UDC 606:62:579.266(045)
BIOTECHNOLOGICAL ASPECTS OF HYDROCARBONS BIODEGRADATION
O. A. VASYLCHENKO, O. R. ALIIEVА, O. L. MATVЕYEVA, A. M. SALATA National Aviation University, Institute of Ecological Safety, Kyiv E-mail: vasilchenko@nau.edu.ua
Получено 18.11.2011
In review the present situation of petroleum pollution, its consequences and basic oil composition are described. The up-to-date survey of hydrocarbon degradation microbiology and major strains are presented with respect to following practical introduction of obtained data. A general characteristic of oil hydrocarbons biodegradation is done. Biodegradation metabolism of petroleum products different categories and its biochemistry are described. Principal biochemical pathways are indicated. Biotechnological properties of hydrocarbon degrading microorganisms including that of industrial significance are investigated. Much attention is given to biological and environmental factors that influence completeness and rate of hydrocarbons biodegradation. It was established that microorganisms consortium biodegradation is faster and more complete that single species ones. The effects of hydrocarbons presence in medium on biochemical and cytological levels of microbial metabolism are also analyzed. The major methods of microbial resistance to petroleum products toxic influence are described. It is shown that one of the most important among them is metabolic processes shifting towards surfactants.
Key words: hydrocarbons, petroleum pollution, biodegradation, microorganisms.
Petroleum Pollution Characteristics
A problem of environmental pollution by oil and petroleum products is very serious today. Many areas with excess of maximum allowable petroleum products concentrations in soils and water are found in Ukraine. Most often this fact applies to regions near the airfields, fuel depots, oil storage depots, refineries, oil wells, parking lots, gas stations, etc. Pollution has become so critical in some regions that oil products in soils and groundwater are not only toxic, but fire hazardous [1].
World oil production increased by 1.8 million barrels/day and was 3913.7 million tons in 2010 [2]. Environmental pollution by oil and refined products is negative consequence of such intensification of oil production. Oil and petroleum products are released into the environment due to violations of technology, various emergency situations. The components of gas streams are deposited on the surface of plants, soil and water bodies. Part of hydrocarbons is returned to the earth’s surface with precipitation leading to secondary contamination of land and water. Microbial and chemical hydrocarbons degradation cau-ses their evaporation, which may serve as a source of soil and air pollution.
Hydrocarbons form a gas areola in the aeration zone during evaporation from the oil-contaminated ground water surface. Having a property of explosive mixture formation at certain vapor and air ratio they can explode if high-temperature source is introduced into this mixture. Oil and petroleum products vapor have a toxic effect on human organisms. Sulfur crude oil and petroleum products fumes are particularly toxic, as well as leaded gasoline [3].
Interactions of oil and petroleum products with soils, microorganisms, plants, surface water and groundwater have their own characteristics depending on the type of oil products.
The principal effects of oil pollution are the danger of fire, the toxic effect of the oil, and the physical coating of the environment. Their relative importance depends on the type and amount of oil, and where it is spilled. The danger of fire is greatest with light oils, and with crude oil. The extent and amount of toxic damage depend on the season of the year, and the stage of life that the various organisms have reached at the time of the pollution. Whereas adult fish may be able to swim away, and avoid the toxic area, larvae, and less mobile creatures, may have no such escape. They may be killed, or may have experience
changes in their feeding or reproductive cycles that may materially affect fish stocks size and species composition. Physical coating of the sea surface is not as much problem as physical coating of the shore [4].
Oil element and qualitative composition
Oil includes a large range of complex and diverse products. «Crude» or unrefined oil is a natural substance, produced over millions of years by the decomposition of vegetable matter. Crude oils is a «dirty» oil, since it contains tars and waxes, and it evaporates rapidly, since it also contains petrol, kerosene, and other «light fractions», and this makes it highly dangerous. Refined oils range from petrol and kerosene, to diesel fuel and heavy oils such as lubricating and boiler oil. The light oils are highly volatile, and so present a high fire danger. They are also highly toxic. The heavy oils are much less dangerous, but they may be very dirty and persistent [5].
Oil or petroleum is natural disperse system of liquid organic compounds, the main parts of which are hydrocarbons of various molecular weights. It is a mixture of about 1000 individual substances [6]. Oil in common usage includes all liquid, gaseous, and solid (e.g., paraffin) hydrocarbons. Lighter hydrocarbons as methane, ethane, propane and butane occur as gases, while pentane and heavier ones are in the form of liquids or solids [7].
The proportion of light hydrocarbons in the petroleum mixture varies greatly among different oil fields, ranging from as much as 97% by weight in the lighter oils to as little as 50% in the heavier oils and bitumens. The hydrocarbons in crude oil are mostly alkanes, cycloalkanes and various aromatic hydrocarbons while the other organic compounds contain nitrogen, oxygen and sulfur, and trace amounts of metals such as iron, nickel, copper and vanadium. The exact molecular composition varies widely from formation to formation but the proportion of the most chemical elements varies over fairly narrow limits as follows shown in table 1 [6].
Sulfur components are mostly mercaptans, cyclic and acyclic sulfides and thiophenes. Nitrogen compounds are included in composition of heterocycles and aromatic amines such as pyridine, aniline, pyrrole and their analogues. The major part of oxygen components are acids, phenols, alcohols, ketones, ethers. Vanadium and nickel compounds are the most common among organometallic compounds of petroleum [6].
Table 1. Element composition of petroleum by weight
Element Percent range
Carbon 33-87%
Hydrogen 10-14%
Nitrogen 0.1-2%
Oxygen 0.05-1.5%
Sulfur 0.05-6%
Metals < 0.1%
Four different types of hydrocarbon molecules appear in crude oil. The relative percentage of each varies from oil to oil, determining the properties of each petroleum type. Average content and range of hydrocarbon molecules different types are given in table 2 [7].
Table 2. Qualitative composition of petroleum by weight
Hydrocarbon Average Range
Paraffins 30% 15-60%
Naphthenes 49% 30-60%
Aromatics 15% 30-60%
Asphaltics 6% remainder
Alkanes are a significant portion of oil, most of them are naphthenes. Commonly, they are cyclopentane and cyclohexane with 1-3 radicals, decalin, bicyclohexane, norbornane and their alkyl derivatives. Aromatics of petroleum are represented with benzene, its derivatives and polycyclic aromatic compounds. Heteroatomic compounds include resin-asphaltene substances [7].
Thus, oil pollution common feature is high variation in the contaminant composition in each case and its complex content unlike most other anthropogenic pollutants.
Petroleum Degrading Microorganisms
A lot of the experimental evideuce for petroleum microbiology is a result of the pioneering work of Claude ZoBell. Beginning in the 1930s and extending through the late 1970s, ZoBell’s research established that bacteria are important in a number of petroleum related processes [8].
Nowadays it is known, that hydrocarbons in the environment can be decomposed mainly by bacteria, algae, yeast and fungi [9, 10]. Despite the fact that these organisms in terrestrial and aquatic ecosystems are ubiquitous, number of heterotrophic microorganisms that can utilize hydrocarbons is very
variable: from 6% to 82% of soil fungi, from
0.13 to 50% of soil bacteria, from 0.003 to 100% of marine bacteria [11]. Some microorganisms can metabolize only a limited number of hydrocarbon substrates. A set of different microorganisms with all possible enzymatic pathways can more efficiently break down a complex mixture of hydrocarbons in soil, fresh and sea water than single microorganism can. Thus complete mineralization of substrate can be achieved [12].
Bacteria that utilize gaseous hydrocarbons, particularly propane, are representatives of the genera Corynebacterium, Mycobacterium, Nocardia, Rhodococcus. Microorganisms that can use butane as the unique source of carbon and energy are of the Arthrobacter, Brevibacterium, Pseudomonas spp. [13].
Strains capable to utilize polycyclic aromatic hydrocarbons are Beijerenckia sp., Pseu do monas spp. (P. paucimobilis, P. fluorescens, P. putida), Alcaligenes denitrificans WW1, Mycobacterium spp. (e.g. M. flavescens), Rhodococcus spp. (e.g. R. rhodnii), Athrobacter sp., Aeromonas sp., sea Cyanobacteria, Streptomyces flavovirens, Synechococcus sp. [14, 15].
Fungi Penicillium and Polisporum can grow on nutrient agar medium with crude oil heavy fractions. Penicillium and Mortierella sp. can be used for conversion of crude oil high molecular fractions [16].
The most important bacteria in hydrocarbons biodegradation in soils and sea water are Achromobacter, Acinetobacter, Alcaligenes, Arthrobacter, Bacillus, Corynebacterium, Flavobacterium, Nocardia and Pseudomonas spp. Among sea water yeasts and fungi that decompose hydrocarbons the most significant are Aureobasidium, Candida, Rhodotorula, Sporo-bolomyces spp., species obtained from soils are Trichoderma and Mortierella ones [17-22].
B. subtilis was proved to be a better hydrocarbon degrader than other isolates [22]. In another study, strains were isolated from petroleum polluted soil and identified as Pseudomonas pseudoalcaligenes, Bacillus fir-mus, Bacillus alvei, Penicillium funiculosum, Aspergillus sydowii and Rhizopus sp., and they removed 79%, 80%, 68%, 86%, 81% and 67% of total petroleum hydrocarbon corres pon dently. Genera Stenotrophomonas, Bacillus, Brevibacillus, Nocardiodes and Pseudomonas were used in combination and give a degradation rate of 67% after only 12 days of treatment [23]. It has been proved that the mixed consortium effectiveness was significantly superior to that obtained by individual strains [12, 24-28].
Petroleum Products Aliphatic Component Microbial Degradation
Various classes’ hydrocarbons decomposition mechanisms are essentially different. This fact results in individual spectrum of hydrocarbons consumption for different microorganisms. n-Alkanes, isoalkanes, naphthenes, polycyclic aromatic hydrocarbons and adjacent heteroaromatic hydrocarbons have specific metabolic pathways [29].
Aliphatic hydrocarbons are demonstrative example of organic substances that are biodegradable. Alkanes are the easiest to be ruined, alkenes and alkynes are following [30]. The components consisting of straight chains degrade easier than those with branched chains [31]. Biodegradation of straight chain alkanes occurs through P-oxidation. Oxygen binds to the end of the hydrocarbon chain during this process leading to the formation of carboxyl group (Fig. 1).
H H 0
Fatty acyl-CoA a-ych^-dn-ia-fi-scoA H h
l_------FAD
acyl-CoA dehydrogenase Г
—►FADH.
H 0
frani-A2-enoyt-CoA СНз(СН2)ь—Ç=C—С—SCoA
enoyl-CoA hydratase
'H;0
H О
3-L-hydr0Xyacyl-C0A CH3(CH2)n—C-CH2—C-SCoA
3-L-hydroxyacyl-CoA dehydrogenase
p-ketoacyl-CoA ch3(CH2)n—c-ch2—c—scoa
^HSCoA
p-ketothiolase r
0 o
LI II
CHjfCHjJn-C-SCoA + CH3-C-SC0A
Fatty acyl-CoA Acetyl-CoA
Fig. 1. P-Oxidation of hydrocarbons [32]
Two carbon compound (acetyl) splits off from fatty acid formed. This process is repeated as many times as necessary for the splitting of the whole molecule. P-Oxidation stops when it reaches branched position in the hydrocarbon molecule.
Alkanes biodegradation is the best for components, which have 10 carbon atoms in the chain. Shorter structures have tendency to show high toxicity to many organisms. Very
short alkanes (methane, ethane, propane and butane) are present as gases and can be used as primary substrates or degradation cometabolites [33].
Rhodococcus spp. absorb n-alkanes through passive diffusion by solubilization them in thick lipophilic cell wall. In contrast, Pseudomonas spp. solubilize n-alkanes in the environment [34]. An increase of cytochromes group, as well as the high content of ATP, increased cellular respiration, increased number of flavins is characteristic for microorganisms growing on media with n-alkanes. The number of mitochondria increases and endoplasmic reticulum development is enhanced in eukaryotes [29].
Natural isoalkanes with saturated iso-prenoid structure are oxidized through cit-ronellol pathway. Initially, the terminal CH3 groups are oxidized to COOH groups, then C2 or C3 fragments are evolved through consecutive reactions; acetoacetate and acetyl-CoA are formed (Fig. 2). Some Rhodococcus strains that can grow on isoprenoid hydrocarbons are known [35].
Petroleum Products Aromatic Component Microbial Degradation
Aromatic hydrocarbons can be degraded during aerobic and anaerobic biological processes [30, 37]. Oxygen binds to the benzene ring. This eventually leads to the formation of catechol, that is characteristic for aerobic degradation. Catechol molecule is then broken up in ortho- or meta- position. Final products of this process are used in cell anabolic pathways [12].
In such aromatic compounds as benzoates and phenols, benzene ring double bonds are initially reduced by hydrogen adding to the molecule, then the ring is splitted of and modified, and saturated fatty acids or dicarboxylic acids are formed [38]. Phenol can also be degraded by binding carboxyl groups to the ring with subsequent reducing to cyclohexanone and splitting of the ring. Benzene is mono aromatic compound; it degrades extremely slowly under anaerobic conditions [30].
Many bacteria strains are capable of heteroaromatic hydrocarbon compounds degradation (mainly sulfur compounds) [39].
І citronellal X dehydrogem
/W------------------К
і
citronellol dehydrogenase О
Citronellate citronellyl-CoA ligase
JUU s—С
4S— CoA Citronellyl-Co
c/s-Geranyl-CoA
Isohexenyl-glutaconyl-
CoA-hydratase
1
CH2 I
COO •
3Hydroxy-3-isohexenyl-■ CoA glutaryl-CoA
— CoA + H3C'^40-7-Methyl-3-oxo-6-octenoyl-CoA Acetate
XX * j.
‘S-CoA + HjC^4 g —CoA 3-Methyl- . , „ .
crotonyl-CoA і Acetyl-CoA
X 2(3-oxidation
3-Methyl -S—CoA crotonyi-CoA
.8 3 Í I
t!i ïè-8 У) <b w
Methylcrotonyl-CoA -carboxylase
3-MethylS — CoA glutaconyl-CoA
Methylglutaconyl-CoA -hydratase
3-Hydroxy-3-methylglutaryl-S — CoA CoA
Hydroxymethyl-
glutaryl-CoA-
lyase
О
І ОН о
a^ïu,-
Fig. 2. Citronellol pathway [36]
H3C S —CoA Acetyl-CoA
h,c^S^c
,COO" Acetoacetate
Aromatic hydrocarbons with heteroatoms biodegradation is often accompanied by denitrification, sulfate reduction or methane production in anaerobic conditions. Benzene and toluene anaerobic transformation is accompanied with methane production. This process can be characterized as enzymatic one. There are partial oxidation and partial reduction of the substrate with methane and carbon dioxide formation as end products. In addition, trivalent ferrum and manganese oxides may be alternative electron acceptors in appropriate anoxic conditions [40].
One methyl group in the aromatic hydrocarbon fundamentally changes the process of primary oxidation and further metabolism of compounds. Either aromatic ring or radical is oxidized. Many microorganisms need energy co-substrates to transform complex hydrocarbons. Hydrocarbon decomposition is often accelerated in their presence [34, 41].
Polycyclic aromatic hydrocarbons (PAHs) consist of two or more aromatic rings. Compounds’ resistance to microbial degradation increases with an increase of ring number. PAHs can be subjected to aerobic and anaerobic biodegradation.
Aerobic decomposition is more common for the destruction of PAHs with two or three rings (naphthalene, anthracene, phenanthre-ne) [42]. Degradation of PAHs begins wheu hydrogen reduces double bonds in a ring or when water oxygen binds to the aromatic ring similarly to compounds that consist of one aromatic ring. Oxygen binds directly to one of the rings, which then splits, as in the case of benzene and its derivatives. This process is repeated as many times as necessary for the whole molecule splitting. In addition to aerobic bacterial biodegradation some fungi and algae have the ability to decompose PAHs. Phanarocheate chrysosporium produces lignin-specific enzymes thet are to destruction PAHs having from two to five ring [43]. Microbial association combined metabolic action is very important for degradation of compounds with benzene rings large number.
Biodegradation of highly-condensed PAHs with large molecular masses is very slow, therefore requires a long time to complete cleavage. It is known that half lifetime of these compounds is 6 months or more during biological pathways [44]. Microorganisms capable of decomposing PAHs with cycles’ number up to seven are known [45].
Solid hydrocarbons transport efficient mechanism in the cell is important for intensive growth in addition to the presence of bac-
terial enzymes that catalyze PAHs oxidation. Surfactants usage increases PAHs solubility and promotes their further biodegradation [42].
Influence of Hydrocarbons on Microbial Organisms
Possibility of microbial growth on hydrocarbon medium is provided by combination of two factors: biochemical complementarity of organism and resistance to hydrocarbon toxic action. It is obvious these two factors should be optimal. Considering polycomponent character of petroleum pollution, microorganism (association of microorganisms) should be able to grow on most components of pollutant and be resistant to their toxic action for complete mineralization of oil products [29].
Oil at low concentrations has a stimulating effect for soil biota because it is an energy substrate for a large group of microorganisms. Significant petroleum soil pollution, which occurs at emergency spills, is accompanied by acute toxic oil effects on organisms [46]. Microorganisms’ reaction to the effect of any toxic substance depends on the toxic agent nature, its concentration, contact time, perceiving system properties, state and other properties of the organisms exposed. The toxic effect of oil is shown through the transformation of microorganisms’ environment by physical, chemical, agronomic and other characteristics of contaminated soils [46, 47].
Light oil fractions partially inhibit hete-rotrophic microorganisms but act also as a substrate for hydrocarbon degrading microorganisms. Heavier fractions are less toxic to microorganisms, but they are not actively metabolized [47].
Petroleum hydrocarbons are characterized by strong antibacterial effect and can cause cell lysis. However, some bacteria show a high resistance to these substances. Toxicity of hydrocarbons is mainly determined by their ability to damage the membrane of microorganisms [48]. The interaction of oil hydrocarbons with cell membranes occurs at the level of lipid-lipid and lipid-protein interactions. The thickness of a phospholipid bilayer, its fluidity, asymmetric distribution of membrane components, activity of enzymes and proteins transport in the membrane are changed as a result. These changes, in turn, lead to membrane barrier properties disruption, protons and other intracellular ions passive flux increasing across membranes. All of this leads to a decrease cell viabilitying [48, 49].
Various cell structures damage is observed during contact with the hydrocarbons.
Cytoplasmic membrane integrity interruption, cell wall and membranes damage of the Pseudomonas genus bacteria occur, accompanying with myeloid-like structures formation in the disruption place and nucleoid condensation in the central part of the cells. Finally, the cell wall losses rigidity, that leads to cell lysis [50].
Hydrocarbons toxic effect may also be caused by intermediates. Negative impact on hydrocarbon degrading microorganisms’ development. Butyric acid has is an intermediate product of hydrocarbons and carbohydrates metabolism. It does not lead to the bacteria death, but has an inhibiting effect on their dissimilative activity and acts as growth inhibitor [46]. Acetate, as well as butyric acid, is a factor that has significant influence on active microflora development. Unlike butyric acid, acetate increased concentration accelerates the development of the microflora, and its deficiency can lead to microbial population anabiosis [35].
Hydrocarbon various classes metabolism leads to a huge number of different intermediates, accumulation of these substances leads to cell growth inhibition in the case of incomplete oxidation.
Hydrocarbons degrading bacteria have developed special mechanisms of resistance to hydrocarbons in evolution process that are expressed in the metabolism peculiarities and cell structure. These features include ultra-structural cell displacement (inclusions of different density formation, cytoplasm fragmentation, membrane unit enhanced development, an overgrowth of the cell wall), capsules formation, metabolic activity changing.
The special changes in cell structure organization are increased content of fatty acids in the cell wall, synthesis of specific lipids, intracellular inclusions of various purposes formation [29].
Rhodococcus, Arthrobacter and Acinetobac-ter genera transform hydrocarbons excess into neutral lipids — triglycerides and waxes that serve as an extra carbon source for energy supply, whereas Pseudomonas don’t form the extra lipids [34].
50% of Rhodococcus and Arthrobacter general species contain wax in smaller contents than triglycerides. Lipophilic cell wall formation provides solubilization and passive transport of the hydrophobic substrate into the cell [34, 41]. Thus, hydrocarbons transfer into the lipids may serve as a mechanism for toxic effect, fall-offing, a way of extra carbon and energy accumulation and contribute to the hydrocarbons controlled transport into the cell.
Changing the fatty acid composition provides resistance to hydrocarbons. For example, unsaturated fatty acids with odd number of carbon atoms are typical for representatives of the Rhodococcus genus. The prevalence of these acids is characteristic for microorganisms living at low temperatures. At the same time the cell wall is a hydrocarbon acceptor. This allows microorganisms to grow actively on hydrocarbons [34, 41].
Representatives of Arthrobacter, Pseudomonas and Acinetobacter genera have trehalose containing phospholipids which are synthesized in response to the n-alkanes addition to the medium for hydrocarbons mobilization and complete degradation. They contribute to the membrane stabilization in extreme conditions. Trehalose also can be part of surfactants. Emulsifiers are synthesized by some strains of slimy Rhodococcus, especially Rhodococcus rubber [34, 51]. Thus, the synthesis of hydrocarbons emulsifiers and concomitant substances can be either a way of cells protection from exposure to liquid hydrocarbons or a factor necessary for successful hydrocarbons degradation, as well as perform other protective functions.
One of the key mechanisms for the suppression of the hydrocarbons toxic effect is hydrocarbons oxidizing enzymes synthesis. The same mechanism provides the cell with carbon and energy for biosynthetic processes [29].
Biotechnologically Important Properties of Petroleum Degrading Microorganisms
High specificity of microorganisms’ enzymes causes strains specialization to certain hydrocarbons, so it is necessary to make a search of strains capable to degrade wide range of petroleum pollutants. Lots of methods to assess the characteristics of hydrocarbon degrading communities are used. For example, isolation of microorganisms from contaminated environment on different media. This allows to estimate bacteria of different physiological groups and to obtain pure cultures, among which we can select the promising hydrocarbon degrading strains.
To determine the number of different microorganisms colony-forming units, the method of serial dilution with following seeding and counting colonies of microorganisms on plates with nutrient agar is used. This approach has been used for long and is now almost a standard. Subculturing on dense nutrient medium (potato agar and nutrient agar) is used to obtain pure cultures of hydrocarbon
oxidizing microorganisms from media with the hydrocarbons [52]. Use of limiting dilutions in liquid Chapeck’s medium with hydrocarbons (diesel fuel) and in medium with glucose as the unique source of carbon and energy allows to set the number of degrading microorganisms and to obtain microorganisms of this group pure culture [53]. One of the methods for the selection of hydrocarbon degrading microorganisms may be usage of the modified Raymond’s medium. In the same time the method of serial dilutions helps to establish the fact of a successful introduction of degrading microorganism [54].
Alternative ways to search for microorganisms utilizing oils and their components were recently developed. The activity of each strain can be assessed visually by the formation of clearing zones when grown on porous oils impregnating mineral carrier.
It has sense to pay attention to nocardio-form actinomycetes for selection a group of microorganisms among which it is supposed to find strains for bacterial preparations. One of the advantages of Actinobacteria is the absence of pathogenic species. Most of them belong to a group of saprophytic microorganisms. This fact has important practical value for creating safe commercial bacterial preparations. The choice of this group of microorganisms at an early stage of the selection by using simple methods avoids working with pathogenic bacteria [29].
Microorganisms of this group are able to adapt to multiple stress factors simultaneously (e.g. high salinity of medium, extreme values of acidity, low concentration of nutrient substrates). These capabilities are due to the peculiarities of the actinobacteria physiology [34].
A strain supposed for creation of the bacterial preparation often must have several properties simultaneously (e.g. to be oil destructor and biosorbent). Many representatives of the Rhodococcus genus (Fig. 3) have destructive, emulsifying and sorbing activity relative to hydrocarbons combined in one strain [55].
To create bacterial preparations intended for cleaning petroleum pollutions the search and selection of bacteria oil degrading strains
Fig. 3. A micrograph image of Rhodococcus sp. [56]
are conducted with the help of certain criteria. Strains should possess biodegradability of crude oil, fuel oil, light oil (kerosene, diesel fuel), growth at high and low temperatures, at high medium salinity and extreme values of acidity. The main peculiarity and disadvantage of such approach is specialized study of specific strains relative to certain petroleum products [29]. Strain that is effective for one oil type biodegradation may be inefficient relative to other petroleum products. Thus, it is necessary to specify the hydrocarbon orientation of the strain, when creating a universal preparation.
One of the urgent tasks is the bioremediation of complex contaminants such as oil pollution followed by heavy metals co-contamination [57]. Therefore, strains of bacteria used for the detoxification of oil pollutants, should be stable with respect to heavy metals.
Since the hydrocarbons are not soluble in water, one of the important properties of strains capable to utilize hydrophobic substrates is their ability to synthesize bioemulsifiers [58].
A problem of environmental pollution by oil and petroleum products is very serious today. The common feature of oil pollution is high variation in contaminant composition in each case and its complex content unlike most other anthropogenic pollutants. The one of the promising directions of petroleum contamination elimination is microbial degradation.
Hydrocarbons in the environment can be decomposed mainly by bacteria, algae, yeast and fungi. Microorganisms can metabolize only a limited number of hydrocarbon substrates. A set of different microorganisms with all the possible enzymatic pathways can more efficiently break down a complex mixture of hydrocarbons than single microorganisms can.
Decomposition mechanisms of hydrocarbon various classes differ significantly. There is specialization of metabolic pathways for n-alkanes, isoalkanes, naphthenes, aromatic hydrocarbons, polycyclic aromatic hydrocarbon and the adjacent heteroaromatic compounds.
Hydrocarbon presence in medium causes corresponding response in microorganisms’ metabolism. Petroleum products generally have toxic action and microorganisms develop the resistance mechanisms. PAHs have the most toxic impact and are the most resistant to biodegradation.
It is necessary to make a search of strains capable to degrade wide range of petroleum pollutants considering such their properties as stability, resistance to different toxic effects, ability to synthesize bioemulsifiers, etc. The nocardioform actinobacteria are considered to be a promising group of microorganisms used for the detoxification of oil pollution.
REFERENCES
1. Батлук В. А. Основи екології. — К.: Знання, 2007. — 519 с.
2. BP Statistical Review of World Energy 2011. — London: BP p.l.c., 2011. — 46 p.
3. Reis J. C. Environmental Control in Petroleum Engineering. — Houston: Gulf Publishing Company, 1996. — 287 p.
4. Prasad M. S., Kumari K. Toxicity of Crude Oil to the Survival of the Fresh Water Fish Puntius sophore (HAM.) // Clean. — 2006. — V. 15, I. 1. — P. 29-36.
5. Parkash S. Petroleum Fuels Manufacturing Handbook: including Specialty Products and Sustainable Manufacturing Techniques. — NY: McGraw-Hill Professional, 2009. — 464 p.
6. Speight J. G. Handbook of Petroleum Analysis. — New Jersey: John Wiley & Sons, 2002. — 455 p.
7. Hyne N. J. Nontechnical guide to petroleum geology, exploration, drilling, and production. — Oklahoma: Penn Well Corporation, 2001. — 598 p.
8. ZoBell C. E. Action of microorganisms on hydrocarbons // Bact. Rev. — 1946. — V. 10. — P. 1-49.
9. Elshafie A., AlKindi A. Y., Al-Busaidi S. et al. Biodegradation of crude oil and n-alkanes by fungi isolated from Oman // Mar. Pollut. Bull. — 2007. — V. 54. — P. 1692-1096.
10. Fallgren P. H., Jin S. Biodegradation of petroleum compounds in soil by a solid-phase circulating bioreactor with poultry manure amendments // J. Environ. Sci. Health A Tox Hazard Subst Environ. Eng. — 2008. — V. 43,N 2. — P. 125-131.
11. Філяк О., Сибірний А., Юрим М. Біодеградація нафтопродуктів у навколишньому природному середовищі // Вісн. Львів. ун-ту. Серія біологічна. — 2008. — Вип. 47. — С. 89-95.
12. Prince R. C., Parkerton T. F, Lee C. The primary aerobic biodegradation of gasoline hydrocarbons // Environ. Sci. Technol. —
2007. — V. 41, N 9. — Р. 3316-3321.
13. Куликова А. К. Микроорганизмы, ассимилирующие газообразные углеводороды (С2-С4) (Обзор) // Прикл. биохим. микроби-ол. — 1995. — T. 31, № 2. — С. 155-167.
14. Павленко М. І, Сорока Я. М., Гвоздяк П. І., Кухар В. П. Біодеструкція поліциклічних арома тич них вуг ле воднів // Ка та лиз и нефтехимия. — 2007. — № 15. — С. 46-62.
15. Рустемов С. А., Головлева Л. A, Алиева Р. М., Баскунов Б. П. Новый путь окисления стирола куль ту рой Pseudomonas putida // Микробиология. — 1992. — Т. 61, Вып. 1. — С. 5-10.
16. Шевкопляс В. Н., Бойко М. И. Конверсия тяжелых фракций сырой нефти микроми-цетами родов Mortierella (Coem.), Penicil-lium (Link ex Fr.), єє анализ методиками
ИК- и Н-ЯМР спектроскопии. // Пробл. екол. охор. прир. техноген. рег. — 2009. — № 1 (9). — С. 221-229.
17. Austin B., Calomiris J. J., Walker J. D,, Colwell R. R. Numerical taxonomy and ecology of petroleum-degrading bacteria // Appl. Environ. Microbiol. — 1977. — V. 34. — P. 60-68.
18. Antic M. P., Jovancicevic B. S., Ilic M. et al. Petroleum pollutant degradation by surface water microorganisms // Environ. Sci. Pollut. Res. Int. — 2006. — V. 13, N 5. — P. 320-327.
19. Fallgren P. H., Jin S. Biodegradation of petroleum compounds in soil by a solid-phase circulating bioreactor with poultry manure amendments // J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. — 2008. — V. 43,N 2. — P. 125-131.
20. Wang J., Zhang Z. Z., Su Y. M. et al. Phytoremediation of petroleum polluted soil // Petroleum Sci. — 2008. — V. 5 (2). — P. 167-171.
21. Joo H. S., Ndegwa P. M., Shoda M., Phae C. G. Bioremediation of oil-contaminated soil using Candida catenulata and food waste // Environ. Pollut. — 2008. — V. 156, N 3. — P. 891-896.
22. Nwaogu L. A., Onyeze G. O. C., Nwabueze R. Degradation of diesel oil in a polluted soil using Bacillus subtilis // Afr. J. Biotechnol. —
2008. — V.7, N 12. — P. 1939-1943.
23. Cervantes-Gonzalez E., Rojas-Avelizapa L. I., Cruz-Camarillo R. et al. Isolation and identification by 16S rDNA partial sequencing of hydro-carbon-chitinolytic bacteria involved in hydrocarbon removal process // Progr. Environ. Sci. Technol. — 2007. — V. 1. — P. 1143-1149.
24. Gallego J. L. R., Garcia-Martinez M. J., Llamas J. F. et al. Biodegradation of oil tank bottom sludge using microbial consortia // Biodegradation. — 2007. — V. 18, N 3. — P. 269-281.
25. Boszczyk-Maleszak H., Zabost A., Wolicka D., Kacieszczenko J. Effectiveness of biodegradation of petroleum products by mixed bacterial populations in liquid medium at different pH values // Pol. J. Microbiol. — 2006. — V. 55, N 1. — P. 69-73.
26. Diaz-Ramirez I. J., Escalante-Espinosa E., Favela-Torres E. et al. Design of bacterial defined mixed cultures for biodegradation of specific crude oil fractions, using population dynamics analysis by DGGE // Int. Biodeter. Biodegr. — 2008. — V. 62, N 1. — P. 21-30.
27. Малиновська І. М., Зінов’єва Н. А. Вплив забруднення сірого лісового ґрунту нафтопродуктами на його фітотоксичні властивості та стан мікробіоценозу // Зб. наук. праць Ін-ту землеробства. — 2010. — Вип. 1-2. — С. 61-69.
28. Малиновська І. М., Зінов’єва Н. А. Деградація нафтопродуктів аборигенними мікроб ни ми уг ру по ван ня ми сіро го лісо во го ґрунту // Вісн. Харк. нац. агр. ун-ту. — 2011. — Вип. 2 (23). — С. 105-112.
29. Мельников Д. А. Распределение признаков би о дег ра да ции уг ле во до ро дов и оцен ка тех но ло ги чес ки важ ных свойств неф те -окисляющих бактерий: Автореф. дис. ... канд. биол. наук: 03.00.23. — Краснодар,
2005. — 131 с.
30. Osuji L. C., Ozioma A. Environmental degradation of polluting aromatic and aliphatic hydrocarbons: a case study // Chem. Biodivers. — 2007. — V. 4. — P. 424-430.
31. Матвеева Е. Л., Васильченко О.А., Демянко Д. А. Микробиологическое поражение авиационных топлив // Системи озброєння і військова техніка. — 2011. — № 2 (26). — С. 152-156.
32. Nelson D. L, Cox M. M. Lehninger Principles of Biochemistry, 4th Edition. — New York: W. H. Freeman and Company, 2005. — 1100 p.
33. Schwarz J. R., Walker J. D., Colwell R. R. Deep-sea bacteria: growth and utilization of n-hexadecane at in situ temperature and pressure // Can. J. Microbiol. — 1975. — V. 21. — P. 682-687.
34. Коронелли Т. В., Нестерова Е.Д. Экологическая стратегия бактерий, использующих гидрофобный субстрат // Микробиология. — 1990. — Т. 59, № 6. — С. 993-997.
35. Милехина. Е. И., Борзенков И. С., Звягинцева И. А. и др. Эколого-физиологические особенности аэробных эубактерий из нефтяных месторождений Татарстана // Там же. — 1998. — Т. 67, № 2. — С. 208-214.
36. Binger D., Turnbull M. Citronellol Pathway Map // University of Minnesota. — 2011 / http://umbbd.msi.umn.edu/cit/cit_map.html
37. Haggblom M. M,, Youngster L. K., Somsamak P., Richnow H. H. Anaerobic bio de grada-tion of methyl tert-butyl ether (MTBE) and related fuel oxygenates // Adv. Appl. Microbiol. — 2007. — V. 62. — P. 1-20.
38. Takahata Y., Kasai Y., Hoaki T., Watanabe K. Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation // Appl. Microbiol. Biotechnol. —
2006. — V. 73, N 3. — P. 713-722.
39. Oldfield C., Wood N. T., Gilbert S. Desulphurisation of benzotiphene nad dibenzotiophene by actino-mycete organisms belonging to the genus Rhodococcu, and related Taxa // Antonie van Leeuwenhoek. — 1998. — V. 4. — P. 119-132.
40. Burland S., Edwards E. Anaerobic benzene biodegradation linked to nitrate reduction // Appl. Environ. Microbiol. — 1999. — V. 65. — P. 529-533.
41. Коронелли Т. В. Принципы и методы ин-тен си фи ка ции би о ло ги чес ко го раз ру ше -ния углеводородов в окружающей среде (обзор) // Прикл. биохим. микробиол. — 1996. — Т. 32, № 6. — С. 579-585.
42. Cerniglia C. E. Biodegradation of poly cyclic aromatic hydrocarbons // Biodegradation. — 1992. — V. 3. — P. 351-368.
43. Van Hamme J. D., Singh A., Ward O. P. Recent Advances in Petroleum Microbiology // Microbiol. Mol. Boil. Rev. — 2003. — V. 67, N 4. — Р. 503-549.
44. Kanaly R. A., Harayama S. Biodegradation of high-molecular weight polycyclic aromatic hydrocarbons by bacteria // J. Bacteriol. — 2000. — V. 182. — P. 2059-2067.
45. Gramss G., Voigt K., Kirsche B. Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils // Biodegradation. — 1999. — V. 10. — P. 51-62.
46. Гузев B. C. Волде М. И., Куличевская И. С., Лысак Л. В. Влияние масляной кислоты на физиологическую активность углеводоро-докисляющих родококков // Микробиология. — 2001. — Т. 70, № 3. — С. 313-320.
47. ГоловченкоА. В., Полянская Л. М. Влияние нефти на численность, биомассу и жизнеспо-соб ность гри бов в вер хо вых тор фя ни ках // Там же. — 2001. — Т. 70, № 1. — С. 111-117.
48. Sikkema J., De Bont J. A. M., Poolman B. Mechanisms of Membrane Toxicity of Hydrocarbons // Microbiol. Rev. — 1995. — V. 59, N 2. — P. 201-222.
49. Фомченков. В. М., Холоденко В. П., Ирхина И. А., Петрунина Т. А. Влияние загрязнения водной сре ды нефтью и неф теп ро дук та ми на барьерные свойства цитоплазматических мембран бактериальных клеток // Микробиология. — 1998. — Т. 67, № 3. — С. 333-337.
50. Сузина Н. Е., Ставская С. С., Фихте Б. А. Изменения в ультраструктурной организации клеток Pseudomonas aeruginosa под действи ем до де цил суль фа та нат рия // Там же. — 1988. — Т. 57, № 2. — С. 255-257.
51. Рычкова М. И. Влияние Rhodococcus-био-сур фак тан тов на про цес сы де со рб ции и деградации нефтяных углеводородов в почве: Автореф. дис. ... канд. биол. наук:
11.05.07. — Пермь, 2007. — 26 с.
52. Никитина Е. В., Якушева О. И., Зарипов С. А. и др. Особенности распределения и физио-ло ги чес ко го сос то я ния мик ро ор га низ мов нефтешлама — отхода нефтехимического производства / / Микробиология. — 2003. — Т. 72, № 5. — С. 699-706.
53. Назина Т. Н., Турова Т. П., Полтараус Т. П. и др. Физиологическое и филогенетическое раз но об ра зие тер мо филь ных спо ро об ра зу -ющих углеводородокисляющих бактерий из нефтяных пластов // Там же. — 2000. — Т. 69, № 1. — С. 113-119.
54. Куличевская И. С., Гузев B. C., Паников Н. С. Популяционная динамика утлеводород-окисляющих дрожжей, интродуцированных в нефтезагрязненную почву // Там же. — 1995. — Т. 64, № 5. — С. 668-673.
55. Irvine V. A., Kulakov L. A., Larkin M. J. The diversity of extradiol dioxygenase (edo)
genes in cresol degrading rhodococci from a creosote-contaminated site that express a wide range of degradative abilities // Antonie van Leeuwenhoek. — 2000. — V. 78. — P. 341-352.
56. Boutin C. Researchers close in on natural solution to PCB contamination //http:// www.innovations-report.com/html/ reports/environment_sciences/report-1420
6.html
57. Groudeva V. I., Groudev S. N., Doycheva A. S. Bioremediation of waters contaminated with crude oil and toxic heavy metals // Int. J. Min. Process. — 2001. — V. 62. — P. 293-299.
58. Kitamoto D., Ikegami T., Suzuki G. T. Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica) // Biotech. Lett. — 2001. — V. 23. — P. 1709-1714.
БІОТЕХНОЛОГІЧНІ АСПЕКТИ БІОДЕГРАДАЦІЇ ВУГЛЕВОДНІВ
О. А.. Васильченко О. Р. Алієва О. Л. Матвєєва А. М. Салата
Національний авіаційний університет, Інститут екологічної безпеки, Київ
Е-таіІ: vasilchenko@nau.edu.ua
В огляді наведено характеристику нинішньої ситуації забруднення нафтою, його наслідків та базового складу нафти. Розглянуто біодег ра дацію вуг ле воднів, ос новні шта -ми-нафтодеструктори та можливість подальшо го прак тич но го застосування от ри маних даних. Подано загальну характеристику біодеградації нафтових вуглеводнів, а також описано метаболізм мікробного розкладання нафтопродуктів різних категорій із зазначенням біохімічних шляхів деградації. Досліджено біотехнологічно важливі властивості мікроор-ганізмів-наф то де ст рук торів, зок ре ма про мис -лового значення. Велику увагу приділено біологічним та екологічним чинникам, що впливають на ступінь і швидкість біодегра-дації вуглеводнів. Установлено, що розкладання нафтопродуктів консорціумами мікроорганізмів відбувається швидше та повніше, ніж окремими штамами. Проаналізовано вплив присутності вуглеводнів у середовищі на метаболізм мікроорганізмів як на біохімічному, так і цитологічному рівні. Описано основні мето ди ре зис те нт ності до ток сич ної дії наф топ ро -дуктів. Ви яв ле но, що од ним з най важ ливіших серед них є зміщення метаболічних процесів у бік синтезу поверхнево-активних речовин.
Ключові слова: вуглеводні, нафтове забруднення, біодеградація, мікроорганізми.
БИОТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ БИОДЕГРАДАЦИИ УГЛЕВОДОРОДОВ
О. А.. Васильченко О. Р. Алиева Е. Л. Матвеева А. М. Салата
Национальный авиационный университет, Институт экологической безопасности, Киев
Е-таИ: vasilchenko@nau.edu.ua
В обзоре дана характеристика нынешнего нефтяного загрязнения, его последствий, а также базового состава нефти. Рассмотрены биодег ра да ция уг ле во до ро дов, ос нов ные штаммы-нефтедеструкторы и возможность дальнейшего практического применения полученных данных. Представлена общая характеристика биодеградации углеводородов нефти, а так же опи сан ме та бо лизм микробного разложения нефтепродуктов различных категорий с указанием биохимических путей деградации. Ис сле до ва ны би о тех но ло ги чес ки важ ные свой ства мик ро ор га низ мов-нефтедеструкто -ров, в том числе промышленного значения. Большое внимание уделено биологическим и экологическим факторам, влияющим на степень и скорость биодеградации углеводородов в промышленных масштабах. Установлено, что разложение нефтепродуктов консорциумами мик ро ор га низ мов про ис хо дит быст рее и в большей степени, чем отдельными штаммами. Проанализировано влияние присутствия углеводородов в среде на ме та бо лизм мик ро ор га -низ мов как на би о хи ми чес ком, так и ци то ло ги -ческом уровне. Описаны основные методы ре зис те нт нос ти к ток си чес ко му действию неф -теп ро дук тов. Вы яв ле но, что од ним из са мых важных среди них является смещение метаболи чес ких про цес сов в сто ро ну син те за по ве рх -ностно-активных веществ.
Ключевые слова: углеводороды, нефтяное загрязнение, биодеградация, микроорганизмы.