Научная статья на тему 'BEARING CAPACITY OF PASTED ANCHORS IN THE MASONRY WALLS OF NATURAL LIMESTONE'

BEARING CAPACITY OF PASTED ANCHORS IN THE MASONRY WALLS OF NATURAL LIMESTONE Текст научной статьи по специальности «Строительство и архитектура»

CC BY
51
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Magazine of Civil Engineering
Scopus
ВАК
RSCI
ESCI
Ключевые слова
ПРИРОДНЫЙ ИЗВЕСТНЯК / КЛЕЕВОЙ СТАЛЬНОЙ АНКЕР / АНКЕРНЫЙ СОСТАВ / ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ / РАСЧЕТ / ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО / СТРОИТЕЛЬНАЯ ИНДУСТРИЯ / ЗДАНИЯ / NATURAL LIMESTONE / PASTED STEEL ANCHOR / ANCHOR MIXTURE / PHYSICAL EXPERIMENT / CALCULATION / CIVIL ENGINEERING / CONSTRUCTION INDUSTRY / BUILDINGS

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Alekseenko V.N., Zhilenko O.B., Al Ali M.

The joint work of pasted steel anchors and wall masonry elements from natural limestone is discussed in the article. The aim of the scientific work is the development of a technique for calculating the load-bearing capacity of anchors in masonry walls from natural limestone and the development of nomograms for the rapid evaluation of the bearing capacity of anchors. The state of the problem of the work of pasted anchors in various materials was studied. It is established that the known methods for calculating the strength of pasted steel anchors do not take into account the joint work of the natural limestone and pasted steel anchor. Previous studies have focused on the study of anchor joints in concrete, and the work of the pasted joint in the masonry walls of natural limestone has not been investigated. In the present work, for the experimental study of the work of pasted steel anchors in the masonry of walls made of natural limestone, the following materials were accepted: natural limestone, periodic profile reinforcement and anchor mixture. General methods of experimental and theoretical research: analysis, synthesis, deduction, induction, analogy. To solve the set tasks, in the experimental part, the strength of the adhesive joint for pulling in stone elements after the strength of the anchor mixture was established, when fitting the fixture ø 12 mm А 500С into it. Experimental samples, tested to determine the strength of the adhesive joint, were destroyed by breaking the stone. This fact confirms the higher strength of the adhesive bond than the stone element. The results of the physical experiment performed by the authors for determining the parameters of the joint work of the pasted steel anchor and the stone elements from natural limestone are presented in article. It has been experimentally established that 0.4 mm is the criterion for the limiting displacement of anchors, in which splitting of stones from the effect of transverse tensile stresses caused by pulling out pasted steel anchors is not allowed. The estimated evaluation of the joint work of pasted steel anchors and wall masonry elements from natural limestone was proposed.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

НЕСУЩАЯ СПОСОБНОСТЬ ВКЛЕИВАЕМЫХ АНКЕРОВ В КЛАДКЕ СТЕН ИЗ ПРИРОДНОГО ИЗВЕСТНЯКА

В статье рассматривается совместная работа стальных анкеров и элементов кладки стен из природного известняка. Целью научной работы является разработка методики расчета несущей способности анкеров в каменной кладке стен из природного известняка и разработка номограмм для оперативной оценки несущей способности анкеров. Изучено состояние вопроса о работе клеевых стальных анкеров в различных материалах. Установлено, что известные методики расчета прочности стальных анкеров не учитывают совместную работу природного камня известняка и стального анкера. Предыдущие исследования направлены на изучение анкерных соединений в бетоне, а работа клеевого соединения в каменной кладке стен из природного известняка не исследована. В настоящей работе, для экспериментального исследования работы клеевых стальных анкеров в каменной кладке стен из природного известняка, приняты следующие материалы: камень известняк, арматура периодического профиля и анкерная смесь. Общие методы экспериментальных и теоретических исследований: анализ, синтез, дедукция, индукция, аналогия. Для решения поставленных задач, в экспериментальной части исследованы прочность клеевого соединения на выдергивание в каменных элементах после набора прочности анкерного состава, при установке в него арматуры ø 12 мм А 500С. Опытные образцы, испытанные для определения прочности клеевого соединения разрушились путем раскола камня. Это обстоятельство подтверждает более высокую прочность клеевого соединения, чем каменного элемента. В статье представлены результаты физического эксперимента выполненного авторами для определения параметров совместной работы стального анкера и камней природного известняка. Опытным путем установлено, что 0,4 мм – это тот критерий предельного смещения анкеров, при котором не допускается раскол камней от воздействия поперечных напряжений растяжения, возникших при выдергивании стальных анкеров. Предложена расчетная оценка совместной работы стальных анкеров и элементов кладки стен из природного известняка.

Текст научной работы на тему «BEARING CAPACITY OF PASTED ANCHORS IN THE MASONRY WALLS OF NATURAL LIMESTONE»

V.N. Alekseenko*, O.B. Zhilenko,

V.I. Vernadsky Crimean Federal University, Simferopol, Crimea, Russia M. AI Ali,

Technical University in Kosice, Kosice, Slovak Republic

Key words: natural limestone; pasted steel anchor; anchor mixture; physical experiment; calculation; Civil Engineering; Construction Industry; Buildings

doi: 10.18720/MCE.81.6

Bearing capacity of pasted anchors in the masonry walls of

natural limestone

Несущая способность вклеиваемых анкеров в кладке стен из

природного известняка

Канд. техн. наук, доцент В.Н. Алексеенко*, канд. техн. наук, доцент О.Б. Жиленко,

Крымский федеральный университет им. В. И. Вернадского, Симферополь, Россия канд. техн. наук, заведующий кафедры М. Ал Али,

Технический университет г. Кошице, г. Кошице, Словакия

Ключевые слова: природный известняк; клеевой стальной анкер; анкерный состав; физический эксперимент; расчет; гражданское строительство; строительная индустрия; здания

Abstract. The joint work of pasted steel anchors and wall masonry elements from natural limestone is discussed in the article. The aim of the scientific work is the development of a technique for calculating the load-bearing capacity of anchors in masonry walls from natural limestone and the development of nomograms for the rapid evaluation of the bearing capacity of anchors. The state of the problem of the work of pasted anchors in various materials was studied. It is established that the known methods for calculating the strength of pasted steel anchors do not take into account the joint work of the natural limestone and pasted steel anchor. Previous studies have focused on the study of anchor joints in concrete, and the work of the pasted joint in the masonry walls of natural limestone has not been investigated. In the present work, for the experimental study of the work of pasted steel anchors in the masonry of walls made of natural limestone, the following materials were accepted: natural limestone, periodic profile reinforcement and anchor mixture. General methods of experimental and theoretical research: analysis, synthesis, deduction, induction, analogy. To solve the set tasks, in the experimental part, the strength of the adhesive joint for pulling in stone elements after the strength of the anchor mixture was established, when fitting the fixture 0 12 mm А 500С into it. Experimental samples, tested to determine the strength of the adhesive joint, were destroyed by breaking the stone. This fact confirms the higher strength of the adhesive bond than the stone element. The results of the physical experiment performed by the authors for determining the parameters of the joint work of the pasted steel anchor and the stone elements from natural limestone are presented in article. It has been experimentally established that 0.4 mm is the criterion for the limiting displacement of anchors, in which splitting of stones from the effect of transverse tensile stresses caused by pulling out pasted steel anchors is not allowed. The estimated evaluation of the joint work of pasted steel anchors and wall masonry elements from natural limestone was proposed.

Аннотация. В статье рассматривается совместная работа стальных анкеров и элементов кладки стен из природного известняка. Целью научной работы является разработка методики расчета несущей способности анкеров в каменной кладке стен из природного известняка и разработка номограмм для оперативной оценки несущей способности анкеров. Изучено состояние вопроса о работе клеевых стальных анкеров в различных материалах. Установлено, что известные методики расчета прочности стальных анкеров не учитывают совместную работу природного камня известняка и стального анкера. Предыдущие исследования направлены на изучение анкерных соединений в бетоне, а работа клеевого соединения в каменной кладке стен из природного известняка не исследована. В настоящей работе, для экспериментального исследования работы клеевых стальных анкеров в каменной кладке стен из природного известняка, приняты следующие материалы: камень известняк, арматура периодического профиля и анкерная смесь. Общие методы экспериментальных и теоретических исследований: анализ, синтез, дедукция, индукция, аналогия. Для решения поставленных задач, в экспериментальной части исследованы прочность клеевого

соединения на выдергивание в каменных элементах после набора прочности анкерного состава, при установке в него арматуры 0 12 мм А 500С. Опытные образцы, испытанные для определения прочности клеевого соединения разрушились путем раскола камня. Это обстоятельство подтверждает более высокую прочность клеевого соединения, чем каменного элемента. В статье представлены результаты физического эксперимента выполненного авторами для определения параметров совместной работы стального анкера и камней природного известняка. Опытным путем установлено, что 0,4 мм - это тот критерий предельного смещения анкеров, при котором не допускается раскол камней от воздействия поперечных напряжений растяжения, возникших при выдергивании стальных анкеров. Предложена расчетная оценка совместной работы стальных анкеров и элементов кладки стен из природного известняка.

1. Introduction

The object of research of scientific work is a technical solution for the reliable fastening of modern hinged facades to buildings with walls of natural limestone.

Research subject: glued joint of a steel anchor in a stone element of natural limestone.

In accordance with the Decree of the Government of the Russian Federation No. 1636 of December 27, 1997 [1] only such anchors are allowed to be used on responsible construction sites whose suitability for use in construction is confirmed by the relevant technical certificate of the Ministry of Construction of the Russian Federation. Anchors that do not have a technical certificate are not allowed for use in critical construction sites [2].

The work of steel anchors fixed in a concrete base, which perceive the tensile and shearing forces from static loads, including their joint action, has been fairly well studied [3-18]. Leading world manufacturers of anchor fasteners Hilti, Fisher, Spit, etc. [19-21], offer methods for calculating and predicting the long-term bearing capacity of anchors fixed in a concrete base. In the recommendations for the design and installation of anchor fastenings of hinged facade systems developed by V.N. Vorobyov [2], the versions of the fastenings of front systems are described quite fully, however, the types of anchorage considered do not contain information on the operation of the glued steel anchor in the walls of natural limestone. Tests of anchor bolts on modified acrylic adhesives in determining the strength of their laying in concrete for short-term, long-term and dynamic loads, conducted by G.A. Molodchenko, V.A. Sklyarov, L.N. Shutenko, M.S. Zolotov and others [22-29] have shown the possibility of using them for fixing building structures and equipment under the action of various combinations of loads on them. In this case, the application of the above-mentioned known techniques for calculating and constructing anchor fasteners on an adhesive basis in elements of masonry of walls made of natural limestone is incorrect. To ensure the reliability of anchorages, it is necessary to account for the joint work of the glue shell of the anchor and the base of natural stone material [30-35].

At present, a large number of works have been devoted to the investigation of the thermal protection properties of hinged ventilated facades [36-38], while the methods for determining the bearing capacity of fastenings of facade systems have not been studied enough and need improvement.

The relevance of the research is that at present there are no methods that take into account the conditions for the joint work of the glue shell of the anchor and the natural limestone stone.

The aim of the scientific work is the development of a technique for calculating the load-bearing capacity of anchors in masonry walls from natural limestone and the development of nomograms for the rapid evaluation of the bearing capacity of anchors.

Objectives:

1. To carry out an experimental study of the joint work of the glue joint of steel anchor and natural limestone stones.

2. Develop proposals for the calculation of steel anchors in the masonry walls of natural limestone.

2. Materials and Methods

The method of full-scale tests and rules for determining the capacity of anchors in relation to longitudinal axial pulling loads with reference to the actual building base are set out in SRT 44416204-0102010 "Anchor fasteners. The method of determining the bearing capacity by the results of full-scale tests" [39].

The essence of this method is that the tests of the anchorage on the pulling force applied to the anchor along its axis determine the resistance to fastening of the load and the deformation corresponding

to the limiting states characteristic for it, and then the load-bearing capacity of the anchors is calculated by processing the test results.

Installation of anchorages in hinged façade systems should be carried out on the basis of a project developed in accordance with the requirements of STO NOSTROY [40] and taking into account the recommendations of the anchor manufacturer. The anchor mark must be indicated in the design documentation [40].

Previous studies have been directed to the study of anchor joints in concrete, the work of the glue joint in the masonry walls of natural limestone was not considered. In the present work, for the experimental study of the joint work of glue steel anchors in the masonry of walls made of natural limestone, the following materials were accepted: a nomulite limestone stone, a periodic profile armature and an anchor mixture.

A natural physical experiment was carried out. The strength of the glued joint is determined when installing anchors in the base of natural limestone stones. General methods of experimental and theoretical research: analysis, synthesis, deduction, induction, analogy.

Based on the analysis and processing of the results obtained, the following strength characteristics are determined:

The physical and mechanical properties of the natural limestone stone used in the manufacture of prototypes are determined by testing a stone element 120x108 mm; h = 156 mm; the volume weight is 1750 kg/m2. The test was carried out in accordance with Russian State Standard GOST 8.136-74 [41] on the hydraulic press P-125.

Based on the analysis and processing of the results obtained, the strength characteristics of the stone of natural limestone are determined (Table 1).

Table 1. Physical and mechanical properties of natural limestone stone.

Geometric characteristics: axbxh, m Weight m, kN Volumetric weight: p, kg/m3 Destructive load: F, kN Ultimate Compressive Strength: °cm, MPa Stone mark

1 2 3 4 5 6

0.12x0.10x0.15 0.035 1750 88.26 6.8 М 50

The physical and mechanical properties of the A 500C armature used in the manufacture of prototypes are determined by testing the rods with a length of 350 mm. The test was carried out in accordance with Russian State Standard GOST 1497-84 [42] on an explosive device MP-500.

Based on the analysis and processing of the results obtained, the following strength and deformation characteristics of the reinforcement are determined: the physical yield strength ay, the time resistance au, the elastic modulus Es, the limiting relative deformations eux corresponding to class A 500C.

A mortar mixture for anchoring and fixing various building elements in the Ceresit CX 5 masonry has been applied.

According to the manufacturer's data, compressive strength is:

- after 6 hours more than 12.0 MPa;

- after 1 day more than 22.5 MPa;

- after 28 days more than 22.5 MPa.

Flexural strength is:

- after 6 hours more than 2.2 MPa;

- after 1 day more than 2.6 MPa;

- after 28 days more than 8.0 MPa.

Testing of the samples was carried out after the strength of the solution mixture was collected after 28 days.

To solve the set tasks, in the experimental part, glued joints of A-500C armature are investigated when pulled from a stone base. Destruction determined the bearing capacity and deformation of glue joints of steel anchors in stone elements from natural limestone. The depth of the anchoring of the reinforcing

bar, to obtain objective results, was taken differently on the basis of technological considerations for attaching hinged ventilated facade systems to the walls of multi-storey buildings.

The scope of the experiment was planned, allowing to obtain the number of experimental data necessary for statistical analysis and processing of the results ensuring the solution of the problems posed in this study.

The test facility is a R-20 rupture machine, into which a prototype is installed in an inventory metal cage. MIG-1 clock indicators are used to measure the deformation of the anchor shear relative to the outer surface of the stone base perpendicular to it.

To assign the load during testing of the adhesive joint, a numerical model was constructed in the PC "LIRA" and the forces acting in the anchor rods during the fastening of hinged ventilated facades to the walls of multi-storey buildings of stones and blocks of saw limestone were determined.

The tests were carried out in accordance with the requirements of Russian State Standard GOST 1497-84 [42].

The load was applied in steps of 0.1 from the expected destructive value to track the dynamics of failure and deformation of the adhesive bond in the test sample.

In prototypes tested after 28 days, the growth of deformations also depended on the anchoring depth. The displacement of the anchor passed along the contact zone "rock stone - anchor".

3. Results and Discussion

The destruction of anchorages can be as follows [2]:

- failure to connect the anchor to the base (in cases where the size or the anchor mark does not correspond to the pulling load, with insufficient anchoring depth, if the anchor installation technology is violated);

- failure of the base material (with insufficient strength of the base material, non-observance of the minimum axial distances);

- cleavage of the base in angular zones (with insufficient edge distances, high proppant force, high shear load);

- destruction of the steel anchor (the rarest case of failure).

The maximum permissible deformations in the test specimen occurred at a load from 24.52 kN to 30.4 kN.

Experimental samples tested to determine the strength of the adhesive bond were destroyed by slipping the glue joint through the contact zone "glue shell - the surface of the stone" and was followed by a subsequent split of fragments of stones. This circumstance confirms the need to take into account the joint work of anchoring elements in the contact area of materials.

It is established that the exhaustion of the bearing capacity of the adhesive joint should be considered when the anchor is displaced relative to the surface of the stone reaching a value of 0.4 mm.

With further load application, the anchor was pulled out of the previously drilled hole instantly, and followed by a split stone (Figures 1, 2).

Figure 1. Type of prototype when the anchor displacement is relative to the upper surface of the stone 0.4 mm

Figure 2. When the anchor was displaced more than 0.4 mm, it was pulled out, followed by a subsequent split of the stones

Splitting of stones occurred at loads exceeding by 15-20 % the load of depletion of the bearing capacity of the adhesive joint (according to the limiting displacement of the anchor 0.4 mm).

Thus, under the action of tensile forces in an anchor glued to a stone wall masonry element from natural limestone, a "glue shell - stone surface" breakdown occurs on the contact.

To develop proposals for calculating the strength of steel anchors in the masonry walls of natural limestone, criteria for limiting the displacement of anchors (0.4 mm) should be adopted, in which the joint work of materials is not allowed.

In connection with the natural variability of the structure of natural limestone stones formed as a deposit product, it is expedient to operate with the factors of joint work of the anchoring elements, proceeding from the assumptions only of the elastic stage of work [3-18]. It should be emphasized that taking into account the inelastic work of the elements can lead to an unreasonable and very dangerous overestimation of the design strength characteristics of anchor joints in natural limestone.

Based on the results of the experiment, the ultimate bonding tension of the glue shell of the steel anchor with the surface of the stone hole of natural limestone is determined by the strength corresponding to the M50 grade.

P

Tci(095) - ifd^hef (1)

where: dh - is diameter of the hole previously drilled in stone, mm;

hef - is depth of anchoring of the anchor (effective anchoring depth), mm;

P - is destructive load, kN.

dh

(dh

pasted stee anchor

\

\

pasted stee anchor

,cl

\

Figure 3. Scheme of a prototype of a natural limestone stone with an adhesive steel anchor

hef, cm 40.0

39.0

38.0

37.0

36.0

35.0

34.0

33.0

32.0

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

31.0

18mni 16mm 14mm

0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 ^Lcl, MPa

Figure 4. Experimental dependence of the ultimate bonding tension of the glue shell with the surface of the hole in the stone of natural limestone with the strength corresponding

to the M50 grade

From the foregoing, when taking into account only the elastic stage of the work, it follows that calculation of the depth of anchoring of the anchor in the stones of saw limestone is determined by the formula:

P

hef =-— (2)

Tcl(0,95) • n • ah

The area of the stone element, subject to compression from pulling the anchor, is determined by the

diameter of the conventional stone shell, which is involved in the adhesive work of the anchor in joint work:

n 2 2

Acom = 4 (^com — dh) (3)

where dcom - is diameter of the conventional stone shell, involved in the glue shell of the anchor in the joint work.

Maximum allowable compression area for M50 stones is:

_ P

Ault.com. =

where P - is breaking load (tensile force in the anchor), kN; M - is grade of stone, MPa.

- (d2

. K^CO

<® = M

(4)

(5)

From the equality 5, we determine the diameter of the conventional stone shell, which is involved in the adhesive work of the anchor in joint work:

= 10.025 •P + dh

(6)

The minimum permissible distance between the holes or to the outer edge of the stone (Figure 5) is determined as follows:

Bmin = dCOm

+ 2d

h

(7)

The recommended distance between the holes or to the outer edge of the stone (Figure 5) is determined by the formula:

В opt 2(dcom + dh)

(8)

The design load-bearing capacity of the anchor for pulling in the saw limestone of the M50 strength grade will be:

P/=L75*hef*^ n • dh

(9)

where 1.75 MPa - is a cautious value with a guaranteed probability of 0.95 of the maximum permissible adhesion stress of the anchor glue shell with the surface of the hole in the stone of the limestone of the numulite with strength corresponding to M50 [43].

com

Figure 5. Calculation scheme

To quickly assess the bearing capacity of anchors of different diameters, it is convenient to use nomograms (Figure 6), developed by the authors on the basis of the conducted experiments and statistical processing of the results obtained.

P, kN

30.0 25.0 20.0 15.0 10.0 5.0

0

P, kN 30.0 25.0 20.0 15.0 10.0 5.0

0

P, kN 30.0 25.0 20.0 15.0 10.0 5.0

0

4mm

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 В,

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 В,

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 В,

Figure 6. Recommended spacing between the holes (diameter 14 mm, 16 mm, 18 mm) or to the outer edge of the stone (for glue steel anchors) in natural limestone stone with strength corresponding to the M50 grade

Em

cm

cm

4. Conclusions

1. An experimental study of the strength of glue joints of steel anchors and natural limestone stones was carried out. It has been experimentally established that 0.4 mm is the criterion for the limiting displacement of anchors, in which the joint work of the glue joint is preserved in the contact zone "glue shell - stone surface". The obtained research results are relevant for calculating and constructing anchor fastenings of hinged ventilated facades on the walls of buildings made of stones and blocks of saw limestone.

2. In connection with the natural variability of the structure of natural limestone stones formed as a deposit product, taking into account the inelastic work of the elements can lead to an unreasonable and very dangerous overestimation of the design strength characteristics of anchor joints in natural limestone.

3. Proposals for the calculation of steel anchors in masonry walls made of natural limestone have been developed.

4. When calculating and constructing anchors in natural stones of a different structure or age, it is necessary to perform control tests that specify the actual parameters of the joint operation of the elements in the contact zone "glue shell - stone surface".

References

1. Postanovleniye Pravitelstva RF № 1636 ot 27 dekabrya 1997 g. «O pravilakh podtverzhdeniya prigodnosti novykh materialov, izdeliy, konstruktsiy i tekhnologiy dlya primeneniya v stroitelstve» [Decree of the Government of the Russian Federation No. 1636 of December 27, 1997 "On the rules for confirming the suitability of new materials, products, structures and technologies for use in construction"]. (rus)

2. Vorobyov, V.N. Navesnyye fasadnyye sistemy. Rekomendatsii po proyektirovaniyu i montazhu ankernykh krepleniy [Suspended facade systems. Recommendations for the design and installation of anchorages]. LLC PortActivStroy. Vladivostok. 2017. 44 p. (rus)

3. STO 36554501 -048-2016. Ankernyye krepleniya k betonu. Pravila proyektirovaniya [STO 36554501-048-2016. Anchoring fastenings to concrete. Design rules]. IVIoscow: ОАО "HIC "Stroitelstvo". 2014. 37 p. (rus)

4. STO SRO-P 60542948 00036-2015. Proyektirovaniye ankerov, ustanavlivayemykh v zatverdevshiy beton zhelezobetonnykh konstruktsiy [STO SRO-P 60542948 00036-2015. Design of anchors installed in hardened concrete reinforced concrete structures]. Moscow: SRO NP «SOUZATOMPROEKT». 2015. 65 p. (rus)

5. MDS 31-4.2000. Posobiye po proyektirovaniyu ankernykh boltov dlya krepleniya stroitelnykh konstruktsiy i oborudovaniya (k SNiP 2.09.03-85) [MDS 31-4.2000. A manual on the design of anchor bolts for fixing building structures and equipment (k CHuin 2.09.03-85)]. Moscow: CNIIpromzdaniy. 2001. 105 p. (rus)

6. Shin, J., Kim, J., Chang, H.-J. Anchor plate effect on the breakout capacity in tension for thin-walled concrete panels. Engineering Structures. 2016. No. 106. Pp. 147-153.

7. Epackachi, S., Esmaili, O., Mirghaderi, S.R., Behbahani, A.A.T. Behavior of adhesive bonded anchors under tension and shear loads. Journal of Constructional Steel Research. 2015. No. 114. Pp. 269-280.

8. Ashoura, A.F., Alqedra, M.A. Concrete breakout strength of single anchors in tension using neural networks. Advances in Engineering Software. 2005. No. 36. Pp. 8797.

9. Pitrakkos, T., Tizani, W. Experimental behaviour of a novel anchored blind-bolt in tension. Engineering Structures. 2013. No. 49. Pp. 905-919.

10. Tizani, W., Rahman, N.A., Pitrakkos, T. Fatigue life of an anchored blind-bolt loaded in tension. Journal of Constructional Steel Research. 2014. No. 93. Pp. 1-8.

11. González, F., Fernández, J., Agranati, G., Villanueva, P. Influence of construction conditions on strength of post installed bonded Anchors. Construction and Building Materials. 2018. No. 165. Pp. 272-283.

12. Upadhyaya, P., Kumar, S. Pull-out capacity of adhesive anchors: Ananalytical solution. International Journal of Adhesion & Adhesives. 2015. No. 60. Pp. 54-62.

13. Wang, D., Wu, D., Ouyang, C., He, S., Sun, X. Simulation analysis of large-diameter post-installed anchors in concrete. Construction and Building Materials. 2017. No. 143. Pp. 558-565.

14. Mohyeddin, A., Gad, E.F., Yangdon, K., Khandu, R., Lee, J. Tensile load capacity of screw anchors in early age concrete. Construction and Building Materials. 2016. No. 127. Pp. 702-711.

15. CINTEC Anchor In Action, September, 2000. [Electronic resource]. URL: http: //www, cintec. com

Литература

1. Постановление Правительства РФ № 1636 от 27 декабря 1997 г. «О правилах подтверждения пригодности новых материалов, изделий, конструкций и технологий для применения в строительстве».

2. Воробьев В.Н. Навесные фасадные системы. Рекомендации по проектированию и монтажу анкерных креплений. Владивосток: «ПортАктивСтрой». 2017. 44 с.

3. СТО 36554501-048-2016. Анкерные крепления к бетону. Правила проектирования. М: ОАО "НИЦ "Строительство". 2014. 37 с.

4. СТО СРО-П 60542948 00036-2015. Проектирование анкеров, устанавливаемых в затвердевший бетон железобетонных конструкций. М: СРО НП «СОЮЗАТОМПРОЕКТ». 2015. 65 с.

5. МДС 31-4.2000. Пособие по проектированию анкерных болтов для крепления строительных конструкций и оборудования (к СНиП 2.09.03-85). М: ЦНИИпромзданий. 2001. 105 с.

6. Shin J., Kim J., Chang H.-J. Anchor plate effect on the breakout capacity in tension for thin-walled concrete panels // Engineering Structures. 2016. Vol. 106. Pp. 147-153.

7. Epackachi S., Esmaili O., Mirghaderi S.R., Behbahani A. Asghar Taheri. Behavior of adhesive bonded anchors under tension and shear loads // Journal of Constructional Steel Research. 2015. Vol. 114. Pp. 269-280.

8. Ashoura A.F., Alqedra M.A. Concrete breakout strength of single anchors in tension using neural networks // Advances in Engineering Software. 2005. Vol. 36. Pp. 87-97.

9. Pitrakkos T., Tizani W. Experimental behaviour of a novel anchored blind-bolt in tension // Engineering Structures. 2013. Vol. 49. Pp. 905-919.

10. Tizani W., Rahman N.A., Pitrakkos T. Fatigue life of an anchored blind-bolt loaded in tension // Journal of Constructional Steel Research. 2014. Vol. 93. Pp. 1-8.

11. González F., Fernández J., Agranati G., Villanueva P. Influence of construction conditions on strength of post installed bonded Anchors // Construction and Building Materials. 2018. Vol. 165. Pp. 272-283.

12. Upadhyaya P., Kumar S. Pull-out capacity of adhesive anchors: Ananalytical solution // International Journal of Adhesion & Adhesives. 2015. Vol. 60. Pp. 54-62.

13. Wang D., Wu D., Ouyang C., He S., Sun X. Simulation analysis of large-diameter post-installed anchors in concrete // Construction and Building Materials. 2017. Vol. 143. Pp. 558-565.

14. Mohyeddin A., Gad E.F., Yangdon K., Khandu R., Lee J. Tensile load capacity of screw anchors in early age concrete // Construction and Building Materials. 2016. Vol. 127. Pp. 702-711.

15. CINTEC Anchor In Action, September, 2000. [Электронный ресурс]. URL: http://www.cintec.com.

16. Павлова М.О. Прочность и деформативность кладки стен из различных материалов в зоне заделки анкеров при действии на них продольных и поперечных сил. M.: ГУЛ ЦНИИСК им. В.А. Кучеренко, 2000.

17. Элигенхаузен Р., Малле Р. Крепления в бетонных конструкциях и в каменной кладке // Строительная инженерная практика. Берлин: изд. «Вильгельм Эрнст&Сын», 2000.

16. Pavlova, M.O. Prochnost i deformativnost kladki sten iz razlichnykh materialov v zone zadelki ankerov pri deystvii na nikh prodolnykh i poperechnykh sil [Strength and deformation of the masonry of walls from various materials in the zone of anchoring of the anchors under the action of longitudinal and transverse forces on them]. Moscow: GUL TsNIISK V.A. Kucherenko. 2000. (rus)

17. Eligenhausen, R., Malle, R. Krepleniya v betonnykh konstruktsiyakh i v kamennoy kladke [Fixings in concrete structures and in masonry]. J. "Building engineering practice", ed. "Wilhelm Ernst & Son" Berlin. 2000.

18. Eligehausen, R., Hoehler, M., Testing of post-installed fastenings to concrete structures in seismic regions. Conference Proceedings of the fib Symposium on Concrete Structures in Seismic Regions. Athens, Greece. 2003.

19. Rukovodstvo po ankernomu krepezhu Hilti [Guide to anchor fasteners Hilti]. Principality of Liechtenstein: Corporation Hilti. FL-9494 Schaan. 2008. 419 p.

20. Tekhnicheskiy spravochnik Fisher dlya fasadov s vozdushnym zazorom [Technical Reference Fisher for facades with air gap]. Release. 2007. 78 p.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

21. Tekhnicheskoye rukovodstvo po ankernoy tekhnike SPIT [Technical Guide to Anchor Technology SPIT]. Release. 2010. 33 p.

22. Molodchenko, G.A., Sklyarov, V.A. Kratkovremennaya prochnost ankernykh boltov na modifitsirovanykh akrilovykh kleyakh [Short-term strength of anchor bolts on modified acrylic adhesives]. Municipal economy of cities. Kiev: Equipment. 2000. No. 25. Pp. 109-111. (rus)

23. Molodchenko, G.A., Sklyarov, V.A. Dlitelnaya prochnost ankernykh boltov na modifitsirovannykh akrilovykh kleyakh [Long-term strength of anchor bolts on modified acrylic adhesives]. Resource-saving materials, constructions, buildings and structures. Rivne. 2000. No. 5. Pp. 75-81. (rus)

24. Molodchenko, G.A., Sklyarov, V.A. Vliyaniye glubiny zadelki na prochnost kleyevogo ankera [Effect of embedment depth on the strength of the adhesive anchor]. Modeling and optimization in materials science. Odessa. 2001. Pp. 90-91. (rus)

25. Molodchenko, G.A., Sklyarov, V.A. Raschetnyye kharakteristiki ankernykh boltov na akrilovykh kleyakh [Calculation characteristics of anchor bolts on acrylic adhesives]. Thesis. reports XXXI scientific and technical conference of teachers, post-graduate students and employees of the Kharkov State Academy of Municipal Economy. Part 1. Kharkiv: KGAGH. 2002. Pp. 11-13. (rus)

26. Sklyarov, V.A. Issledovaniye na vynoslivost ankernykh boltov [Study on the endurance of anchor bolts]. Thesis. reports XXX scientific and technical conference of teachers, post-graduate students and employees of the Kharkov State Academy of Municipal Economy. Part 2. Kharkiv: KGAGH. 2000. Pp. 57-58. (rus)

27. Shutenko, L.N., Zolotov, M.S., Sklyarov, V.A. Prochnost ankernykh boltov na akrilovykh kleyakh pri dinamicheskikh nagruzheniyakh [Strength of anchor bolts on acrylic adhesives under dynamic loading]. Resource-saving materials, constructions, buildings and structures. Rivne: NUVHtaP, 2005. No. 12. Pp. 346-354. (rus)

28. Shutenko, L.N., Zolotov, M.S., Sklyarov, V.A. Raschetnyye kharakteristiki ankernykh boltov na akrilovykh kleyakh [Calculation characteristics of anchor bolts on acrylic adhesives] Perfection of the quality of building materials and structures (models, compositions, properties, operational durability). Novosibirsk: NSAU. 2005. Pp. 39-42. (rus)

29. Eligenhausen, R., Okelo, R. Proyektirovaniye gruppovykh krepleniy dlya rezhimov razrusheniya v rezultate vydergivaniya ili protalkivaniya dlya otdelnykh ankerov iz gruppy [Design of group fastenings for failure modes as a result of pulling or pushing for individual anchors from the

18. Eligehausen R., Hoehler М. Testing of post-installed fastenings to concrete structures in seismic regions // Conference Proceedings of the fib Symposium on Concrete Structures in Seismic Regions. Athens, Greece, 2003.

19. Руководство по анкерному крепежу Hilti. Княжество Лихтенштейн: Корпорация Hilti. FL-9494 Schaan. 2008. 419 с.

20. Технический справочник Fisher для фасадов с воздушным зазором. Выпуск 2007. 78 с.

21. Техническое руководство по анкерной технике SPIT. Выпуск 2010. 33 с.

22. Молодченко Г.А., Скляров В.А. Кратковременная прочность анкерных болтов на модифицированых акриловых клеях // Коммунальное хозяйство городов. К.: Техыка. 2000. № 25. С. 109-111.

23. Молодченко Г.А., Скляров В.А. Длительная прочность анкерных болтов на модифицированных акриловых клеях // Ресурсозберiгаючi матерiали, конструкцп, будiвлi та споруди. Рiвне. 2000. № 5. С. 75-81.

24. Молодченко Г.А., Скляров В.А. Влияние глубины заделки на прочность клеевого анкера // Моделирование и оптимизация в материаловедении. Одесса. 2001. С. 90-91.

25. Молодченко Г.А., Скляров В.А. Расчетные характеристики анкерных болтов на акриловых клеях // Тез. докладов ХХХ1 науч.-техн. конф. преподавателей, аспирантов и сотрудников Харьковской государственной академии городского хозяйства. Ч. 1. Харьков: ХГАГХ. 2002. С. 11-13.

26. Скляров В.А. Исследование на выносливость анкерных болтов // Тез. докладов ХХХ науч.-техн. конф. преподавателей, аспирантов и сотрудников Харьковской государственной академии городского хозяйства. Ч.2. Харьков. 2000. С. 57-58.

27. Шутенко Л.Н., Золотов М.С., Скляров В.А. Прочность анкерных болтов на акриловых клеях при динамических нагружениях // Ресурсоекономн матерiали, конструкцп, будiвлi та споруди. Рiвне: НУВГтаП, 2005. № 12. С. 346-354.

28. Шутенко Л.Н., Золотов М.С., Скляров В.А. Расчетные характеристики анкерных болтов на акриловых клеях // Совершенствование качества строительных материалов и конструкций (модели, составы, свойства, эксплуатационная стойкость). Новосибирск: НГАУ. 2005. С. 39-42.

29. Элигенхаузен Р., Окело Р. Проектирование групповых креплений для режимов разрушения в результате выдергивания или проталкивания для отдельных анкеров из группы. Отчет № 18/1-96/20, Институт строительных материалов, Университет Штутгарта, 1996.

30. Guerreiro J., Gago A.S., Ferreira J., Proenga J. An innovative anchoring system for old masonry buildings // Journal of Building Engineering. 2017. Vol. 13. Pp. 184-195.

31. Ceroni F., Cuzzilla R., Pecc M. Assessment of performance of steel and GFRP bars as injected anchors in masonry walls // Construction and Building Materials. 2016. Vol. 123. Vol. 78-98.

32. Contrafatto L., Cosenza R. Behaviour of post-installed adhesive anchors in natural stone // Construction and Building Materials. 2014. Vol. 68. Pp. 355-369.

33. Muñoz R., Lourengo P.B., Moreira S. Experimental results on mechanical behaviour of metal anchors in historic stone masonry // Construction and Building Materials. 2018. Vol. 163. Pp. 643-655.

34. Streeter K., Luscinski K. Mechanical Anchor Strength in Stone Masonry // STRUCTURE magazine. 2013. Pp. 14-16.

group]. Report No. 18 / 1-96 / 20, Institute of Building Materials, University of Stuttgart. 1996.

30. Guerreiro, J., Gago, A.S., Ferreira, J., Proença, J. An innovative anchoring system for old masonry buildings. Journal of Building Engineering. 2017. No. 13. Pp. 184-195.

31. Ceroni, F., Cuzzilla, R., Pecc, M. Assessment of performance of steel and GFRP bars as injected anchors in masonry walls. Construction and Building Materials. 2016. No. 123. Pp. 78-98.

32. Contrafatto, L., Cosenza, R. Behaviour of post-installed adhesive anchors in natural stone. Construction and Building Materials. 2014. No. 68. Pp. 355-369.

33. Muñoz, R., Lourenço, P.B., Moreira, S. Experimental results on mechanical behaviour of metal anchors in historic stone masonry. Construction and Building Materials. 2018. No. 163. Pp. 643-655.

34. Streeter, K., Luscinski, K. Mechanical Anchor Strength in Stone Masonry. STRUCTURE magazine. 2013. Pp. 14-16.

35. Pisani M.A. Theoretical approach to the evaluation of the load-carrying capacity of the tie rod anchor system in a masonry wall. Engineering Structures. 2016. No. 124. Pp. 85-95.

36. Petrichenko, M.R., Nemova, D.V., Kotov, E.V., Tarasova, D.S., Sergeev, V.V. Ventilated facade integrated with the HVAC system for cold climate. Magazine of Civil Engineering. 2018. No. 1. Pp. 47-58. doi: 10.18720/MCE.77.5.

37. Petrichenko, M.R., Kotov, E.V., Nemova, D.V., Tarasova, D.S., Sergeev, V.V. Numerical simulation of ventilated facades under extreme climate conditions. Magazine of Civil Engineering. 2018. No. 1. Pp. 130-140. doi: 10.18720/MCE.77.12.

38. Petritchenko, M.R., Subbotina, S.A., Khairutdinova, F.F., Reich, E.V., Nemova, D.V., Olshevskiy, V.Ya., Sergeev, V.V. Impact of rustication joints interval on air mode in the air gap of ventilated facades. Magazine of Civil Engineering. 2017. No. 5. Pp. 40-48. doi: 10.18720/MCE.73.4.

39. STO FGU FTsS 44416204-10-2010 Krepleniya ankernyye. Metod opredeleniya nesushchey sposobnosti po rezultatam naturnykh ispytaniy [STO FGU FTSs 44416204-10-2010 Anchoring fastenings. The method of determining the load-bearing capacity by the results of full-scale tests].

40. STO NOSTROY 2.14.96-2013 «Navesnyye fasadnyye sistemy. Montazh ankernykh krepleniy» [STO NOSTROY 2.14.96-2013 "Suspended facade systems. Mounting of anchorages»].

41. GOST 8.136-74 Gosudarstvennaya sistema obespecheniya yedinstva izmereniy (GSI). Pressy gidravlicheskiye dlya ispytaniy stroitelnykh materialov. Metody i sredstva poverki (s Izmeneniyem N 1) [Russian State Standard GOST 8.136-74 State system for ensuring the uniformity of measurements. Hydraulic presses for testings building materials. Verification methods and means]. Moscow: Publishing house of standards. 2015. 75 p.

42. GOST 1497-84. (ISO 6892-84, ST SEV 471-88) Metally. Metody ispytaniy na rastyazheniye (s Izmeneniyami N 1, 2, 3) [Russian State Standard GOST 1497-84. (ISO 6892-84, ST SEV 471-88) Metals. Tensile test methods (with Changes N 1, 2, 3)]. Moscow.: Publishing house of standards. 1985. Pp. 3-37.

43. DBN V.1.1 - 1 - 94. Proyektirovaniye i stroitelstvo grazhdanskikh zdaniy iz blokov i kamney pilenykh izvestnyakov krymskikh mestorozhdeniy v seysmicheskikh rayonakh. [DBN V.1.1 - 1 - 94. Designing and building of civil buildings from blocks and stones of sawed limestones

35. Pisani M.A. Theoretical approach to the evaluation of the load-carrying capacity of the tie rod anchor system in a masonry wall // Engineering Structures. 2016. Vol. 124. Pp. 85-95.

36. Петриченко М.Р., Немова Д.В., Котов Е.В., Тарасова Д.С., Сергеев В.В. Вентилируемые фасады, интегрированные с инженерными системами здания для холодного климата // Инженерно-строительный журнал. 2018. № 1(77). С. 47-58. DOI: 10.18720/MCE.77.5.

37. Петриченко М.Р., Котов Е.В., Немова Д.В., Тарасова Д.С., Сергеев В.В. Численное моделирование вентилируемых фасадов в экстремальных климатических условиях // Инженерно-строительный журнал. 2018. № 1(77). С. 130-140.. DOI: 10.18720/MCE.77.12.

38. Петриченко М.Р., Субботина С.А., Хайрутдинова Ф.Ф., Рейх Е.В., Немова Д.В., Ольшевский В.Я., Сергеев В.В. Влияние рустов на воздушный режим в вентилируемом фасаде // Инженерно-строительный журнал. 2017. № 5(73). С. 40-48. DOI: 10.18720/MCE.73.4

39. СТО ФГУ ФЦС 44416204-10-2010 Крепления анкерные. Метод определения несущей способности по результатам натурных испытаний.

40. СТО НОСТРОЙ 2.14.96-2013 «Навесные фасадные системы. Монтаж анкерных креплений».

41. ГОСТ 8.136-74 Государственная система обеспечения единства измерений (ГСИ). Прессы гидравлические для испытаний строительных материалов. Методы и средства поверки (с Изменением N 1). М.: Издательство стандартов. 2015. 75 с.

42. ГОСТ 1497-84. (ИСО 6892-84, СТ СЭВ 471-88) Металлы. Методы испытаний на растяжение (с Изменениями N 1, 2, 3). М.: Издательство стандартов. 1985. С. 3-37.

43. ДБН В.1.1 - 1 - 94. Проектирование и строительство гражданских зданий из блоков и камней пиленых известняков крымских месторождений в сейсмических районах. К.: КиевЗНИИЭП. 43 с.

44. Сердюков В.М., Григоренко А.Г. Испытание сооружений. К.: Будiвельник. 1976. 200 с.

45. Рекомендации по проектированию навесных фасадных систем с вентилируемым воздушным зазором для нового строительства и реконструкции зданий, Москомархитектура, Москва, 2002 г.

46. Фасадные теплоизоляционные системы с воздушным зазором. Рекомендации по составу и содержанию документов и материалов, представляемых для технической оценки пригодности продукции, ГОССТРОЙ России, Москва, 2004 г.

47. Опыт, проблемы и пути совершенствования применения навесных фасадных систем в московском строительстве, Городской координационной экспертно-научный центр «Энлаком», Москва, 2005 г.

of the Crimean deposits in seismic regions]. Kiev: KyivZNIIEP. 43 p.

44. Serdyukov, V.M., Grigorenko, A.G. Ispytaniye sooruzheniy [Testing of structures]. Kiev: Bydivelnik. 1976. 200 p.

45. Rekomendatsii po proyektirovaniyu navesnykh fasadnykh sistem s ventiliruyemym vozdushnym zazorom dlya novogo stroitelstva i rekonstruktsii zdaniy [Recommendations on the design of hinged facade systems with ventilated air gap for new construction and reconstruction of buildings]. Moscomarchitectura, Moscow, 2002.

46. Fasadnyye teploizolyatsionnyye sistemy s vozdushnym zazoroMoscow Rekomendatsii po sostavu i soderzhaniyu dokumentov i materialov, predstavlyayemykh dlya tekhnicheskoy otsenki prigodnosti produktsii [Facade thermal insulation systems with air gap. Recommendations on the composition and content of documents and materials submitted for technical evaluation of the suitability of products]. GOSSTROY of Russia, Moscow,

2004.

47. Opyt, problemy i puti sovershenstvovaniya primeneniya navesnykh fasadnykh sistem v moskovskom stroitelstve [Experience, problems and ways to improve the application of hinged facade systems in Moscow construction]. City Coordination Expert-Scientific Center "Enlakom", Moscow,

2005.

Vasiliy Alekseenko*,

+7(978)712-18-07; avn108@mail.ru

Oksana Zhilenko,

+7(978)706-89-77; o.b.zhilenko@mail.ru Mohamad Al Ali,

+421905359228; mohamad. alali@tuke. sk

Василий Николаевич Алексеенко*, +7(978)712-18-07; эл. почта: avn108@mail.ru

Оксана Борисовна Жиленко,

+7(978)706-89-77;

эл. почта: o.b.zhilenko@mail.ru

Мохамад Ал Али, +421905359228;

эл. почта: mohamad.alali@tuke.sk

© Alekseenko V.N.,Zhilenko O.B.,Al Ali M., 2018

i Надоели баннеры? Вы всегда можете отключить рекламу.