средней части ферментатора скапливается жидкость, а нижняя фракция выпадает в осадок в виде грязи.
Производство биогаза позволяет сократить выбросы метана в атмосферу. Переработанный навоз применяется в качестве удобрения в сельском хозяйстве. Это позволяет снизить применение химических удобрений, сокращается нагрузка на грунтовые воды.
Расчетные экономические пок
Природопользование
Метан оказывает влияние на парниковый эффект в 21 раз более сильное, чем С02, и находится в атмосфере 12 лет. Захват метана — лучший краткосрочный способ предотвращения глобального потепления [5].
Сведем в таблицу экономические показатели некоторых видов топлива. За 100 % примем показатели бензина из нефти.
Таблицадемонстрирует, что метанол и в особенности этанол экономически эффективны.
С каждым годом наука разрабатывает все новые способы получения биотоплива.
Ученые из Эдинбургского университета На-пьера решили поддержать национальную экономику, не в последнюю очередь зависящую от экспорта виски, и разработали технологию производства биотоплива, в качестве сырья для которого используется все то, что владельцы шотландских винокурен привыкли считать отходами.
Используя образцы твердых и жидких отходов с фабрики С1епкшсЫ, исследователи получили бутанол, который на 30 % эффективнее классического биотоплива на основе этилового спирта.
Сейчас группа изобретателей приступила к коммерциализации своей разработки. Власти Евросоюза одобряют данную инициативу [11].
Американские ученые создали новый вид биотоплива, не отличающийся от обычного бензина, с помощью бактерий, перерабатывающих углеводы из различных типов промышленных и сельскохозяйственных отходов. Стоимость такого «биобензина» может не превысить 50 долларов за баррель, сообщается в статье исследователей.
Группа разработчиков сумела с помощью методов генной инженерии «научить» безвредные
геели альтернативного топлива
Вид биотоплива Затраты на производство, % Стоимость единицы пробега автомобиля,%
Бензин из нефти 100 100
Сжиженный природный газ 50-60 70-75
Сжиженные ^леводородные газы 60-70 80-99
Электроэнергия 65 90-130
Метанол 110 120
Этанол 120 170
Синтетический бензин 160 120
бактерии Е.соН вырабатывать несвойственный им тип химических соединений — так называемые насыщенные углеводороды, или алканы. Именно алканы служат ключевым компонентом бензина, а потому такое биотопливо может быть сразу после получения отправлено в существующие распределительные сети заправочных станций. До сих пор для массового использования биотоплива, в частности биодизельного, приходилось создавать специальные станции и трубопроводы для очистки и транспортировки, так как химический состав такого типа синтетического топлива отличается от природного [10].
В Бразилии разработан очередной вид биотоплива — Н-биодизель, (смесьнефтепродуктов и растительных масел). Он может стать достойной альтернативой бензину и спиртовому топливу в условиях дефицита нефтепродуктов.
Заявленные характеристики Н-биодизеля идентичны параметрам стандартного дизельного топлива, однако благодаря растительным добавкам его использование ведет к меньшему загрязнению атмосферы продуктами горения и выбросу меньшего количества серы. Как показали тесты, Н-биодизель к тому же более экономичен и будет обходиться дешевле обычного дизельного топлива, а также уже существующего в Бразилии биодизелыюго топлива, производимого на основе добавок растительных масел в дизель.
Биотопливо из водорослей. По своим энергетическим характеристикам водоросли значительно превосходят другие источники. 200 тысяч гектаров прудов могут производить топливо, достаточное для годового потребления 5 % автомобилей США, 200 тысяч гектаров — это менее 0,1 % земель США, пригодных для выращивания водорослей.
Однако водоросли, содержащие большее количество масла, растут медленнее. Например, водоросли, содержащие 80 % нефти, вырастают за 10 дней, в то время как водоросли, содержащие 30 %, — 3 раза в день.
Производство водорослей привлекательно еще и тем, что в ходе биосинтеза поглощается углекислый газ из атмосферы.
Однако основная технологическая трудность заключается в том, что водоросли чувствительны к изменению температуры, которая для их нормального роста должна поддерживаться на определенном уровне (резкие суточные колебания недопустимы).
Также коммерческому применению водорослей в качестве топлива препятствует отсутствие на сегодняшний день эффективных инструментов для сбора водорослей в больших объемах. Немецкий автопроизводитель Daimler AG совместно с компаниями Archer Daniels Midland (ADM) и Bayer Crop Science начали цикл изучения тропического растения ятрофа в качестве потенциального источника биодизелыюго топлива. Об этом сообщает Reuters со ссылкой на информацию Daimler.
Биологическое дизельное топливо, полученное в результате переработки ядер орехов ятро-фы, имеет свойства, аналогичные тем, которые имеет биотопливо, полученное из рапсового масла. Оно к тому же характеризуется позитивным балансом С02 и, таким образом, может способствовать защите климата.
Специалисты сельскохозяйственного университета нидерландского города Вахенинген открыли способ получения автомобильного топ -лива из соломы.
Ученые придумали технологию, согласно которой солома нагревается до высокой температуры, к ней добавляются специальные ферменты, благодаря чему образуются сахара. На следующем этапе при помощи бактерий сахара превращаются в этанол, который используется в качестве топлива для автомобилей.
Производство достаточно экономично — около трети объема соломы идет в отходы, которые при горении дают энергию, необходимую для получения Сахаров из остальных двух третей. При этом образуются излишки энергии, их можно применять в других целях. По подсчетам ученых, при переработке 5 т соломы по вышеуказанной технологии полученного биотоплива хватит автомобилю на год езды [6].
Учеными японского университета Кобе и специалистами автоконцерна Toyota было разработано высокоэффективное биотопливо из рисовой соломы. Стоимость нового альтернативного вида топлива будет в три раза ниже, чем у аналогичного продукта, созданного концерном Toyota ранее. Коммерческое производство нового биотоплива планируется начать через пять лет.
Наращивание мощностей производства биотоплива, поиск и создание новых его видов — сложная, трудоемкая задача, решением которой занимаются большие группы ученых в разных странах. Замена нефтяного топлива топливом из
4
Природопользование^
возобновляемого сырья — это перспективное и необходимое направление научнойдеятелыюс-ти, особенно если учесть исчерпаемость запасов нефти и пагубное влияние на экологию. Возможно, уже в скором времени люди будут ездить на продуктах переработки рапса, водорослей, тростника, и это улучшит экологическую ситуацию, снимет проблему энергетического кризиса [7].
Применение биотоплива связано с некоторыми проблемами. Элементный и структурный состав компонентов новых видов топлива значительно отличаются от традиционного углеводородного состава нефтяныхтоплив, что обусловливает их различия в физических, химических и эксплуатационных свойствах. Применение в качестве биотоплива необработанных растительных масел может привести к сбоям в работе двигателя. Использование смесевого топлива (смесь растительного масла с нефтяным дизельным топливом) не решает проблему лако- и на-гарообразования, закоксовывания форсунок, загрязнения минерального картерного масла. Применение в качестве биотоплива растительных масел и их смесей требует некоторых изменений в конструкции двигателя. Более перспективным биотопливом для дизельных двигателей считают продукт переработки растительных масел по реакции метанолиза — метиловые эфиры растительных масел (МЭРМ, или биодизелыюе топливо). Отмечается, что при работе двигателя на этом топливе в большинстве случаев не наблюдается повышенного нагаро- и лакообразо-вания, но проблемы уменьшения отложений и повышения стабильности биотоплив при длительном хранении требуют решения. В качестве причины нарушения работы дизельных двигателей при использовании биотоплив указывают их высокую вязкость и меньшую теплотворную способность по сравнению с нефтяным топливом при практически одинаковых цетановых числах, температурах кипения и молекулярной массе. С последними утверждениями нельзя со-
гласиться. Установлено, что именно различие в молекулярной массе компонентов топлив приводит к разнице их вязкости и испаряемости, определяемой фракционным составом — температурами кипения компонентов топлива, а значит, и к различиям в работе двигателей [2].
Даже если биотопливо — качественное, большое количество его сортов делает калибровку двигателей под оптимальную производительность практически невозможной. В наши дни некоторые производители дают гарантию на использование своих двигателей с полностью биологическим топливом, однако со многими оговорками касательно стандартов топлива, интервалов технического обслуживания и режима эксплуатации. Высокое содержание биодобавок в топливе коренным образом меняет процесс его сгорания. Существует еще одна проблема: разработка стандартов. В нефтяной промышленности и лабораториях нет специалистов, имеющих опыт работы с биологическими материалами. Кроме того, мнения специалистов-химиков, экспертов по двигателям и законодателей относительно того, с какой точки зрения рассматривать биотоплива, весьма далеки от согласия. Существует центр Ricardo, имеющий опыт работы с биотопливом на протяжении около четверти века, и в этой ситуации он становится одним из ключевых источников информации.
В будущем возникнет еще одна проблема. На многих станциях просто будет негде разместить «колонки» для всех видов топлива. Широкий выбор внесет путаницу; будут нередки случаи непреднамеренной заправки автомобилей неверным сортом топлива [8].
Развитие отрасли идет высокими темпами, в скором времени процессы сгорания биотоплива будут изучены и модернизированы, появятся четкие стандарты на различные сорта топлив. Тогда и только тогда будет возможно говорить о перспективах и сроках реализации различных проектов в сфере биоэнергетики для автомобилей.
СПИСОК ЛИТЕРАТУРЫ
1. Киреева, Н.С. Рапсовое биотопливо [Текст] / Н.С. Киреева.— Вестник Ульяновской государственной сельскохозяйственной академии.— 2008. № 01,- С. 56-57.
2. Романцова, C.B. Исследование фрикционного состава биотоплива, синтезированного из во-
зобновляемого сырья [Текст] / C.B. Романцова, C.B. Бодягина, С.А. Кривец // Вестник Тамбовского университета. Серия: Естественные и технические науки,- 2010. Т. 15. № 1,- С. 72-74.
3. Дмитриев, АЛ. Водородное топливо: экономика и экология [Текст] / A.J1. Дмитриев // ФГУП РНЦ «Прикладная химия».— СПб.
4. Биотопливо из водорослей [Электронный peeypeJ // Режим доступа: http://www.cleandex.ru/ агПе1е5/2008/06/19^1ае-ЬюГие15.
5. Биотопливо в мире и в России [Электронный pecypcJ // Режим доступа: http://www.cbio.ru/ nlodules/news/artiele.php?storyid = 2735.
6. Что такое биогаз [Электронный pecypcJ // Режим доступа: http://sintezgaz.org.Ua/l_articles/7/ е111о-1акое-Ь^аг.
7. В Нидерландах ученые получили биотопливо из соломы [Электронный ресурсJ // Режим доступ: http://aenergy.ru/121.
8. Автоконцерн Toyota разработал новое биотопливо [Электронный ресурс J — Режим доступ: http://aenergy.ru/1978.
9. Биотопливо: добро или зло? [Электронный pecypcj // Режим доступа: http://www.cardriver.ru/ articles/20821.
10. Биотопливо — проблемы и перспективы (биоэтанол и производство) [Электронный pecypcj // Режим доступа: http://autorelease.ru/articles/automo-bile/345-biotoplivo-probleniy-i-perspe ktivy.html
11. Машинный алкоголизм [Текст] / /Upgrade. - 2010,- № 38. - С. 9.
УДК626.824:575.2
Т.А. Иса беков, Н.П. Лавров
АЛГОРИТМ УПРАВЛЕНИЯ ВОДОРАСПРЕДЕЛЕНИЕМ НА ТРАНСГРАНИЧНОМ ЧУМЫШСКОМ ГИДРОУЗЛЕ
Чумышский гидроузел (ЧГУ) — трансграничное водораспределительное гидротехническое сооружение, служащее для подачи воды в Атбашинский магистральный канал (АМК) и Георгиевский магистральный канал (ГМК) для орошения земель Кыргызской Республики и Республики Казахстан. ЧГУ построен как межгосударственный объект и работает на экономику этих двух централыюазиатских республик.
ЧГУ расположен в нижней части р. Чу на расстоянии 25 км севернее г. Бишкек. В состав ЧГУ (рис. 1) входит: Чумышская плотина, подводящая и отводящая зарегулированное русло р. Чу; сбросной канал Аламединского каскада гидроэлектростанций (АКГЭС); головные участки АМК и ГМК; бассейн суточного перерегулирования (БСП).
Для управления водораспределением на Чу-мышской плотине должны использоваться данные гидропоста (ГП) Милянфан, находящегося от плотины в 5 км вверх по течению р. ЧУ, и данные по сбросу воды с Аламудунского каскада гидроэлектростанций. Незарегулированность реки Норус и отсутствие информации о расходе воды в ней привело к неопределенности в отношении притока воды из нее в Чумышское водохранилище. Однако замеры расходов воды, поступающих в сбросной канал АКГЭС после забора ее в вышележащий канал Норус-Аламу-
дун показывают, что величина этих расходов не превышает 10 % от расходов воды в реке Чу.
Емкость Чумышского водохранилища является фактически руслом реки Чу и довольно ограничена по объему. Поэтому в составе Чумышского гидроузла имеется бассейн суточного перерегулирования (БСП). Проектная емкость бассейна — 1 млн м-, однако в связи с заилением емкость БСП в настоящее время стала гораздо ниже.
Стратегия алгоритма управления ЧГУ заключается в безусловной подаче воды приграничным водопользователям в соответствии с режимом (планом) водоподачи. В случае недостатка воды этот дефицит должен распределяться по водопользователям в заданных пропорциях, оговоренных межгосударственными соглашениями. Математически данная задача может быть сформулирована в следующем виде:
найти значения переменных <2рМК< 0лмк<
0БС.П< 0ЧУ 0БСП< составляющих минимум целевой функции
2
+ ^АМК (ÖAMК + 0БСП ~ ^АМК
при выполнении следующих условий:
0ЧУ + 0™к + ÖAMK + 0БСП _ 0БСП 2 0ПР ! (2)