Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021
ISSN: 2181-1385
Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89
DOI: 10.24412/2181-1385-2021-11-4-8
BERILGANLARDAGI IF-THEN QOIDALARINI IZLASH UCHUN LOKAL METRIKALARNI QURISH
Alisher Yusupjan o'g'li Usmanov
ADU, Informatika o'qitish metodikasi kafedrasi alisherusmonov 91@mail.ru
ANOTATSIYA
Bugungi kunda dasturlashning tobora rivojlanib borishi sabab barcha fanlar ushbu sohaga murojaat etmoqdalar. Maqolada dasturlashning bir qismi bo'lgan if-then qoidalarini izlash uchun lokal metrikalarni qurish haqida so'z boradi.
Kalit so'zlar: dasturlash, if-then, lokal metrika, Chebishev metrikasi, masala, hisoblash eksperimenti.
ABSTRACT
In connection with the growing development of programming, today all disciplines are turning to this area. This article discusses building local metrics to find if-then rules that are part of programming.
Keywords: programming, if-then, local metrics, Chebyshev metrics, problem, computational experiment.
KIRISH
If-then qidiruvi hech bo'lmaganda bitta sinf uchun lokal metrika parametrlarini hisoblash va tanlash metodi orqali amalga oshiriladi. Shar shaklidagi aniq bir sinfning mantiqiy qonuniyatini tanlash uchun uning chegaraviy ob'ektlari qism to'plamidan foydalaniladi. Qobiq ob'ektlar soni o'sishi bilan fiksirlangan qiymatga intiladi. Alomatlar fazosining lokal oblastlarini belgilash ob'ekt- qoplamai qobiq ob'ektlarini minimal o'rab olish masalasiga olib keladi. O'rab olishning har bir ob'ekt-qoplamai lokal bo'yicha sharning markazi va o'zining lokal oblastining vakili hisoblanadi.Ko'rilayotgan predmet oblast terminlaridagi ajratib olingan mantiqiy qonuniyatlarni tshuntirish masalasi yechiladi.
Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021
ISSN: 2181-1385
Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89
DOI: 10.24412/2181-1385-2021-11-4-8
Masalaning qo'yilishi
E0 = {S1,...,Sm} o'rganiladigan tanlov (ob'ektlar to'plami) n miqdoriy
alomatlar bilan jadval ko'rinishida berilgan. E0 ob'ektlar to'plami , l ta
kesishmaydigan K1......Kl to'plam ostilari (sinflar) vakillaridan tashkil topgan.
Bir necha metrika berilgan.Shu metrikalar orasidan har bir sinf uchun o'z metrikasini (lokal metrikani) tanlash talab qilinadi.
Sinflarda lokal metrika ob'ektlarini tanlash
i
I ta kesishmaydigan sinflar Kx......= ga bo'lingan ^Tta
y=i
ob'ektlardan tashkil topgan to'plam qaraladi.Sinflar vakillari ob'ekt tanlanmalari orqali E0 = {S1,....,S2} berilgan deb hisoblaymiz.Tanlanma ob'ektlari n ta turli
xildagi belgilar X = (x1,...,xn) orqali aniqlanadi,aniqlanish to'plami £ intervali shkalalarda o'lchanadi,n — £ minimal qiymat.Har bir sinfni aniqlaydigan shunday cp(S,S0) = [p(S,S0) <= r] predikatlar oilasi topiladiki,bunda p = (S,S0) -
alomatlar fazosidagi metrika, S0 -shar markazi, r -shar radiusi.
Predikatlar qurish uchun metrika tanlashning 2 ta yo'li taklif qlinadi.Brinchisida har bir sinf uchun qandaydir berilgan R = {p(x, y)} to'plamidan
olingan lokal metrikani aniqlash kerak .Masalani har bir metrika p(x, y) e R bo'yicha yechish 2 ta etapda amalga oshadi.
1.Qobiqni sinf ob'ektlarining chegaraviy qismto'plamlarini metrika p(x, y) bo'yicha hisoblash;
2.Ob'ekt qoplamai sinf qobiqlarini minimal o'rab olish haqidagi masalani yechish.
p(x, y) e R metrika bo'yicha analitik Kd, d = 1, l sinf chegaraviy ob'ektlari qismito'plamini aniqlaymiz.Har bir S. e Kd o E0 uchun p(x, y) bo'yicha tartiblangan Sio,S^ ,...S^_l,Si = Si0 ketma ketligini qaraymiz.
Si e CKd o E0 Si ga yaqin va Kd sinfga kirmaydigan ob'ekt bo'lsin.
P(Si) orqali p(St, S't ) radiusni,markazi Si da va p(Si, Sh) <p(Si, Sl/}), t = 1, ß-1
Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021
ISSN: 2181-1385
Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89
DOI: 10.24412/2181-1385-2021-11-4-8
lar uchun barcha ob'ektlar o'z ichiga oluvchi aylanani belgilaymiz. P(Sf) dan Sia e {0,..., ß — 1} qobiq ob'ektini aniqlaymiz,bu yerda
piS. , St ) = min p(S. , St ).
lP Slt gP ( S, ) lP l'
Kdf]E0 dan olingan qobiq ob'ektlari to'plamini АД^о) kabi belgilaymiz. Har bir Si e К d П E{) ob'ekt uchun Г'= s radiusni va
ц = (S, | S, g Ld(E0),p(Si,S,) < r} to'plamni hisoblaymiz.Minimal o'rab olish (П ( E0)} bir hil quvatdagi barcha ob'ektlarni bildiradi va
U
S, el ( /'-о )
Ld (E0) to'plamning har bir ob'ekti uchun mos nomerlar qo'yamiz 1,2,...,t,t =| Ld(Eo)| va Ld(E0) = (S1,...,S'} deb hisoblaymiz. S g Kd nEo ob'ektlar uchun Zi = (zi1,...,ztt)vektorni aniqlaymiz,bu yerda zij = 1 , agar
S va aks holda zij = 0.
Aj, J =1,J orqali Kd g E0, jj< 2' dagi ob'ektlar ro'yhatini
belgilaymiz.Har bir ro'yhat uchun mos keluvchi binar vektor Zu bo'ladigan
¥ to'plamni yaratamiz. ¥ minimal o'rab olish (nd (E0)} qidiruv protsessini anchagina yengillashtiradi.
Ob'ekt-qoplamai minimal o'rab olish Ld (E0) ni qurish uchun G(V, E) grafdagi minimal yo'l qidiruvi uchun dinamik programmalash prinsipini o'zida aks ettiruvchi algoritm taklif qilinadi.
| Z. | —Z. binar vektorning koordinatalar to'plamidagi birliklar soni, Zi v Zj — Zi va Zj vektorlar orasida koordinatalar o'rtasidagi dizyunksiya amali. V uchlar to'plami uchun quyidagi qoidani qo'laymiz.Agar a b g v, \ Za |>| Zb | va Za = Za v Zb ,unda b uch V dan uzoqlashadi.Barcha yo'llar ¥max œ ¥
uchlarning qismto'plamidan boshlanadi. l(s) orqali s G¥max uchdagi boshi
Google Scholar Scientific Library of Uzbekistan
Academic Research, Uzbekistan 26 www.ares.uz
Academic Research in Educational Sciences VOLUME 2 \ ISSUE 11 \ 2G21
ISSN: 2181-1385
Scientific Journal Impact Factor (SJIF) 2G21: 5.723 Directory Indexing of International Research Journals-CiteFactor 2G2G-21: G.89
DOI: 1G.24412/2181-1385-2G21-11-4-8
bilan yo'lni bog'lovchi uchlar sonini belgilaymiz.Algoritm quydagich amalga oshadi.
1.Agar ^max = 0 ,unda 5. s e^max birinchi uchi tanlovi F = F = Zs
1 = s . l (s ) = 1 .
2.Agar | F |=| Ld(E0) | , unda yo'l uchlari ketma-ketligini keltirib chiqaradi: V dan i ni o'chiradi, F = F ; l ( s) = l ( s) -1
3.Agar l(s) = 0 ,unda ^max dan s ni o'chiradi 1 ga bor.
4. в = {j | j e V va | F v Zj | - | F |= max Ф 0} hisoblanadi.Agar в = 0
unda l(s) = l(s) -1 va 3 ga bor.Aks holda: i ee; F = F; F = F v Zt ;l(s) = l(s) + 1; 2
ga bor.
5.Tamom.
p(x, y) e R metrikani tanlash | nd (E0) h Рпо{ Ud (E0) |} sharti
p( x,y )eR
orqali aniqlanadi. {Aj}^ ro'yhatdan minimal yo'l uchlari nomeri bo'yicha o'rab olish ob'ekt-qoplamalarini tanlab olish mumkin.
2-usulda har S. e Kd о E0 ob'ekt uchun lokal metrika parametrlari hisoblanadi.Ob'ektning lokal metrikada minimal soni aniqlanadi. I, J orqali mos miqdoriy nominal nomerlar to'plamini ifodalaymiz 111 + | J |= n J = 0 bo'lgan holni faqat miqdoriy belgilardan foydalanadigan ob'ektlar bo'lgandagina ko'rib chiqamiz.
Sd = ixd1,...,xn), Sd e Kt оE0 ob'ektni har bir xi, j e 1 belgisi bo'yicha lokal metrika vesini hisoblash quyidagich olib boriladi. Sd va SM= (x ,...,xMn), ju = 1,m orasidagi |xßj - xdj \ absalyut farqning qiymatlar sohasi
2 ta intervalga bo'linadi [c0,c1],[c1,c2] ,bu yerda c0 = 0 va c2 = max | xMj - xdj|
SMeE0
c1 qiymatini aniqlash har bir interval Kt yoki CKt dan olingan | xvj + xdj | farq qiymatiga ega bo'lish gipotezasini tekshirishga asoslanadi. u\,u^(ul2,u2) -[c0,c1] va [c1,c2] intervallardagi Kt(CKt) sinflardagi | xßj + xdj \ farqning qiymatlari miqdori. Quyidagi kriteriya
Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021
ISSN: 2181-1385
Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89
DOI: 10.24412/2181-1385-2021-11-4-8
(1)
2 2
XX up (up -1)
p=1 i=1
mt (mt -1) + (m - mt )(m - m -1)
2
X up (m - mt ) - up + upmt
u
p=1
2m (m - m )
^ max
{A}
c1 interval chegara qiymatlarini optimal darajada hisoblashga va uning qiymatlarini Sd ob'ekt lokal metrikadagi miqdoriy belgi parametri sifatida foydalanishga imkon beradi.Agar har 2 ta intervaldan birining chegarasida faqat Kt yoki faqat CKt ob'ektning | xßj + xdj |, j e I farqli qiymatlari joylashgan bo'lsa,
unda (1) kriteriya 1 ga teng qiymat qabul qiladi.Boshqa barcha hollarda (1) kriteriyaning maksimumi (0,1) intervalga tegishli bo'ladi.
O'lchamlarning mashtabga bogliq emasligi quyidagi formula orqali [0,1] dagi belgining qiymatlarini normallashtirishni taminlaydi.
x - xi
* ^ii min
x a = -_
ji xi - xi
max min
i i
Bu yerda xmin , xmax mos ravishda xi belgining minimal va maksimal qiymatlari. Sd ob'ekt lokal metrikasini quyidagicha aniqlaymiz.
n
(2) Pd (x, y) = X wdj\xj - yj
j=1
Bu yerda wdj - (1) ning j - belgi uchun qiymati.
_ \Q(Sd,j)\
Sd £ Ku ob'ekt lokal metrikasi uchun xj belgi vesi wdj = \rY r \ bilan
hisoblanadi, bu yerda 6{Sd,j) = (.V, | St e CKu D E0,xtj ^ xdj} . Belgining minimal vesi hisobiga lokal metrika quyidagi ko'rinishga keladi.
p( y )=X w \ x - yj\+X
j^ j^J
Ko'rinib turibdiki,(3) metrika (2) ni j = 0 bo'lgandagi umumlashmasidir.
(a^ S ■ , S■ S■ , S• S ■
(4) i0 i1 it it+1 m-1
Google Scholar Scientific Library of Uzbekistan
Academic Research, Uzbekistan 28 www.ares.uz
(3)
wdj, xj * yj, 0 xj = yj ■
Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021
ISSN: 2181-1385
Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89
DOI: 10.24412/2181-1385-2021-11-4-8
E0 ketma ketlik bo'lsin.
Qonuniyatni belgili fotoqism sohasi kabi aniqlaymiz. U P(Si )= (Sio ' S Sit} ob'ektlar to'plamiga ega bo'lsin .Qisim sohaning geometrik formasi mantiqiy modellari orqali beriladi.Alomatlar fazo sohasi p = (S, Si ) = "pt (S, Si ) < r " predikatlar orqali yoritiladi.Brinchi holning ikkinchisidan
farqi shundaki,har bir St gKjDEq uchun (4) yordamida o'zining Sia ob'ektni aniqlaydi
Pl (Si , Si ) = min p. (Si , Si )
l t+l a St eP ( Sj ) l lP 11
Lj ( Eo) to'plam 2-holda chegaraviy ob'ekt qism to'plamlarning qobiqsi
hisoblanadi.Lokal metrikalar minimal sonini tanlash algaritimi huddi 1-holdagidek bajariladi.
|P(S, )|
Lokal sohadagi mantiqiy qonuniyat kuchi . n . kabi hisoblanadi.
I K \ 1^0 I
Hisoblash eksprimenti
Namunaviy model sifatida quydagicha jadvalni olamiz. 100 ta ob'ekt 2 ta alomat bilan berilgan va 2 ta sinfga ajratilgan.Ob'ektlar joylashuvini quydagi rasimda ko'rish mumkin.
x lar birinchi sinf, o lar ikkinchi sinf .
Yuqoridagi tanlov bo'yicha quydagi natijalar olindi.
Google Scholar Scientific Library of Uzbekistan
Academic Research, Uzbekistan 29 www.ares.uz
Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021
ISSN: 2181-1385
Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89
DOI: 10.24412/2181-1385-2021-11-4-8
Yevklid metrikasi bo'yicha.
t I1 i' i i J 1= V i2 i i I3 V i3 i I i4 i4 i4 i & 45 ♦ ( } i ? i ? < i i I5 ; } a a a1 a1 t a2 h2 a2 a2 f a3 § a3 a3 i a4 a4 a4 a4 ? Ä S Ä Ä
h № $ (S i 6 i e EG 10 £6 96
h bT e7 ä7 i ä i8 <§ ¿8 { a a9 a9 as i a° sD a° a° i i i ! i ? J t J 7 J7 y J7 J7 P 4s 0 4s S8 9 |9 ¿9 |9 |9 0 ¿0 ^ |QD
Chebishev metrikasi bo'yicha Minimal qoplamadagi ob'ektlar
Metrika Ob'ekt nomeri
Sinf K1 Sinf K2
Yevklid 23,78 28,73
Chebishev 23,78 28,23
Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021
ISSN: 2181-1385
Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89
DOI: 10.24412/2181-1385-2021-11-4-8
Ikkinchi hisoblash eksperimenti sifatida gipertoniya kasalligi bilan bog'liq 29 ta miqdoriy alomat bilan tavsiflangan 36 ta kasal va 111 ta deyarli sog'lom harbiylar bo'yicha tibbiy berilganlar bazasi.
m=147, n= 29, k1= 111, k2=36;
n: \ai a2 a3 a4 a5 \a6 a 7 \a8 L 49 \aio-
1 20 184 66 90 60 1,0800*0,1199'. 0,4000* 0,0900* 3,21
2 19 168 55 100 60 0,8799.0,1599\ 0,3600*0,0799'. 2,9l
3 is 178 65 110 70 0,7200* 0,1599'. 0,3199'. 0,0799.3,21
4 22 162 62 110 70 0,6399'. 0,1199'. 0,3199'. 0,0799.3
5 18 175 74 110 70 0,8000i 0,1199'. 0,3600* 0,1000i3
6 is 170 67 120 70 1 0,1599'. 0,3600* 0,1000*3,21
7 19 166 60 110 70 0,60001 0,1500i 0,3199'. 0,0799.3
8 21 1s2 70 110 70 1 0,1199' 0,4000* 0,1000*3,2i
9 20 170 59 110 70 0,8000* 0,1599'. 0,3600*0,0799.3 „
1' y
Yevklid CHebshev
1 -sinf qobiq uj'sklldi 1 -sinf qobiq ob'ektlari:
5ta 81a
| 44, 54 ,61 , 66,74 ] [30,40,44,54,61 ,66,67,106]
2-sinf qobiq ob'ektlan: 2-sinf qobiq ob'ektlari:
4ta 61a
[119,121 ,123,137] [113,121,123,127,130,137]
Ko'rinib turibdiki 1-sinf uchun Chebshev metrikasidan foydalanish maqsadga muvofiq bo'ladi.ikkinchi sinf uchun natijalar bir xil.
Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021
ISSN: 2181-1385
Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89
DOI: 10.24412/2181-1385-2021-11-4-8
REFERENCES
1. Лбов Г. С. Методы обработки разнотипных экспериментальных данных.- Новосибирск, 1981. 160 с.
2. Дюк В.А. Формирование знаний в системах искусственного интеллекта: геометрический подход // Вестник Академии Технического Творчества. -СПб, 1996, №2. С. 46 - 67.
3. Верестнева О.Г., Муратова Е.А., Янковская А.Е. Анализ структуры многомерных данных методом локальной геометрии// Известия Томского политехнического университета. 2003. Т. 306. №3. С. 19 - 23.
4. Игнатьев Н.А. Распознающие системы на базе метода линейных оболочек // АиТ. 2000. №3. С. 168 - 172.
5. Гордеев Э.Н. Задачи выбора и их решение // Компьютер и задачи выбора. - М.: Наука, 1989. С. 5 - 48.
6. Игнатьев Н.А. Вычисление обобщённых показателей и интеллектуальный анализ данных // АиТ. 2011. №5. С. 183 - 190.
7. Мустафакулов, А. А., Халилов, О. К., & Уринов, Ш. С. (2019). Цель и задачи самостоятельной работы студентов.
8. Abdurakhmanov, B. A., & Ayupov, K. S. (2010). Bakhadyrkha nov, MK, Iliev, Kh. M., Zikrillaev, NF, and Sapa rniyazova, ZM, Low Temperature Diffusion of Impu rities in Silicon. In Dokl. Akad. Nauk Resp. Uzb (No. 4, p. 32).
9. Хасанова, Г. (2021). ОЛИЙ ТАЪЛИМ МУАССАСАЛАРИ ПЕДАГОГЛАРИНИНГ КРЕАТИВ ^ОБИЛИЯТЛАРИНИ РИВОЖЛАНТИРИШНИНГ МАЗМУНИ. Academic research in educational sciences, 2(1).