Научная статья на тему 'Azide-Akyne click approach to the preparation of dendrimer-type multi(thia)calix[4]arenes with triazole linkers'

Azide-Akyne click approach to the preparation of dendrimer-type multi(thia)calix[4]arenes with triazole linkers Текст научной статьи по специальности «Химические науки»

CC BY
94
22
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Макрогетероциклы
WOS
Scopus
ВАК
Область наук
Ключевые слова
MULTICALIXARENES / AZIDE-ALKYNE CYCLOADDITION / TRIAZOLES / МИКРОВОЛНОВОЕ ОБЛУЧЕНИЕ / MICROWAVE IRRADIATION / МУЛЬТИКАЛИКСАРЕНЫ / АЗИД-АЛКИНОВОЕ ЦИКЛОПРИСОЕДИНЕНИЕ / ТРИАЗОЛЫ

Аннотация научной статьи по химическим наукам, автор научной работы — Muravev Anton A., Laishevtsev Alexei I., Galieva Farida B., Bazanova Ol'Ga B., Rizvanov Il'Dar Kh.

The design of polymacrocyclic structures is of high importance for the improvement of recognition ability to various guests. We present a convenient approach towards two types of dendrimer-shaped pentakis-thiacalix[4]arenes with triazolyl linkers using the click reaction of tetraazidoalkoxycalixarenes with monoalkynyloxy derivatives, as well as tetraalkynyloxycalixarenes with monoazidoalkoxy derivatives. Mitsunobu alkylation of hydroxyl groups has been employed to afford tetrasubstituted derivatives in 1,3-alternate configuration. A facile procedure for the synthesis of monosubstituted cone precursors in high yields by the hydrolysis of one ether fragment in disubstituted counterparts under basic conditions (n-BuNH2 or NaN 3 in DMF) has been suggested and optimized. CuAAC reaction has been conducted in microwave reactor and on a hot plate. It has been found that microwave irradiation promotes the reaction and the yields of products are as high as 40-80 %.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Muravev Anton A., Laishevtsev Alexei I., Galieva Farida B., Bazanova Ol'Ga B., Rizvanov Il'Dar Kh.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Азид-алкинильный клик-подход к синтезу мульти(тиа)-каликс[4]аренов дендримерного типа с триазольными мостиками

Дизайн полимакроциклических структур является важным для улучшения способности распознавания различных “молекул-гостей”. Предложен удобный подход к синтезу двух типов дендримерных структур на основе пентакистиакаликс[4]аренов с триазольными мостиками при использовании клик-реакции тетраазидоалкоксикаликсаренов с моноалкинилокси-производными, а также тетраалкинилоксикаликсаренов с моноазидоалкокси-производными. Для получения тетразамещенных производных в конфигурации 1,3-альтернат было использовано алкилирование в условиях реакции Мицунобу. Предложена и оптимизирована удобная методика синтеза монозамещенных прекурсоров в стереоизомерной форме конус с высокими выходами путем гидролиза одного эфирного фрагмента в дизамещенных аналогах в щелочной среде (н-BuNH 2 или NaN3 в ДМФА). Реакция CuAAC была проведена в микроволновом реакторе и в условиях обычного нагревания. Было установлено, что микроволновое облучение ускоряет реакции, и выходы продуктов составляют 40-80 %.

Текст научной работы на тему «Azide-Akyne click approach to the preparation of dendrimer-type multi(thia)calix[4]arenes with triazole linkers»

Calixarenes Каликсарены

Макрогэтэроцмклы

http://macroheterocycles.isuct.ru

Paper Статья

DOI: 10.6060/mhc170304m

Azide-Akyne Click Approach to the Preparation of Dendrimer-Type Multi(thia)calix[4]arenes with Triazole Linkers

Anton A. Muravev,a@ Alexei I. Laishevtsev,b Farida B. Galieva,b Ol'ga B. Bazanova,a Il'dar Kh. Rizvanov,a Ali Korany,c Svetlana E. Solovieva,ab Igor S. Antipin,ab and Alexander I. Konovalova

aA.E. Arbuzov Institute of Organic and Physical Chemistry, 420088 Kazan, Russia bKazan Federal University, 420111 Kazan, Russia

Department of Applied Organic Chemistry, National Research Center, 12622 Dokki-Cairo, Egypt @Corresponding author E-mail: [email protected]

The design ofpolymacrocyclic structures is of high importance for the improvement of recognition ability to various guests. We present a convenient approach towards two types of dendrimer-shapedpentakis-thiacalix[4]arenes with triazolyl linkers using the click reaction of tetraazidoalkoxycalixarenes with monoalkynyloxy derivatives, as well as tetraalkynyloxycalixarenes with monoazidoalkoxy derivatives. Mitsunobu alkylation of hydroxyl groups has been employed to afford tetrasubstituted derivatives in 1,3-alternate configuration. A facile procedure for the synthesis of monosubstituted cone precursors in high yields by the hydrolysis of one ether fragment in disubstituted counterparts under basic conditions (n-BuNH2 or NaN3 in DMF) has been suggested and optimized. CuAAC reaction has been conducted in microwave reactor and on a hot plate. It has been found that microwave irradiation promotes the reaction and the yields of products are as high as 40-80 %.

Keywords: Multicalixarenes, azide-alkyne cycloaddition, triazoles, microwave irradiation.

Азид-алкинильный клик-подход к синтезу мульти(тиа)-каликс[4]аренов дендримерного типа с триазольными мостиками

А. А. Муравьев, а@ А. И. Лаишевцев,ь Ф. Б. Галиева,ь О. Б. Базанова,1

И. Х. Ризванов,1 А. Корани,с С. E. Соловьева,^ И. С. Антипин,^ А. И. Коновалов'1

Институт органической и физической химии им. А.Е. Арбузова Казанского научного центра Российской академии наук, 420088 Казань, Россия

ьКазанский федеральный университет, 420111 Казань, Россия

°Отделение прикладной органической химии, Национальный исследовательский центр, 12622 Каир, Египет @Е-таИ: [email protected]

Дизайн полимакроциклических структур является важным для улучшения способности распознавания различных "молекул-гостей". Предложен удобный подход к синтезу двух типов дендримерных структур на основе пентакистиакаликс[4]аренов с триазольными мостиками при использовании клик-реакции тетраазидоалкоксикаликсаренов с моноалкинилокси-производными, а также тетраалкинилоксикаликсаренов с моноазидоалкокси-производными. Для получения тетразамещенных производных в конфигурации 1,3-альтернат было использовано алкилирование в условиях реакции Мицунобу. Предложена и оптимизирована удобная методика синтеза монозамещенных прекурсоров в стереоизомерной форме конус с высокими выходами путем гидролиза одного эфирного фрагмента в дизамещенных аналогах в щелочной среде (н-BuNH2 или NaN3 в ДМФА). Реакция СиААС была проведена в микроволновом реакторе и в условиях обычного нагревания. Было установлено, что микроволновое облучение ускоряет реакции, и выходы продуктов составляют 40-80 %.

Ключевые слова: Мультикаликсарены, азид-алкиновое циклоприсоединение, триазолы, микроволновое облучение.

Introduction

Recently, dendritic structures based on organic molecules attract increasing attention of researchers due to the high concentration of functional groups within a molecule, which may lead to a synergetic effect in molecular recognition phenomena.[1] These nanosized objects take advantage of their monodisperse character (in contrast with hyperbranched polymers) and provide topological encapsulation of specific guests. A promising scaffold for the design of dendrimer structures is represented by macrocycles, in particular, thiacalixarenes, which offer conformational diversity (that can be frozen in case bulky substituents are introduced), variety of reaction centers and their relatively facile modification giving almost unlimited possibilities towards the design of a specific receptor.[2]

According to published data, multicalixarenes are capable of self-association,[3] they are promising supramolecular drugs,[4] and they can bind large biological objects such as DNA.[5] The complexation of multicalixarenes with metal ions was also studied.[6] There are several structural types of multicalixarenes: spirocycles,[6a7] tubes,[8] linear poly-mers,[9] in the synthesis of which polyfunctional reagents are employed and whose preparation may result in a large number of side products involving intramolecular crosslink and/ or open-chain compounds. In contrast with these approaches, the formation of calixdendrimers gives less ambiguous synthetic result.[10] The most common synthetic pathway towards dendrimer-shaped multicalixarenes is aminolysis reaction between acid chlorides and amines,[310cl0g] which is widely employed because of the valuable recognition properties of the bridging amide functionality towards metal ions and anions. To extend the choice of functional spacer

groups, click reactions are of particular interest for the synthesis of multicalixarenes such as 1,3-dipolar azide-alkyne cycloaddition due to high rate and regioselectivity of the pro-cess.[11] These reactions afford triazole heterocycles, which possess improved complexation properties towards transition metal ions and biological substrates due to pre-organization. [12] However, there are still no reports, where click approach was applied to the synthesis of dendrimer multicalixarenes.

The aim of this work was to synthesize dendrimer-shaped multicalixarenes with triazole fragments on the lower rim (Scheme 1). The proposed strategy is focused on the conjugation of tetrasubstituted thiacalix[4]arene in 1,3-alternate stereoisomeric form as a core with cone-shaped monosubstituted thiacalix[4]arenes as a mono-dendron by CuAAC reaction. In this case, azido or ethynyl groups can be located on the core or dendron. Remaining hydroxyl groups, firstly, may assist binding during polynuclear complex formation and, secondly, serve the points of omnidirectional growth upon modification leading to next-generation dendrimer, when cone-to-1,3-alternate transition occurs.

Experimental

General

Solvents were purified by known procedures;1131 Cul, NaN3, TPP, DEAD, and n-butylamine were used as received. All reactions were carried out in argon atmosphere in anhydrous solvents. Thiacalixarenes 2,[H15a] 4,[15b] 5,[15b] 7[15a,16] were prepared by previously reported procedures. Microwave irradiation was performed in a CEM MARS Xtraction reactor in thick-wall glass

Scheme 1. General pathway towards the synthesis of dendrimer-shaped multicalixarenes by azide-alkyne click reaction.

reactors under atmospheric pressure; temperature was controlled using a built-in fiber optic sensor.

1H and 13C NMR spectra were recorded on Bruker Avance spectrometers with the working frequencies of 400 and 500 (1H) and 100 (13C) MHz, chemical shifts were determined relative to the signals of residual protons of deuterated solvents (CDCl3). MALDI-TOF mass spectra of molecules were recorded on a Bruker Ultraflex III TOF/TOF mass spectrometer on 4-nitroaniline (10 mg-mL"1, CH3CN) or 2,5-dihydroxybenzoic acid (10 mg-mL4, CH3CN) matrix. Exact masses for all compounds were recorded in highresolution mode (the most intense peak of isotope cluster). For this purpose, the calibration mixture of PEG-4000 (0.1 mg-mL-1, CH3CN) with CsCl (1 mg-mL-1, water) was applied along with the analyzed compound (1 mg-mL-1, CHCl3). This composition provided the relative error of mass measurement of less than 5 ppm. Melting points of substances were identified on a Boetius compact heating table with an RNMK 05 visual instrument. The purity of substances was controlled by TLC analysis on Silufol UV 254 plates or MALDI TOF mass-spectrometry. IR spectra were recorded on a Bruker Vector-22 spectrometer; KBr pellet was used as a matrix.

Synthesis of Compounds 3

General procedure. A suspension of thiacalix[4]arene 5 (1 eq.) and NaN3 (10 eq.) was stirred at 90-110 °C in DMF for 30 hours. The solvent was removed and the residue was washed with methanol to give a desired product.

5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetra(2-azidoethoxy)-2,8,14,20-tetrathiacalix[4]arene (3a). (700 mg, 84 %). R =0.58 (hexane/ethylacetate 4:1). mp 246 °C (decomp.). m/z (HRMS MALDI) (%): 1129.2764 (100) [(M+Cs)+]. Calcd for C48H60N12O4S4+Cs+: 1129.2792 [(M+Cs)]+. IR (KBr) v^ cm-1:

1441 s, 1536 s, 1574 s (CAr-CAr), 2091 s (N=N), 2875 s (CtBu-Ct Bu), 2964 s (CAr-H). 1H NMR (CDCl3, 293 K) 8H ppm: 7.40 (8H, s-ArH), 4.01 (8H, t J=7 Hz, OCH2), 2.86 (8H, t J=7 Hz, CH2N), 1.32 (36 H, s, t-Bu). 13C NMR (CDC13, 293 K) 8C ppm: 31.4 (CH3), 34.6 (Cjt-Bu), 49.3 (C^N), 66.1 (C^O), 128.2 (CHJ, 128.2 (C^J,

1477.1 156.2 (Ci,Ar_o).

5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetra(3-azido-propoxy)-2,8,14,20-tetrathiacalix[4]arene (3b). (450 mg, 89 %). Rf=0.58 (hexane/ethylacetate 4:1). mp 234 °C (decomp.). m/z (HRMS MALDI) (%): 1185.3390 (100) [(M+Cs)+]. Calcd for C5lH68NllO4S4+Cs+: 1185.3418 [(M+Cs)]+. IR (KBr) v^ cm-1: 1444 s, 1548 s, 1575 s (CAr-CAr), 2096 s (N=N), 2871 s (Ct Bu-Ct-Bu), 2963 s (cat-h). 1H NMr (CDCl3, 293 K) 8h ppm: 7.34 (8H, s, ArH), 3.93 (8H, t J=7 Hz, OCH2), 2.99 (8H, t J=7 Hz, CH2N), 1.40 (8H, m, OCH2CH2), 1.30 (36H, s, t-Bu). 13C NMR (CDCl3, 293 K) 8C ppm: 28.7 (OCH2CH2), 31.6 (CH3), 34.5 (C t Bu), 48.6 (CH2N), 66.0 (CH2O), 127.6 (CHJ, 128.3 (Ci A-tJ--146.4 (C.a A 156.6 (C.a A

5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetra(4-azido-butoxy)-2,8,14,20-tetrathiacalix[4]arene (3c). (550 mg, 89 %). Rf= 0.56 (hexane/ethylacetate 4:1). mp 247 °C (decomp.). m/z (HRMS MALDI) (%): 1241.4046 (100) [(M+Cs)+]. Calcd for C56H76NuO4S4+Cs+: 1241.4044 [(M+Cs)]+. IR (KBr) v^ cm-1:

1442 s, 1537 s, 1575 s (CAr-CAr), 2092 s (N=N), 2871 s (CtBu-CtBu), 2963 s (CAr-H). 1H NMR (CDCl3, 293 K) 8H ppm: 7.33 , s, ArH), 3.86 (8H, t J=8 Hz, OCH2), 3.17 (8H, tJ=7 Hz, CH2N), 1.42 (8H, m, CH2CH2O), 1.29 (36H, s, t-Bu), 1.18 (8H m, CH2CH2N). 13C NMR (CDCl3, 293 K) 8C ppm: 25.5 (NCH2CH2), 26.44 (OCH2CH2), 31.4 (CH3), 34.4 (C tB ), 51.4 (CH2N), 68.5

(CH2O), 128.° (CHAr), 128.4 (CiAr-t-B^ u145-9 (C^X 157-2 (Ci,A-o).

5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetra(5-azido-pentoxy)-2,8,14,20-tetrathiacalix[4]arene (3d). (560 mg, 91 %). Rf =0.59 (hexane/ethylacetate 4:1). mp 250 °C (decomp.). m/z (HRMS MALDI) (%): 1187.5542 (100) [(M+Na)+]. Calcd for

C60H84NnO4S4+Na+: 1187.5514 [(M+Na)]+. IR (KBr) v^ cm-1: 1452 s, 1542 s, 1574 s (CAr-CAr), 2095 s (N=N), 2868 s (CtBu-H), 2948 s (CAr-H). 1H NMR (CDCl3, 293 K) 8H ppm: 7.32 (8H, s, ArH), 3.85 (8H, t J=8 Hz, OCH2), 3.22 (8H, t J=7 Hz, CH2N), 1.49 (8H, m, CH2CH2O), 1.28 (36H, s, t-Bu), 1.23 (8H, m, CH2CH2N), 1.09 (8H, m, CH2CH2CH2). 13C NMR (CDCl3, 293 K) 8C ppm: 23.1 (CH2), 28.6 (NCH2CH2), 29.1 (OCH2CH2), 31.5 (CH3), 34.4 (C tB ), 51.6 (CH2N), 68.5 (C^O), 127.8 2CHai.), 128.3 (Ca^), (Oa-sX 1571 (^a-o).

Synthesis of Compounds 6

General procedure. A suspension of thiacalix[4]arene 3 (1 eq.) and n-butylamine (3 eq.) was stirred at 100-125°C in DMF for 7-27 hours. The solvent was removed and the residue was washed with methanol and filtered. Target product was precipitated with HCl (0.1 M) from filtrate.

5,11,17,23-Tetra-tert-butyl-25,26,2 7-trihydroxy-28-(prop-

2-yn-1-yloxy)-2,8,14,20-tetrathiacalix[4]arene (6a). (510 mg, 76 %). Rf =0.45 (hexane/ethylacetate 4:1). mp 230 °C (decomp.). m/z (HRMS MALDI) (%): 891.1611 (100) [(M+Cs)+]. Calcd for C43H50O4S4+Cs+: 891.1641 [(M+Cs)]+. IR (KBr) v cm-1: 1364 s, 1394 s (Ct^-C^), 1454 s, 1564 s 296 3 s (C^-H), 3298 s (=C-H), 3389 br (OH). 1H NMR (CDCl3, 293 K) 8H ppm: 9.23 (1H, s, OH), 8.80 (2H, s, OH), 7.64 (2H, AB-d J= 3 Hz, ArH), 7.61 (2H, AB-d J=3 Hz, ArH), 7.59 (2H, s, ArH), 7.55 (2H, s, ArH), 5.29 (2H, d J=2 Hz, CH2), 2.70 (2H, t J=2 Hz, =CH), 1.25 (18H, s, t-Bu), 1.21 (9H, s, t-Bu), 1.14 (9H, s, t-Bu). 13C NMR (CDCl3, 293 K) 8C ppm: 31.1 (CH3), 31.4 (CH3), 31.5 (CH3), 34.3 (C.t-jju), 34.3 (C._t-Bu), 34.5 (C.^), 63.9 (CH2), 77.5 (=CHX 78.2 (C,=X 120.7 (C.^X 120-8 (C^ 1211 (^a-S^ 129.1 (C.a s), 135.9 (CHJ, 136.0 (CHJ, 136.0 (CHJ, 136.1 (CHAr), 143.8 (C^uX 1441 (C^-t-Bu) 1494 (C,■,AI-t-Bu), 1562

(C.a,-^. 156 5 (c,a-oX 156-6 (c/,jar—o).

5,11,17,23-Tetra-tert-butyl-25,26,27-trihydroxy-28-(but-

3-yn-1-yloxy)-2,8,14,20-tetrathiacalix[4]arene (6b). (630 mg, 93 %). Rf =0.48 (hexane/ethylacetate 4:1). mp 271 °C (decomp.). m/z (HRMS MALDI) (%): 1037.0781 (100) [(M+2Cs-H)+]. Calcd for C44H52O4S4+2Cs+-H+: 1037.0774 [(M+2Cs-H)]+. IR (KBr) vmax cm-1: 13656 s, 4395 s (CtBu-CtBu), 1456 s, 1562 s (C^.-C^.), 2963mas (CAr-H), 3296 s (=C-H), 338$S> br (OH). 1H NMR (CDCl3, 293 K) 8H ppm: 9.38 (1H, s, OH), 9.06 (2H, s, OH), 7.66 (2H, AB-d J=3 Hz, ArH), 7.63 (2H, s, ArH), 7.61 (2H, s, ArH), 7.60 (2H, AB-d J=3 Hz, ArH), 4.53 (2H, t J=7 Hz, OCH2), 3.15 (2H, m, CH2C=), 2.17 (2H, t J=3 Hz, =CH), 1.25 (18H, s, t-Bu), 1.23 (9H, s, t-Bu), 1.19 (9H, s, t-Bu). 13C NMR (CDCl3, 293 K) 8C ppm: 20.1 (CH2), 31.2 (CH3), 31.4 (CH3), 31.5 (CH3), 34.3 (C.^), 34.3 (C.t-Bu), 34.6 (C.t-Bu), 70.6 (=CH), 75.2 (OCH2), 80.3 ('C=), 120.6 (C.4 A 120.9 (C.4 A 120.9 (C.4 A 128.6 (C.4 '),

v 1 ,a-Sy> v 1 ,ar-Sy> v 1 ,a-Sy> v 1 ,a-Sy>

136.0 (CHAr), 136.1 (CHAr), 136.1 (CHAr), 136.7 (CHAr), 143.8

(0í^I-t-Bu), 1441 (Ci, Ar-t-Bu), 1494 (C^u) 156-3 (^a-oX

156.8 (Ca-o), 157.8 (C.,^-o).

5,11,17,23-Tetra-tert-butyl-25,26,27-trihydroxy-28-(pent-

4-yn-1-yloxy)-2,8,14,20-tetrathiacalix[4]arene (6c). (770 mg, 87 %). Rf =0.50 (hexane/ethylacetate 4:1). mp 238 °C. m/z (HRMS MALDI) (%): 1051.0928 (100) [(M+2Cs-H)+]. Calcd for C45H54O4S4+2Cs+-H+: 1051.0930 [(M+2Cs-H)]+. IR (KBr) vmax cm-1: 13(55 s, 1394 s (Ct Bu-Ct Bu), 1456 s, 1561 s (CAr-CAr), 2118 s (C=C), 2963 s (CAr-H), 3301 s (=C-H), 3385 br (OH). 1H NMR (CDCl3, 293 K) 8H ppm: 9.31 (1H, s, OH), 9.09 (2H, s, OH), 7.66 (2H, AB-d J=2 Hz, ArH), 7.62 (2H, s, ArH), 7.61 (2H, AB-d J=2 Hz, ArH), 7.60 (2H, s, ArH), 4.50 (2H, t J=6 Hz, OCH2), 2.75 (2H, m, CH2C=), 2.40 (2H, m, CH2), 2.05 (1H, t J=3 Hz2 =CH), 1.25 (18H, s, t-Bu), 1.22 (9H, s, t-Bu), 1.18 (9H, s, t-Bu). 13C NMR (CDCl3, 293 K) 8C ppm: 15.4 (CH2), 28.7 (CH2), 30.9 (CH3), 31.1

(C^X 31.2 (CHз), 33.9 (C.^X 34.0 (C.^X 34-3 (Ci,t-вu), 688 (=CH), 77.2 (OCH2), 83.6 (C=), 120.1 (C^), 120.6 (C^), 120.8 (C.a-s), 128.3 (c.at-s), 135.7 (CHJ,' 135.7 (CHJ, 135.7

(CHJ, 136.5 (raj, 143.5 (c;ai-<-bu); 143.8 (C i, Ar-/-—u)' 148.9

(C/, Ar-/-—u)' 155.9 (c;,ar—o)' 156.5 (C-'ar-o)' 157.6 (^ar-oX

5,11,17,23-Tetra-tert-butyl-25,26,27-trihydroxy-28-(hex-5-yn-1-yloxy)-2,8,14,20-tetrathiacatix[4]arene (6d). (1460 mg; 91 %). Rf = .49 (hexane/ethylacetate 4:1). mp 182 °C (decomp.). m/z (HRMS MALDI) (%): 933.2081 (100) [(M+Cs)+]. Calcd for C46H56O4S+Cs+: 933.2110 [(M+Cs)]+. IR (KBr) vmax cm-1: 1364 s; 13494 s (CtBu-H)' 1455 s; 1563 s (CAr-CAr); 2118 sTcC^CX 2962 s (CAr-H)' 33! 1u3 s (^C-H)' 3383 br (OH)). 1H NMR (CDCl^ 293 K) 8H ppm: 9.33 (1H; s; OH); 9.16 (2H; s; OH); 7.66 (2H; AB-d J=2 Hz; ArH)' 7.63 (2H' s; ArH)' 7.61 (2H; AB-d J=2 Hz; ArH); 7.60 (2H s; ArH)' 4.42 (2H' t J=7 Hz; OCH2X 2.49 (2H m; CH2C=); 2.32 (2H m; CH2)' 2.04 (1H' t J=2 Hz; =C2H); 2.02 (2H m; CH2); 1.25 (18H; s; t-Bu)' 1.22 (9H' s; t-Bu)' 1.19 (9H; s; t-Bu). 13C NMR (CDCl^ 293 K) 8C ppm: 18.0 (CH2); 24.6 (CH2); 28.5 (CH2X 30.9 (CH3); 31.1 (CHä)' 31.2 (CHä)' 33.9 (C - t-Bu)' 34.0 (C^X 34.3 (C^X 68.6(^CH); 77.5 (OCH^ 84.1 (C4 120.2 (C^ sX 120.6 '(C^). 120.8 (C-'Ar-s)' 128.3 (C,Ar-s)' 135.7 (CHAr)' 135.7 (C^X 135.8 (CHJS

136.5 (CHAr), 143A4 (C^X 143.8 (Ci,Sr-t-BuX 148.9 (Ci, Ar-t-Bu)'

156.0 (C-Ar-o)' 156.5 (C-Ar-o)' 157.8 (C^).

Synthesis of Compounds 8

General procedure. A suspension of thiacalix[4]arene 7 (1 eq.) and NaN3 (10 eq.) was stirred at 90 °C in DMF for 1217 hours. The solvent was removed and the residue was washed with methanol and filtered. Target product was precipitated with HCl (0.1 M) from filtrate.

5,11,17,23-Tetra-tert-butyl-25,26,27-trihydroxy-28-(2-azidoethoxy)-2,8,14,20-tetrathiacalix[4]arene (8a). (890 mg; 86 %). Rf =0.40 (hexane/ethylacetate 4:1). mp 241 °C. m/z (HRMS MALDI) (%): 1054.0766 (100) [(M+2Cs-H)+]. Calcd for C42H51N3O4S4+2Cs+-H+: 1054.0788 [(M+2Cs-H)]+. IR (KBr) vmax cm-1: 1246 s (CtBu-CtBu)s 1459 s; 1564 s (C^-C^) 2106 s (N^) 2869 s (CtBu-H)' 2963 s (CAi-H); 3381 br (OH). 1H NMR (CDCl3; 293 K) 8H ppm: 9.36 (1H; s; OH); 9.03 (2H; s; OH); 7.65 (2H; AB-d J=3 HZ' ArH) 7.62 (2H s; ArH) 7.62 (2H; s; ArH); 7.60 (2H' AB-d J=3 HZ' ArH)' 4.54 (2H t J=5 Hz; OCH2); 4.10 (2H t J=5 HZ' CH2N)' 1.24 (18H' s; t-Bu)' 1.23 (9H; s; t-Bu); 1.18 (9H; s; t-Bu). 13C NMR (CDCl3' 293 K) 8C ppm: 31.2 (CH3); 31.4 (CH3); 31.4 (CH3X 34.3 (C-t-Bu)' 34.3 (C-t-Bu)' 34.6 (C^X 51.3 (NCH2); 75.1 (OCH2X 120.6 (C^X 120.8 (CiAr_s); 120.9 (C^X 128.5 (CiAr_s); 136.1 (CHJt 136.1 (CH^); 136.2 (CH^); 136.7 (CH^)S 143.8 (C.a ,B)' 144.1 (C.a ,B)' 149.4 (C.a ,B\ 156.3 (C.a A 156.8 (C.a A 157.8 (C.a J.

5,11,17,23-Tetra-tert-butyl-25,26,27-trihydroxy-28-(3-azidopropoxy)-2,8,14,20-tetrathiacalix[4]arene (8b). (360 mg; 82 %). Rf =0.44 (hexane/ethylacetate 4:1). mp 255 °C. m/z (HRMS MALDI) (%): 1068.0920 (100) [(M+2Cs-H)+]. Calcd for C43H53N3O4s4+2Cs+-H+: 1068.0944 [(M+2Cs-H)]+. IR (KBr) v cm-1: 1245 s (C^-C^X 1457 s; 1565 s (C^-C^)s 2096 s (N^N) 2863 s (CtBu-H)' 2963 s (CA.-H); 3381 br (OH). 1H NMR (CDCl3; 293 K) 8H ppm: 9.20 (2H; s; OH); 7.67 (2H; AB-d J=3 Hz; ArHX 7.61 (2H' s; ArH)' 7.60 (2H' s; ArH); 7.60 (2H; br; ArH); 7.58 (1H; br; OH)' 4.43 (2H' t J=6 HZ' OCH2); 3.95 (2H; t J=7 Hz; CH2N); 2.39 (2H' m; CH2)' 1.25 (18H; s; t-Bu); 1.22 (9H; s; t-Bu); 1.14 (9H; s; t-Bu). 13C NMR (CDCl3' 293 K) 8C ppm: 29.7 (CH2); 31.1 (CH3);

31.4 (CH3), 31.5 (CH3), 34.3 (Ct^X 34.3 (Cl,t.вu), 34.6 (Cl,t-вu), 48.5 (NCH2)' 75.2 (OCH2); 120.7 (C^sX 121.0 (C-^-s)» 121.2t (C^sX 128.7 (C-Ar-s)' 136.0 (CHa,)' 136.1 (CHJ' 143.8 (CtsI-í.вu)! 149.4

(^A-t-BuX 156.7 (C,Ar-o).

Synthesis of Compounds 9-14

General procedure. A suspension of thiacalix[4]arenes 2; 6 (1 eq.)' thiacalix[4]arenes 4; 8 (4-6 eq.) and Cut (6 eq.) in toluene-Et3N (2:1 v/v) was stirred at 70 °C for 12 h (400 W, 24 cycles 30 min each). The solvent was evaporated; a residue was transferred into

dichloromethane and washed with water containing trilon-B until aqueous phase became colorless. Organic phase was dried over Na2so4' the solvent was evaporated under vacuum' and a target product was precipitated with methanol from residue. The product was purified by column chromatography on silica gel (eluent: hexane/ethylacetate (4:1 to 1:1 gradient)).

Compound9a. (190 mg' 77 %). Rf=0.18 (CHCl3/MeOH 40:1). mp 208 °C (decomp.). m/z (HRMS MALDI) (%): 4166.3101 (100) [(M+Cs)+]. Calcd for C220H260N12O20s20+Cs+: 4166.3209 [(M+Cs)]+. IR (KBr) vmax cm-1: 12(57 s (C^-C^)' 1453 s (C^-C^)' 1627 s (C=C)' 2869 s (CtBu-H)' 2962 s (Cs,-H)' 3380 br (OH). 1H NMR (CDCl3' 293 K) 8jj"ppm: 9.29 (4H br' OH)' 8.88 (8H' br' OH)' 7.78 (4H' br' CHtriaz)' 7.60 (8H' br' ArH)' 7.59 (8H' AB-d J=3 HZ' ArH)'

7.57 (8H; SB-d J=3 HZ' ArH)' 7.55 (8H' br' ArH)' 7.37 (8H' s' ArH)' 5.26 (8H' br' CH2)' 4.81 (8H' br' CH2)' 1.32 (8H' br' CH2)' 1.22 (72H' br' t-Bu)' 1.20 (36H' br' t-Bu)' 1.14 (36H' br' t-Bu)' 1.0 8 (36H' br' t-Bu). 13C NMR (CDCl3' 293 K) 8C ppm: 29.8 (CH2)' 31.0 (CH3)' 31.2 (CH3)' 31.3 (CH3X 31.4 (CH3)' 34.2 (C-t.Bu)' 34.4 (C-t.Bu)' 34.4 (C-t-Bu)' 34.5 (C-t-Bu)' 50.0 (CH2)' 75.2 (OCH2)' 120.4 (C^)'

120.5 (Cl,Ar-s), 120.8 (^Ar-s)' 123.1 (CHtriaz)' 128.4 (Cl,Ar-s), 128.5

(C-Ar-s)' 129.8 (CH^)' 136.0 (CHs)' 136.2 (CHsr)' 136.2 (CHsr)'

136.4 (CHsr)' 143.1 (Ci,^-t-Bu)' 143.5 (Ci, Ar-t-Bu)' 143.7 (Ci,^-t-Bu)'

146.2 (Ci,SS-,B„)' 149.3 155.8 (Cl,A^-o), 156.3 (^Ar-O)' (Cl,Ar-o), 156t 6 (Cl'Ar-o).

Compound 9b. (110 mg' 78 %). Rf=0.25 (CHCl3/MeOH 40:1). mp 217 °C (decomp.). m/z (HRMS MALDI) (%): 4222.3720 (100) [(M+Cs)+]. Calcd for C224H268N12O20s20+Cs+: 4222.3837 [(M+Cs)]+. IR (KBr) v cm-1: 1267 is (C n ^C n )' 1451 s (Ca -C )' 1625 s

v ' max v t-Bu t-Bu/5 v Ar Sr-"

(C=C)' 2870 s (CtBu-H)' 2962 s (Cs,-H)' 3381 br (OH). 1H NMR (CDCl3' 293 K) 8jj ppm: 9.28 (4H br' OH)' 8.83 (8H' br' OH)' 7.98 (4H' br' CHtriaz)' 7.65 (8H' br' ArH)' 7.57 (8H' br' ArH)' 7.54 (8H' br' ArH)' 7.5f(8H' br' ArH)' 7.36 (8H' br' ArH)' 5.12 (8H' br' CH^ 4.84 (8H' br' CH2)' 4.32 (8H' br' CH2)' 2.55 (8H' br' CH2)' 1.27 (36^' s' t-Bu)' 1.23 (72H' s' t-Bu)' 1.21 (36H' s' t-Bu)' 1.12 (3 6H' s' t-Bu). 13C NMR (CDCl3' 293 K) 8C ppm: 25.4 (CH2)' 29.6 (CH^ 30.9 (CH3)' 31.3 (CH3)' 31.3 (CH3)' 31.3 (CH3)' 34.1 (Clt-Bu)' 34.1 (£tvJ, 34.3 (Clt.BU)' 34.3 (Clt.BU)' 50.0 (CH2)' 66.5 (OCH^ 120.3 (C-Ar-s)'

120.7 (C-A-s)' 120.8 ^CCl,Ar-s), 122.4 (CHtriaz)' 128-° (Cl,Ar-s), 128^

(ClAr-s)' 128.2 (CHs)' 135.9 (CH^)' 136.0 (CHsr)' 136.0 (CHsr)'

13^.4 (CHsr)' 143.7 (C^-t-Bu)' 143.8 (Ci,Sr-t-B„)' 144.0 (Ci,^-t-BU)'

146.3 (Ci, Sr-t-Bu)' 149.4 (Cl,trlaz), 155.9 (^Ar-O)' 156.4 (Cl,Ar-o), 156.4 (ClAr-o)' 157.3 (ClAr-o).

Compound 9c. (160 mg' 73 %). Rf=0.24 (CHCl3/MeOH 40:1). mp 193 °C (decomp.). m/z (HRMS MALDI) (%): 4278.4259 (100) [(M+Cs)+]. Calcd for C228H276N12O20s20+Cs+: 4278.4464 [(M+Cs)]+. IR (KBr) v cm-1: 1268 s(C n ^C n )' 1452 s (Ca -C )' 1628 s

v ' max v t-Bu t-Bu/5 v Ar Sr-"

(C=C); 2869 s (CtBu-H)' 2962 s (CA,-H)' 3381 br (OH). 1H NMR (CDCl3' 293 K) 8jj ppm: 9.25 (4H br, OH)' 8.84 (8H' br' OH)' 8.06 (4H' br-' CHtriaz)' 7.63 (8H' AB-d J=2 HZ' ArH)' 7.59 (8H' br' ArH)'

7.58 (8H' AB-d J=2 HZ' ArH)' 7.54 (8H' br' ArH)' 7.31 (8H; br' ArH)' 5.25 (8H't J=5 HZ' CH2)' 4.85 (8H' t J=5 HZ' CH2)' 4.01 (8H' t J=7 HZ' CH2)' 2.73 (8H't J=8 HZ' CH2)' 1.69 (8H' t J=7 HZ' CH2)' 1.22 (72H' s' t-Bu)' 1.21 (36H' s' t-Bu)' 1.13 (36H' s' t-Bu)' 1.(09 (36H' br' t-Bu). 13C NMR (CDCl3' 293 K) 8C ppm: 22.4 (CH2X 28.5 (CH^)' 30.8 (CH3)' 31.0 (CH3)' 31.1 (CH3X 31.1 (CH3)' 33.9 (£tvJ, 33.9 (Clt.BU)' 34.0 (Clt.BU)' 34.2 (C^ 49.6 (CH2)' 68.9 (CH2)' '75.5

(OCH2)' 120.0 (ClAr-s)' 120.6 (ClAr-s)' 120.8 (Cl,Ar-s), 122.5 (CHtriaZ)'

127.8 (ClAr-s)' 128.0 (ClAr-s)' 128.4 (CHJ' 135.8 (CH^)t 135.9 (CH^)' 136.3 (CH^)' 136.4 (CH^)' 143.5 (C^Jt 143.5 (C^^-t-Bu)'

143.8 (Ci,^-t-B„)' 147.5 (Ci,^-t-B„)' 149.1 ^^ 155.9 (<Cl,Ar-^), 156.3 (Cl,Ar-o), 157.1 (^Ar-oX 15 7.5 (Cl'Ar-o).

Compound9d. (260 mg' 65 %). Rf=0.18 (CHCl3/MeOH 40:1). mp 127 °C (decomp.). m/z (HRMS MALDI) (%): 4334.4991 (100) [(M+Cs)+]. Calcd for C232H284N12O20s20+Cs+: 4334.5091 [(M+Cs)]+. IR (KBr) v cm-1: 1268 s(C n ^C n )' 1453 s (Ca -C )' 1628 s

v ' max v t-Bu t-B^ v Ar Ar-"

(C=C)' 2869 s (CtBu-H)' 2962 s (C^-HX 3376 br (OH). 1H NMR (CDCl3' 293 K) 8H ppm: 9.34 (4H' br' OH)' 8.97 (8H' br' OH)' 8.07 (4H' br-' CHtriaz)' 7.67 (8H' AB-d J=1 HZ' ArH)' 7.65 (8H' br' ArH)'

1.64 (8H, AB-d J=1 Hz, ArH), 1.51 (8H, br, ArH), 1.34 (8H, br, ArH), 5.16 (8H, m, CH,), 4.80 (8H, m, CH,), 3.85 (8H, m, CH,), 2.82 (8H, t J=8 Hz, CH,), 1.13 (8H, m, CH,), 1.39 (8H, m, CH,X

I.23 (144H, s, t-Bu), 1.15 (36H, s, t-Bu). 13C NMR (CDCl3, 293 K) Sc ppm: 22.6 (CH,), 28.1 (CH,), 29.1 (CH,), 30.8 (CH3), 31.0 (CH3),

II.0 (CHi), 31.3 (CHi), 34Л (Clt.Bu),34.1 (C^), 34.2 (C^-bJ, 14.4 (Clt.)u), 49.8 (CH,), 69.0 (CH,), 15.1 (OCH,), 120.2 (C,^^), Ш.7 (C^X Ш.0 (C,лг-S), 122.7 (^J. 128-2 (Cl.A-s). I28-3 (ClAr-S), 128.3 (CHJ, 136.0 (CHJ, 136.0 (CHJ, 136.1 (CHJ,

136.5 (CH), 143.1 (C.A „), 144.1 (C.A „), 145.6 (C.A B ),

v A:/5 v i, A-t-Bu7' v i, A-t-Bu7' v .Ar-t-Bu-"

147.7 (Ci, A-t-Bu). 149-3 ((.«J. 1561 (C,Лг-o), 1565 (Cl.A-oX 15 7-3 (c.aJ. 151-6 (Cl,Ar-o).

Compound 10a. (230 mg, 48 %). Rf=0.68 (CHCl3/MeOH 40:1). mp 151 °C (decomp.). m/z (HRMS MALDI) (%): 4222.3140 (100) [(M+Cs)+]. Calcd for C224H268Nl2O20S20+Cs+: 4222.1817 [(M+Cs)]+. IR (KBr) Vmax cm-1: 1269 s (C^-C^), 1453 s (Сд-CJ, ,870 s (CtBu-H), 2962 s (CA-H), 3318 br (OH). 1H NMR (CDCl3, ,91 K) 8H ppm: 9.40 (4H, br, OH), 9.19 (8H, s, OH), 1.64 (8H, AB-d J=2 Hz, ArH), 1.60 (16H, s, ArH), 1.58 (8H, AB-d J=2 Hz, ArH), 1.49 (4H, br, CH^J, 1.29 (8H, s, ArH), 5.10 (8H, br, CH,), 5.09 (8H, m, CH,), 4.44 ^H, t J=5 Hz, CH,), 2.19 (8H, t J=5 Hz, CH,), 1.23 (12H, s, t-Bu), 1.21 (36H, s, t-Bu), 1.16 (36H, s, t-Bu),

I.09 (36H, s, t-Bu). 13C NMR (CDCl3, 293 K) Sc ppm: 10.8 (CH3),

II.0 (CHi), 31.1 (CHi), 31.1 (CHi), 333.9 (Clt.Bu), 33.9 (C^), 34.0 (Clt.Bu), 34.2 ((„Bu), 41.0 (CH,), 63.1 (CH,), 14.8 (OCH,), 120.1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(ca-sX 1205 (Cl.A-sX 1208 (Cl.A-sX 1239 (CHt:iaz), 1283 (Cl.A-sX 1,8.4 (gats), 129.8 (CHJ, 135.8 (CHJ, 135.8 (CHJ, 135.8

(CHJ. 136.6 (CHAr). 143-5 (^A-t-BuX 1438 (Ci, Ar-t-Bu). 1439 (Ci,A-t-

B ), 146.3 (C.a ,b), 149.1 (C ), 155.9 (C .A o), 156.2 (C . A-o),

Bu/5 v i,Ar-t-Bu/5 v l.tnaz75 v l.A-O75 V l.Ar-O-"

156.4 (C.A Д 151.4 (C.A J.

v l.Ar-O/5 v l.A-O7

Compound lOb. (210 mg, 60 %). Rf=0.65 (CHCl1/MeOH 40:1). mp 144 °C (decomp.). m/z (HRMS MALDI) (%): 4218.4368 (100) [(M+Cs)+]. Calcd for C228H276N12O20S20+Cs+: 4218.4464 [(M+Cs)]+. IR (KBr) Vmax cm-1: 12668 s (C^-C^), 1451 (C^-CJ, 1621 s (C=C), 2869 s (CtBu-H), 2962 s (CA-H), 3380 br (OH). 1H NMR (CDCl1, 293 K) ppm: 9.41 (4H, br, OH), 9.29 (8H, br, OH), 1.94 (4H, br, CH^J, 1.11 (8H, AB-d J=2 Hz, ArH), 1.64 (8H, br, ArH), 1.64 (8lH s, ArH), 1.62 (8H, AB-d J=2 Hz, ArH), 1.43 (8H, br, ArH), 5.04 (8H, br, CH,), 4.30 (8H, br, CH,),

4.21 (8H, br, CH,), 2.18 (8H, br, CH,), 2.53 (8H, br, CH,), 1.224 (12H, s, t-Bu), 1.23 (12H, s, t-Bu), 1.18 (36H, s, t-Bu), 1.13 (36H, s, t-Bu). 11C NMR (CDCl1, 293 K) Sc ppm: ,5.4 (CH,), 30.6 (CH,), 30.8 (CH1), 31.0 (CH1), 31.0 (CH1), 31.1 (CH1), 33.9

(Gt-Bu). 340 (Ct-Bu). 340 (Ct-Bu). 34-3 (Ct-Bu). 46-3 (CH,). 665 (Œ,). l4.3 (OCH,). 120.0 (C,at-s). 120-6 (Слг-s). 120-7 (Ca-s).

122.6 (CHtriaz), 121.6 (Cl.Ar-s), 128.0 (С^), 128.3 (CHJ, 135.9 (ŒJ. (ŒJ. 136.0 (CHJ. 136 ,8 (CHJ. 143-2 (Ci,Ar-t-Bu).

141.7 (^A-t-BuX 1440 (^A-t-BuX 1460 (Ci,Ar-t"Bu). 1494 (Cl.triaz).

155.8 (C l,Ar-o), 156.2 (Cl.Ar-o), 156.4 (C^J, 151.3 ((/-o). Compound lOc. (280 mg, 66 %). Rf =0.61 (CHCl/MeOH

40:1). mp 119 °C (decomp.). m/z (HRMS MALDI) (%): 4334.4952 (100) [(M+Cs)+]. Calcd for C212H284N12O20S20+Cs+: 4114.5091 [(M+Cs)] + . IR (KBr) Vmax cm"1: 1268 s (Ct-вц Ct-Bu). 1451 s (C^-CJ, 1621 s (C=C), 2869 s (CtBu-H), 2961 s (CA-H), 3364 br (OH). 1H NMR (CDCl1, 293 K) SH ppm: 9.45 (4H, br, OH), 9.25 (8H, br, OH), 8.08 (4H, br, CH^J, "7.66 (8H, AB-d J=2 Hz, ArH), 1.62 (8H, br, ArH), 1.61 (8H, br, ArH), 1.60 (8H, AB-d J=2 Hz, ArH), 1.31 (8H, s, ArH), 5.14 (8H, br, CH,), 4.31 (8H, br, CH,), 3.95 (8H, br, CH,), 2.84 (8H, br, CH,), 2.66 (8H, br, CH,), 1.66 (8H, br, CH,),

1.22 (12H, s, t-Bu), 1.21 (36H, s, t-Bu), 1.11 (36H, s, t-Bu), 1.08 (36H, s, t-Bu). 11C NMR (CDCl1, 293 K) Sc ppm: 22.2 (CH,), 28.5 (CH,), 30.8 (CH1), 31.0 (CH1), 31.0 (CH1), 31.1 (CH1), 33.9 (C tB ),

11.9 (Gt-Bu). 339 (Cl.t"Bu). 3412 (Cl.t"Bu). 466 (CH,). 68 1 TO. 74ul (OCH2), 120.1 (Слг-s). 120-5 (Слг-s). 120-7 (Cl.Ar-s). 122-0 (CHtriaz).

1,81 (ClAr-s), 128.2 (C^J, 128.3 (CHJ, 135.8 (CHJ, 135.8 (CHJ, 136-2 (CHJ, 136.2 (CHJ, 143.6 (C^J, 143.9 (C^J, 145.4 (c.a ,b), 146.9 (C.a ,b), 149.2 (C.,. ), 155.8 (C.A-O),

v i, A-t-Bu75 v i, A-t-Bu7' v l.triaz7' v l.Ar-O-"

156.4 (C. A Д 151.0 (C. A Д 151.4 (C. A J.

i,Ar-O i,Ar-O i,Ar-O

CompoundlOd. (210 mg, 61 %). Rf = 0.53 (MeOH). mp 160 °C (decomp.). m/z (HRMS MALDI) (%): 4334.4952 (100) [(M+Cs)+]. Calcd for C,1,H,84N1,O,0S,0+Cs+: 4114.5091 [(M+Cs)]+. IR (KBr) V cm-1: 1261 s (C,b -Cb ), 1451 s (CA -CA ), 2868 s (CtB -H),

max v t-Bu t-B^ v A A^ V t-Bu

2961 s (CAr-H), 3319 br (OH). 1H NMR (CDCl1, 293 K) SH ppm: 9.44 (4H, br, OH), 9.29 (8H, br, OH), 1.91 (4H, s, CHtriaz), 1.68 (8H, AB-d J=1 Hz, ArH), 1.64 (8H, br, ArH), 1.63 (8H, brTArH), 1.61 (8H, AB-d J=1 Hz, ArH), 1.32 (8H, br, ArH), 5.04 (8H, br, CH,),

4.24 (8H, br, CH,), 3.88 (8H, br, CH,), 2.15 (8H, br, CH,), 2.61 (8H, br, CH,), 1.59 (16H, br, CH,), 1.26 (36H, br, t-Bu), 1.22 (108H, br, t-Bu), , .11 (36H, br, t-Bu). 11C NMR (CDCl1, 293 K) Sc ppm: ,5.9 (CH,), 28.1 (CH,), 29.5 (CH,), 30.6 (CH1), 30.9 (CH1), 31.2 (CH1),

11.2 (CHi). 34.0 (Cl,t-Bu). 34-1 (Cl.t"Bu). 34-1 (Cl.t"Bu). 34-3 (Cl.t"Bu). 46-4

(CH,), 68.5 (CH,), 14.4 (OCH,), 120.1 (C.^ s), 120.6 (C./r s), 120.1

(Cl,A-s). 122-5 (^HCiaZ). 128-1 (C,^-s). 1282 (C,^-s). 128Ar3 (CHAr).

136.0 (CHJ, 136.0 (CHJ, 136.2 (CHJ, 136.9 (CHJ, 143.8 (C.A ,b ), 144.1 (C.A ,b ), 145.3 (C.A-tB ), 141.5 (C.A tB ), 149.6

), 155.8 (C.A J, 156.5 (C., Д 156.5 (^ J, 151.4 (C., J.

v l.tria^^ v l.A-O/5 v l.Ar-^ v l.Ar-^ v ..Ar-O7

Compound 11a. (220 mg, 58 %). Rf=0.57 (CHCl1/MeOH 40:1). mp 181 °C (decomp.). m/z (HRMS MALDI) (%): 4166.3150 (100) [(M+Cs)+]. Calcd for C220H260N12O20S20+Cs+: 4166.3209 [(M+Cs)]+.IR (KBr) Vmax cm"1: 12Í1S0 s (Ct"Bu-^t"Bu). 1453 s (Ca-ca). 2869 s (CtBu-H), 2962 s (CA-H), 3354 br (OH). 1H NMR (CDCl1, ,91 K) 8H ]ppm: 9.25 (4H, t.r, OH), 9.10 (8H, br, OH), 8.32 (4H, br, CH^J, 1.64 (8H, AB-d J=3 Hz, ArH), 1.58 (8H, br, ArH), 1.51 (8H, AB-d J=3 Hz, ArH), 1.56 (8H, br, ArH), 1.53 (8H, br, ArH), 5.55 (8H, br, CH,), 4.56 (8H, t J=8 Hz, CH,), 4.12 (8H, t J=8 Hz, CH,), 1.24 (36H, s, t-Bu), 1.23 (36H, s, t-Bu), 1.22 (36H, s, t-Bu), 1.19 (36H, s, t-Bu), 1.11 (36H, s, t-Bu). 11C NMR (CDCl1, 293 K) Sc ppm: 11.1 (CH1), 31.4 (CH1), 31.4 (CH1), 31.4 (CH1), 3 4.2 (C.t bu), 34.3 ((..„Bu), 34.5 ((.„Bu), 3 4.6 (C^), 48.1 (CH,), 65.8 (CH,),

l0-6 (OCH,). 120-7 (ClA-s). 120-8 ((Cl.A-s). 121-2 (Cl.A-s). 124-8

(CHtriaz), 121.9 (Cl.A-s), 128.1 (Cl.^-s), 129.0 (CHJ, 136.0 (CHJ,

136.1 (CHJ, 136.2 (CHJ, 136.2 (CHJ, 143.8 (Ца.-^), 144.0

(Ci, A-t-Bu). 144-8 (Ci, Ar-t-Bu). 148-2 (Ci,^-t"Bц), 149-3 (Cl .triaz).155'8 (Cl.AI-o). 156.1 ((.Ar-o). 156.6 (Cl.A-o). 151-4 ((.Ar-o).

Compound llb. (250 mg, 61 %). Rf=0.17 (CHCl1/MeOH 40:1). mp 184 °C (decomp.). m/z (HRMS MALDI) (%): 4222.3643 (100) [(M+Cs)+]. Calcd for C224H268N12O20S20+Cs+: 4222.1817

[(M+Cs)]+. IR (KBr) Vmax cm-1: 1261 s (Gbu-^bu). 1452 s (CACA.), 2810 s (CtBu-H), 2962 s (CA.-H), 3316 br (OH). 1H NMR (CADCl1, 293 K) sH ppm: 9.04 (12H, br, OH), 8.00 (4H, s, CH^J, 1.66 (81H, AB-d J=2 Hz, ArH), 1.59 (8H, s, ArH), 1.55 (16H, br, ArH), 1.42 (8H, s, ArH), 4.66 (8H, t J=5 Hz, CH,), 4.46 (8H, t J=8 Hz, CH,), 3.92 (8H, t J=8 Hz, CH,), 3.61 (8H, t J=5 Hz, CH,),

1.25 (36H, s, t-Bu), 1.23 (12H, s, t-Bu), 1.20 (36H, s, t-Bu), 1.15 (36H, s, t-Bu). 11C NMR (CDCl1, 293 K) Sc ppm: 26.5 (CH,), 30.8 (CHi), 31.0 (CHi), 31.1 (CHi), 31.1 (CHi), 33.9 (C.t-вц), 33.9 (C^ bu), 34.2 (Ct-Bu), 34.3 (C. .„Bu), 41.1 (CH,), 65.2 (CH,), 16.8 (OCH,),

Ш.1 (C,Ar_s)u 120-7 (Cl,A-s). 120-9 (C,^-s). 122-4 (CHciaz). 121-3

(ClA-s), 128.1 (C.^-s), 128.2 (CHJ, 135.1 (CHJ, 135.1 (CHJ, 115.7(CHJ 136,3 (CHJ 143.4 (Ci,^-t"Bц), 143.7 (Ci,^-t"Bц), 144.0

(Ci,^-t"Bц), 141-5 (Ci, A-t-Bu). 148-9 (( triaz). 155-3 (^l.^-o). 155-9 (Cl.AI-o). 156.4 ((.Ar-o). 151-7 ((/-o).

Compound llc. (180 mg, 69 %). Rf=0.48 (CHCl1/MeOH 40:1). mp 118 °C (decomp.). m/z (HRMS MALDI) (%): 4218.4306 (100) [(M+Cs)+]. Calcd for C228H276N12O20S20+Cs+: 4218.4464 [(M+Cs)]+. IR (KBr) Vmax cm-1: 1^69 s ((((t-вц ^^t-BuX 1452 s (Ca:-CA.), 2810 s (CtBu-H), 2962 s (CA-H), 3391 br (OH). 1H NMR (CA^C13, 293 K) SuH ppm: 9.41 (4H, br, OH), 9.32 (8H, br, OH), 1.16 (4H, s, CH^J, 1.61 (8H, AB-d J=2 Hz, ArH), 1.63 (8H, s, ArH), 1.61 (8H, br, ArH), 1.60 (8H, AB-d J=2 Hz, ArH), 1.46 (8H, s, ArH), 4.41 (8H, t J=1 Hz, CH,), 4.33 (8H, t J=5 Hz, CH,), 3.91 (8H, t J=1 Hz, CH,), 3.31 (8H, t J=5 Hz, CH,), 2.60 (8H, br, CH,), 1.23 (12H, s, t-Bu), 1.22 (36H, s, t-Bu), 1.19 (36H, s, t-Bu), 1.18 (36H, s, t-Bu). 13C NMR (CDC13, 293 K) Sc ppm: 21.6 (CH,), 29.6 (CH,), 31.2 (CHi), 31.2 (CHi), 31.5 (CHi), 31.5 (CHi), 34.3 ^C

14.3 (Gt-Bu). 34-6 ((t-Bu). 34-6 ((t-Bu). 48-3 TO 65-6 (CH,). 'l6-9

(OCH2), 120.5 (Ca^ 121.0 (Ci,Ar-s), 121.1 (C,*-,), 127.9 (CHtrlaz),

128.4 (ClAr-s), 128.6 (ClAr-s), 128.6 (CHJ, 136.0 (CHJ, 136.2 (Шд.х l-5í5.3 (CH^ 1371 (ша l43.8 (ci,д^-,■вц), l44.0 (c,^

вцХ 144.3 (Ci,ДI-t■Bц), 148.3 (Ci,ДI-t■Bц), 149.5 (C^ 155.6 (^Ar-cX

156.2 (C. A J, 156.8 (C. A J, 158.0 (C. A J.

Compound lid. (280 mg, 66 /). Rf=0.30 (CHCl3/MeOH 40:1). mp 166 °C (decomp.). m/z (HRMS MALDI) (/): 4334.4992 (100) [(M+Cs)+]. Calcd for C232H284N12o20S20+Cs+: 4334.5091 [(M+Cs)]+. IR (KBr) v cm-1: 1268 s (C,-C„ ), 1452 s (C. -C ), 2869 s

v ' max v t-Bu í-Bu^' v Аг Ar-"

(c, Bu-H), 2962 s (C^-H), 3379 br (OH). 1H NMR (CDCl3, 293 K) SH ppm: 9.22 (12H, br, OH), 7.65 (8H, AB-d J=2 Hz, ArH), 7.63 (8H, s, ArH), 7.61 (4H, br, CHtrlaz), 7.59 (8H, AB-d J=2 Hz, ArH), 7.57 (8H, s, ArH), 7.39 (8H, s, ArH ), 4.41 (8H, m, CH 2), 4.40 (8H, m, CH2), 3.88 (8H, t J=7 Hz, CH2), 3.03 (8H, t J=8 Hz, CH2), 2.27 (8H, br, C H2), 2.20 (8H, br, CH2), 1.22 (72H, s, f-Bu), 1.20 (36H, s, f-Bu),

1.18 (72H, s, t-Bu). 13C NMR (CDCl3, 293 K) SC ppm: 25.2 (CH2),

25.6 (CH 2), 29.2 (CH 2), 30.9 (CH 3), 30.3 (CH 3), 31.С (CH 3), 31.2 (CH Д

33.9 (C/,t-BuX 34.0 (C/,t-BuX 34.0 (C/,fBuX 34.3 (C/,t-BuX 476 (CH), 65.4 (CH2), 777 (OCH2), 120.3 (C^J, 120.7 (C^J, 120.7 (C^J,

120.8 (CHtriaz), 127.4 (Cat-s), 128.0 (C^J, 128.3 (CHsI), 135.7

(С^Х 135.8 (CHAг), 135.8 (Шд) 136.6 (CHAг), 143.5 (^S-f-BuX

143.9 (Ci,Ar-t-BuX 1477 (Ci,Ar-t-BuX 148.0 (Ci, Sr-t-BuX 148.9 (C/,t™zX 155.4 (C.A J, 155.9 (C.A J, 156.5 (C. A J, 157.8 (C. A J.

v /,Ar-o/5 v /,Ar-o/5 v /,Ar-o/5 v /.Ar-o7

Compound 12a. (210 mg, 44 /). Rf=0.22 (CHCl3/MeOH40:1). mp 173 °C (decomp.). m/z (HRMS MALDI) (/): 4222.3671 (100) [(M+Cs)+]. Calcd for C224H268N12o20S20+Cs+: 4222.3837 [(M+Cs)]+. IR (KBr) v cm-1: 1268 s (C _ -С _ ), 1452 s (C. -С ), 2869 s

v ' max v f-Bu f-Bu7' v Ar Ar-"

(С Bu-H), 2962 s (CAr-H), 3382 br (OH). 1H NMR (CDCl3, 293 K) SH ppm: 9.20 (12H, br, OH), 8.28 (4H, br, CHtrlJ, 7.64 (8H, br, ArH), 760 (8H, AB-d J=2 Hz, ArH), 7.56 (8H, br, ArH), 7.51 (8H, AB-d J=2 Hz, ArH), 7.43 (8H, s, ArH), 5.66 (8H, br, CH2), 4.33 (8H, br, CH2), 4.12 (8H, br, CH2), 1.85 (8H, br, CH2), 1.23 (108H, s, f-Bu),

1.19 (36H, s, f-Bu), 1.05 (36H, s, f-Bu). 13C NMR (CDCl3, 293 K) SC ppm: 29.5 (CH2), 30.8 (CH3), 31.0 (CH3), 31.1 (CH3), 31.1 (CH3), 3C.9 (C/,t-BuX 34.° (C/,t-BuX 341 (C/,t-BuX 34.2 (C/,t-BuX 48.1 (CH2), 66.0 (CH2), ^f9 (OCH2), 120.4 (C/,Ar-sX 120.6 ^.Ar-sX 121.4 (^Ar-sX

124.2 (CHtriaz), 127.5(C/,at-s), 128.0 (C^J, 128.7 (CHJ, 135.4 (CHJ, 135.8 (CHJ, 136.2 (CHJ, 136.7 (CHJ, 143.3 (C^J,

1436 (Ci,A-fBuX ^ (Ci,Aг-t■BцS, 146.3 (Ci,Aг-t■Bц), 148.5 (C/,trAzX

155.4 (cat-oX 155.8 (C/,Ar-oX 156.3 (C/,Ar-oX 1572 (Cat-o).

Compound l2b. (220 mg, 48 /). Rf=0.20 (CHCl3/MeOH

40:1). mp 141 °C (decomp.). m/z (HRMS MALDI) (/): 4278.4366

(100) [(M+Cs)+]. Calcd for C228H276N12o20S20+Cs+: 4278.4464

[(M+Cs)]+. IR (KBr) vmax cm-1: 12688 s (Cf-вц-Cf-вц), 1451 s (^-^Х

2870 s (CtBu-H), 2962 (Cs-H), 3376 br (OH). 1H NMR (CDCl3,

293 K) SH ppm: 9.17 (12H, "br, OH), 8.05 (4H, s, CHtrlaz), 7.64 (8H,

AB-d J=3 Hz, ArH), 7.59 (8H, br, ArH), 7.58 (8H, br^ ArH), 7.58

(8H, AB-d J=3 Hz, ArH), 7.29 (8H, s, ArH), 4.64 (8H, t J=8 Hz,

CH2), 4.29 (8H, t J=8 Hz, CH2), 4.04 (8H, t J=8 Hz, CH2), 3.63 (8H,

t J=8 Hz, CH2), 1.80 (8H, t J= 8 Hz, CH2), 1.23 (72H, s, f-Bu), 1.19

(36H, s, f-Bu), 1.15 (36H, s, f-Bu), 1.07 (36H, s, f-Bu). 13C NMR

(CDCl3, 293 K) SC ppm: 26.4 (CH2), 29.8 (CH2), 30.8 (CH3), 30.9

(CH3), 31.0 (CH3), 31.1 (CH3), 33.9 (Clt-вц), 33.9 (Clt-вц), 34.1 (C„-Bjt

47.7 (CH2), 66.2 (CH2), 76.8 (OCH2),'120.1 (C^ s), 120.7 (C^ s),

120.9 (C/,Ar-sX 122.8 (CH,iazX 1273 (C/,Ar-sX 128.0 (C/,Ar-sX 1283 (CHJ, 135.6 (CHJ, 135.8 (CHJ, 135.9 (CHJ, 136.1 (CHJ,

143.3 (Ci, Ar-t-Bu) 143.5 (Ci,A-fBuX 143.7 (Ci, Aг-t■Bц), 146.1 (Ci,A-fBuX 148.8 (с/дПагХ 156.0 (C/,Ar-oX 156.3 (Cat-oX 156.5 (C/,Ar-oX 1576

(C/,Ar-o).

Compound l2e. (240 mg, 65 /). Rf=0.19 (CHCl3/MeOH 40:1). mp 143 °C (decomp.). m/z (HRMS MALDI) (/): 4334.4896 (100) [(M+Cs)+]. Calcd for C232H284N12o20S20+Cs+: 4334.5091

[(M+Cs)]+.IR (KBr) vmax cm-1: 126277 s (Ct■вц-Ct■вц0, 1451 s (CAг-CAг), 2870 s (CtBu-H), 2962 s (Cs-H), 3377 br (OH). 1H NMR (CDCl3, 293 K) SH ppm: 9.35 (12H, br, OH), 7.81 (4H, br, CHtrlaz), 7.65 (8H, AB-d J=2 Hz, ArH), 7.61 (8H, s, ArH), 7.59 (16H, br* ArH), 7.31 (8H, s, ArH), 4.41 (8H, br, CH2), 4.17 (8H, br, CH2), 4.01 (8H, br, CH2), 3.24 (8H, br, CH2), 2.59 (8H, br, CH2), 1.76 (8H, br, CH2),

1.23 (72H, s, f-Bu), 1.21 (36H, s, f-Bu), 1.17 (36H, s, f-Bu), 1.08 (36H, s, f-Bu). 13C NMR (CDCl3, 293 K) SC ppm: 22.0 (CH2), 29.8 (CH2), 30.3 (CH2), 31.2 (CH3), 31.3 (CH3), 31.4 (CH3), 31.5 (CH3),

34.2 (С ^Х 34.3 (C^X 34.3 (C/,t■Bц), 3436 (C/,t■Bц), 48.2 (CH2), 66.5

TO Tl.5 (OCH2), 120.5 (C^X 120.9 (Ci,Ar-s), 121.2 (C/,Ar-sX 1277 (^J, 128.3 (C/,Ar-sX 128.6 (CAr-sX 128.6 (CHAг), 136.1 (CHsr), 136.1 (CHJ, 136.9 (CHJ, 136.9 (CHJ, 143.8 (C^J,

144S (C i, Ar-í-Bu), 1466 (Ci, Aг-t■Bц), 146.9 (Ci,A-fBuX 1492 (Цдп.Х 156.2 (C/,Ar-oX 156.6 (Cat-oX 156.8 (C/,Ar-oX 158.1 (C/,Ar-o).

Compound l2d. (180 mg, 67 /). Rf=0.22 (CHCl3/MeOH

40:1). mp 149 °C (decomp.). m/z (HRMS MALDI) (/): 4390.5510 (100) [(M+Cs)+]. Calcd for C236H292N12o20S20+Cs+: 4390.5718 [(M+Cs)]+. IR (KBr) vmax cm-1: 1268 s (C^-C^), 1452 s (C^CJ, 2869 s (CtBu-H), 2962 s (Cs-H), 3376 br (OH). 1H NMR (CDCl3, 293 K) SH ppm: 9.19 (12H, br, OH), 7.95 (4H, br, CHtrlaz), 7.65 (8H, AB-d J=2 Hz, ArH), 7.63 (8H, s, ArH), 7.61 (8H, AB-d J=2 Hz, ArH), 7.59 (8H, s, ArH), 7.27 (8H, s, ArH), 4.42 (8H, t J=3 Hz, CH2), 4.18 (8H, br, CH2), 3.95 (8H, t J=5 Hz, CH2), 3.05 (8H, br, CH2), 2.28 (8H, br, CH2), 2.21 (8H, br, CH2), 1.74 (8H, br, CH2), 1.23 (72H, s, f-Bu), 1.19 (36H, s, f-Bu), 1.18 (36 H, s, f-Bu), 1.05 (36H, s, f-Bu). 13C NMR (CDCl3, 293 K) SC ppm: 25.2 (CH2), 25.5 (CH2), 29.0 (CH2), 30.0 (CH2), 30.8 (CH3), 30.9 (CH3), 31.0 (CH3),

311 (CHз), 33.9 (C/,t-BuX 33.9 (C/,t■Bц), 33.9 (C/,t■Bц), 34.2 (C/,t■Bц), 47.6

(CH2), 66.2 (CH2), 77.9 (OCH2), 120.2 (C/A. s), 120.6 (C.^ s), 120.8

(^Ar-sX 121.2 (CHtГlaz), 1272 (^Ar-sX 128.0 (C/,Ar-s), 128.2 (CHAг),

135.6 (CHJ, 135.6 (CHJ, 135.7 (CHJ, 136.5 (CHJ, 143.4 (C.A ,b ), l43.8 (C.A ,b ), 146.1 (C.A ,b ), 147.4 (C.A ,вГ), 148.9

v i, Sr-t-B^ v i, Ar-t-B^ v i, Ar-t-Bu^5 v i,Ar-t-Bu-"

), 155.9 (^ J, 156.3 (^ Д 156.4 (^ J, 157.7 (^ J. Compound 13a. (210 mg, 61 /). Rf=0.18 (CHCl3/MeOH 40:1). mp 167 °C (decomp.). m/z (HRMS M/A LDI) (/): 4^78.4395 (100) [(M+Cs)+]. Calcd for C228H276N12o20S20+Cs+: 4278.4464 [(M+Cs)]+. IR (KBr) v cm-1: 12638 s (С B -C,b ), 1453 s (CA -CA ), 2869 s

v ' max v t-Bu t-B^ v Ar Ar-"

(Ct Bu-H), 2962 s (CAr-H), 3363 br (OH). 1H NMR (CDCl3, 293 K) SH japîm: 9.28 (4H, br," OH), 9.11 (8H, br, OH), 8.34 (4H, br, CHtrlJ, 765 (8H, AB-d J=3 Hz, ArH), 7.58 (8H, br, ArH), 7.58 (8H, AB'-d J=3 Hz, ArH), 7.55 (8H, s, ArH), 7.36 (8H, s, ArH), 5.61 (8H, br, CH2), 4.43 (8H, t J=7 Hz, CH2), 3.97 (8H, t J=7 Hz, CH2), 1.98 (8H, t J=7 Hz, CH2), 1.42 (8H, t J= 6 Hz, CH2), 1.25 (36H, s2 t-Bu), 1.22 (72H, s, t-Bu), 1.20 (36H, s, t-Bu), 1.13 (36H, s, t-Bu). 13C NMR (CDCl3, 293 K) SC ppm: 26.1 (CH2), 26.9 (CH2), 30.8 (CH3), 31.0

(CHз), 31.1 (CHз), 31.2 (CHз), 33.9 (C/,t■Bц), 34.0 (C/,t■Bц), 34.1 (C/,t■Bц),

34.2 (C/t-вц), 50.0 (CH2), 68.2 (CH2), 70.4 (OCH), 120.3 (C/a.-s),

120.5 (CC/,AГ-s), 120.9 (CC/,Ar-s), 124.() (CHtгlaz), 128.3 (C/,Ar-s), 128.5

(C/at-s), 128.6 (CHJ, 135.6 (CHsr), 135.8 (CHJ, 136.0 (CHJ,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

136.2 (ŒJ 143.5 (ci,дr-f-вц), 143.8 (Ci, Aг-t■Bц), 144.6 (Ci, Aг-t■Bц),

145.5 (C i, AГst■Bц), 149.0 (C(/,t™z), 155.7 (C/,Ar■^o), 156.3 (C/,AГ-o), 1f-7.0 (^Ar-oX 157^ (C/,Ar-o).

Compound l3b. (230 mg, 70 /). Rf =0.08 (CHCl3/MeOH 40:1). mp 164 °C (decomp.). m/z (HRMS MfALDI) (/): 4334.5076 (100) [(M+Cs)+]. Calcd for C232H284N12o20S20+Cs+: 4334.5091 [(M+Cs)]+. IR (KBr) vmaX cm-1: 1^68 s (Cf^-C^), 1452 s (Cs^-CSr), 1629 s (C=C), 2870 s (Cf Bu-H), 2962 s (C^-H), 3376 br (OH). 1H NMR (CDCl3, 293 K) SH ]^IГm: 9.19 (4H, bf, OH), 9.00 (8H, br, OH), 8.14 (4H, br, CHtrlaz), 7.64 (8H, AB-d J=2 Hz, ArH), 7.59 (8H, SB-d J=2 Hz, ArH), 758 (16H, s, ArH), 7.32 (8H, s, ArH), 4.64 (8H, t J=6 Hz, CH2), 4.39 (8H, t J=7 Hz, CH2), 3.84 (8H, t J=7 Hz, CH2), 3.61 (8H, t J=5 Hz, CH2), 1.94 (8H, m, CH2), 1.35 (8H, m, CH2), 1.21 (108H, s, f-Bu), 1.1^ (36H, s, f-Bu), 1.15 (36H, s, f-Bu). 13C NMR (CDCl3, 293 K) SC ppm: 26.8 (CH2), 27.2 (CH2), 27.3 (CH2), 31.4 (CH3), 31.6 (CH3), 31.7 (CH3), 32.3 (CH3), 34.5 (C/f-вц),

34.6 (C/,t■Bц), 34.6 (C/,t■Bц), 34.8 (C/,t■Bц), 50.5 (CH2), 68.9 (CH2), 77.8

(OCH2), 120.6 (C/Дr^s), 121.3 (Цд^ 121.4 (C/,AГ-s), 123.3 (CHtпaz),

128.8 (C/at-s), 128.9 (C/at-s), 129.4 (CHJ, 136.2 (CHJ, 136.3

(ŒJ Ш-4 (CHAг), 136'-9 (CHAг), 1441 (Ci,Aг-t■Bц), 144.5 ACC iДг-t■Bц),

144.6 (C.A ,b), 146.0 (C.A ,b), 149.6 (C.,. ), 156.4 (C. A o), 156.9 (^ J, 157.6 (^ Д 158.3 (^ J.

Compound l3e. (250 mg, 67 /). Rf=0.11 (CHCl3/MeOH 40:1). mp 169 °C (decomp.). m/z (HRMS MA LDI) (/): 4334.5076 (100)

[(M+Cs)+]. Calcd for C232H284N12O20S20+Cs+: 4334.5091 [(M+Cs)]+. IR (KBr) v cm-1: 1268 s (C,B -C,B ), 1451 s (Ca -Ca ), 1626 s

v ' max v t-Bu t-Bu/5 v Ar Ar-"

(C=C), 2869 s (CtBu-H), 2962 s (CAr-H), 3375 br (OH). 1H NMR (CDCl3, 293 K) 8H ppm: 9.33 (12H, lar, OH), 7.83 (4H, br, CHtriaz), 7.66 (8H, AB-d J=3 Hz, ArH), 7.63 (8H, s, ArH), 7.61 (8H, bTs, ArH), 7.60 (8H, AB-d J=3 Hz, ArH), 7.32 (8H, s, ArH), 4.32 (8H, br, CH2), 4.27 (8H, br, CH2), 3.85 (8H, t J=8 Hz, CH2), 3.28 (8H, br, CH2), 2.58 (8H, br, CH2), 1.84 (8H, t J=6 Hz, CH2), 1.33 (8H, br, CH2), 1.22 (108H, s, t-Bu), 1.21 (36H, s, t-Bu), 1.18 (36H, s, t-Bu). 13C NMR (CDCl3, 293 K) 8C ppm: 21.5 (CH2), 26.0 (CH2), 26.8 (CH2), 29.3 (CH2), 30.8 (CH3), 31.0 (CH3), 31.1 (CH3), 31.2 (CH3), 33.9 (Cy-Bu), 33.9 (Cy-Bu), 34.0 (C ^ 34.2 (C^), 49.6 (CH2), 68.0 (Œ^. 76.8 (OCH2), 120^ (C^s). 12°.6 (Cl,Ar-s). 120.8 (Cl,A-s).

1217 (CHt„az). 128.1 (Cl,Ar-s). 1281 (Cl,Ar-s). 128.3 (CHJ. 135.8 (CHAr), 135-9 (CH J 136.6 (CHAr), 143.5 (^A-t-Bu). 143.8 (Ci,A-t-Bu). 145.5 (C i, Ar-t-Bu). 146.9 (C i, Ar-t-Bu). 149.0 (Cl,triaz). 155.9 (Cl,Ar-o). 156.5

(C.a J, 156.8 (C.a J, 157.7 (C.a J.

v l,Ar-O^5 v l,Ar-O^5 v l ,Ar-O^

Compound 13d. (250 mg, 80 %). Rf=0.18 (CHCl3/MeOH 40:1). mp 149 °C (decomp.). m/z (HRMS MA LDI) (%): 4446.6123 (100) [(M+Cs)+]. Calcd for C240H300NnOMs20+Cs+: 4446.6346 [(M+Cs)]+. IR (KBr) Vmax cm-1: 1268 s (Ct-Bu Ct-Bu), 1452 s (CAr CAr). 2869 s (Ct Bu-H), 2961 s (CAr-H), 3380 br (OH). 1H NMR (CDCl3, 293 K) 8H ]ppm: 9.27 (12H, br, OH), 7.66 (4H, br, CHtriaz), 7.65 (8H, AB-d J=2 Hz, ArH), 7.63 (8H, s, ArH), 7.60 (16H, AB-d J=2 Hz, ArH), 7.34 (8H, s, ArH), 4.41 (8H, t J=6 Hz, CH2), 4.28 (8H, t J=7 Hz, CH2), 3.86 (8H, t J=7 Hz, CH2), 3.01 (8H, br, CH2), 2.28 (8H, m, CH2), 2.19 (8H, m, CH 2), 1.87 (8H, m, CH 2), 1.33 (8H, m, CH 2), 1.22 (108H, s, t-Bu), 1.19 (36H, s, t-Bu), 1.18 (36H, s, t-Bu). 13C NMR (CDCl3, 293 K) 8C ppm: 25.2 (CH2), 25.5 (CH2), 26.1 (CH2), 26.7 (CH2), 29.1 (CH2), 30.8 (CH3), 31.0 (CH3), 31.1 (CH3), 31.1 (CH3),

33.8 (Cit-Bu), 33.9 (Ct-Bu), 33.9 (C^), 34.2 (C^), 49.6 (CH¿ 68.3

(CH2), 777 (OCH2), 120.1 (C^-s). 120.6 (Cl,Ar-s). 1207 (Cl,A-s).

120.8 (CHtriaz), 128.1 (Ci,Ar-s), 128.2 (C^), 128.7 (CHJ, 135.7

(ŒJ 135i8 (CHAr), 136.22 (CHAr), 136.6 (CHAr) 143.4 (Ci,A-t-Bu).

143.8 (Ci,A-t-Bu). 145.4 (C i, Ar-t-Bu). 1478 (Ci, Ar-t-Bu). 148.9 (Cl,triaz).

155.9 (Cl,Ar-o). 156.4 (Cl,Ar-o), 1570 (Cl,Ar-o). 157.7 (Ci,Ar-O).

Compound 14a. (210 mg, 73 0%). Rf = 0.46 (CHC13/MeOH 40:1). mp 182 °C (decomp.). m/z (HRMS MALDI) (%): 4334.4890 (100) [(M+Cs)+]. Calcd for C232H284N12O20s20+Cs+: 4334.5091 [(M+Cs)]+. IR (KBr) v cm-1: 1268 s (C _ -C _ ), 1453 s (C. -Ca ), 1626 s

max t-Bu t-Bu Ar Ar

(C=C), 2869 s (CtBu-H), 2962 s (CAr—H), 3374 br (OH). 1H NMR (CDCl3, 293 K) 8H ppm: 9.32 (4H, br, OH), 9.17 (8H, br, OH), 8.29 (4H, br, CHtriaz), "7.65 (8H, br, ArH), 7.57 (8H, br, ArH), 7.57 (8H, AB-d J=3 Hz,ArH), 7.52 (8H, s, ArH), 7.27 (8H, br, ArH), 5.64 (8H, br, CH2), 4.45 (8H, br, CH 2), 3.84 (8H, t J=6 Hz, CH2), 1.93 (8H, br, CH2), 1.29 (16H, br, CH2), 1.22 (108H, s, t-Bu), 1.20 (36H, s, t-Bu), 1.10 (36H, s, t-Bu). 13C NMR (CDCl3, 293 K) 8C ppm: 26.5 (CH2),

26.9 (CH2), 27.0 (CH 2), 31.1 (CH 3), 31.3 (CH 3), 31.4 (CH 3), 31.5 (CH 3),

34.2 (Cl,t-Bu). 34.2 (Cl,t-Bu), 34.2 (Cl,t-Bu), 34.5 (Cl,t-Bu), 501 (CH2), 68.5

(CH2), 77.5 (OCH2^ 120.2 (C^). 120.9 (C^). 121.2 (C^-s). 1230 (CHtnaz), 128.5 (CAr-s), 128.5 (C^J, 129.0 (CHJ, 135.9

(CHJ. ïl3^^.0) (CHAr), 1361 (CHJ. 1366 (CHAr), 143.8 (Ci,A-t-Bu).

144.2 (C i, Ar-t-Bu), 144.3 (C i, Ar-t-Bu), 145.6 (C i, Ar-t-Bu), 149.3 (Cl,triaz). 156.1 (Cl,Ar-o). 156.6 (Cl,a-o). 1572 (Cl,Ar-o), 1579 (c1,ai--o).

Compound 14b. (230 mg, 55 %). Rf =0.22 (CHCl3/MeOH 40:1). mp 160 °C (decomp.). m/z (HRMS MALDI) (%): 4390.5584 (100) [(M+Cs)+]. Calcd for C236H292N12O20s20+Cs+: 4390.5718

[(M+Cs)]+. IR (KBr) Vmax Cm-1: 1268 s (^t-Bu-^,-Bu). 1451 s (CAr-CAr). 1629 s (C=C), 2868 s (CtBu-H), 2961 s (CAr-H), 3375 br (OH). 1H NMR (CDCl3, 293 K) 8H ppm: 9.10 (12H, 'br, OH), 8.10 (4H, br, CHtriaz), 7.65 (8H, AB-d J=2 Hz, ArH), 7.59 (16H, AB-d J=2 Hz, ArH), 7.59 (8H, br, ArH), 7.58 (8H, br, ArH), 7.27 (8H, s, ArH), 4.65 (8H, br, CH2), 4.43 (8H, br, CH2), 3.81 (8H, t J=8 Hz, CH2), 3.64 (8H, br, CH2), 1.88 (8H, br, CH2), 1.26 (16H, br, CH2), 1.222 (108H, s, t-Bu), 1.20 (36H, s, t-Bu), 1.16 (36H, s, t-Bu). 13C NMR (CDCl3, 293 K) 8C ppm: 22.8 (CH2), 26.5 (CH2), 28.4 (CH2), 29.4 (CH2), 30.2 (CH2), 30.8 (CH3), 31.(0 (CH3), 31.1 (CH3), 31.1 (CH3), 33.8 (Cl,t-BU), 34.0 (Cl,t-BU), 34.0 (C^), 34.2 (C^), 50.2 (CH,). 68.3

(CH2). 76.8 (OCH2). 119.9 (Cl,Ar-s). 120.6 (Cl.Ar-s). 120.8 (Cl,Ar-s).

122 8 (CHtriaz), 127.9 (C^), 128.0 (C^X 128.2 (CHJ, 135.7

(CHAr). 1358 (CHAr). 1358 (CHAr). 1364 (CHAr). 143.4 (Ci,Ar-t-Bu). 143.7 (Ci, A-t-Bu). 143.9 (C i, Ar-t-Bu). 145.1 (Ci, A-t-Bu). 149.0 (^triaz). 155.8

(C.a A 156.3 (C.a J, 156.8 (C.a A 157.7 (C.a J.

v l,Ar-O/5 v l,Ar-O/5 v l,Ar-O/5 v l,Ar-O/

Compound 14c. (250 mg, 76 %). Rf =0.22 (CHCl3/MeOH 40:1). mp 164 °C (decomp.). m/z (HRMS MALDI) (%): 4446.6210 (100) [(M+Cs)+]. Calcd for C240H300N12O20s20+Cs+: 4446.6346

[(M+Cs)]+. IR (KBr) Vmax Cm-1: 1268 s (Ct-Bu-^t-Bu). 1451 s (CAr-CAr). 1634 s (C=C), 2868 s (CtBu-H), 2961 s (CAr-H), 3383 br (OH). 1H NMR (CDCl3, 293 K) 8H ppm: 9.35 (12H,br, OH), 7.90 (4H, br, CHtriaz), 7.65 (8H, AB-d J=3 Hz, ArH), 7.63 (8H, s, ArH), 7.60 (8H, br, ArH), 7.59 (8H, AB-d J=3Hz, ArH), 7.27 (8H, br, ArH), 4.35 (16H, br, CH2), 3.81 (8H, t J=7 Hz, CH2), 3.33 (8H, br, CH2), 2.62 (8H, br, CH2), 1.81 (8H, br, CH2), 1.31 (8H, br, CH2), 1.26 (8H, br, CH2), 1.21 (108H, s, t-Bu), 1.16 (72H, s, t-Bu). 13C NMR (CDCl3, 293 K) 8C ppm: 21.6 (CH2), 22.7 (CH2), 28.3 (CH2), 29.3 (CH2), 30.3 (CH2), 30.8 (CH3), 31.0 (CH3), 31.0 (CH3), 31.2 (CH3), 33.8 (C tB ), 33.9 (Cl,t-Bu), 34.0 (Cl,t-BU), 34.2 (C^), 50.0 (CH¿ 68.0 (CH^,7^

(OCH2). 120.1 (Cl_Ar-s). 120.6 (Cl,Ar-s). 120.7 (Cl,Ar-s). 121.8 (CHtriaz).

127.5 (ClAr-s), 127.8 (ClA-s), 128.2 (CHJ, 135.7 (CHJ, 135.8

(CHAr). 1358 (CH Ar). 136^6 (CH Ar). 143.5 (C i, Ar-t-Bu). 143.8 (Ci, Ar-t-Bu).

145.2 (Ci, Ar-t-Bu). 146.8 (Ci, Ar-t-Bu). 149.0 (Ci,*-,-Bu+Cl.t,Jt 1558 (Cl,Ar-o). 1564 (Cl,Ar-o). 1567 (Cl,Ar-o). 1577 (^A-o).

Compound 14d. (250 mg, 76 %). Rf=0.18 (CHCl3/MeOH 40:1). mp 147 °C (decomp.). m/z (HRMS MALDI) (%): 4502.6828 (100) [(M+Cs)+]. Calcd for C244H308N12O20s20+Cs+: 4502.6973 [(M+Cs)]+. IR (KBr) Vmax cm-1: 1268 s (C^-C^), 1452 s (C^CJ, 1632 s (C=C), 2868 s (CtBu-H), 2961 s (C^-H), 3378 br (OH). 1H NMR (CDCl3, 293 K) 8H" ppm: 9.20 (12H, br, OH), 7.85 (4H, br, CHtriaz), 7.64 (8H, AB-d J=2 Hz, ArH), 7.63 (8H, s, ArH), 7.60 (8H, AB-d J=2 Hz, ArH), 7.58 (8H, s, ArH), 7.24 (8H, s, ArH), 4.41 (8H, t J=5 Hz, CH2), 4.35 (8H, t J=7 Hz, CH2), 3.74 (8H, t J=7 Hz, CH2), 3.07 (8H, t J=7 Hz, CH2), 2.26 (16H, m, CH2), 1.80 (8H, m, CH2), 1.31 (8H, m, CH2), 1.2(5 (8H, m, CH2), 1.22 (72H, s, t-Bu), 1.18 (108H, s, t-Bu). 13C NMR (CDCl3, 293 K) 8C ppm: 23.0 (CH2), 25.6 (CH2), 25.9 (CH2), 28.7 (CH2), 29.4 (CH2), 30.6 (CH2), 3L2 (CH3), 31.3 (CH3), 31.4 (CH3), 31.6 (CH3), 34.2 (Clt-Bu),

342 (Cl,t-Bu). 34.2 (Cl,t-Bu). 34.5 (Cl,t-Bu). 50.4 (CH2). 68.5 (CH2). '78.1 (OCH2). 120.5 (Cl,Ar-s). 120.9 (Cl,Ar-s). 12U (Cl,Ar-s). 121.3 (CHtriaz).

128.1 (ClAr-s), 128.2 (ClAr-s), 128.5 (CHa,), 136.0 (CHa,), 136.0 (cha,), 136.1 (CHa,), 136.9 (CHa,), 143.8 (CHa,), 144.1 (C^-U

145.5 (Ci,Ar-t-Bu). 148.0 (Ci,Ar-t-Bu). 1449.2 (Cl,triaz). 156.2 (Cl,Ar-o). 1568 (Cl,Ar-o). 157^ (Cl,Ar-o). 1581 (Cl,Ar-o).

Results and Discussion

Synthesis of Azide andAlkyne-Containing Precursors

At the first step, we replaced lower-rim hydroxyl groups in thiacalixarene 1 by the groups containing terminal bromide and alkyne fragments using the 1040-fold excess of appropriate reagents (scheme 2). In the former case, we employed potassium carbonate as a base for the deprotonation of hydroxyl groups and the reaction of phenolate salt with commercially available dibromoalkanes to afford tetrasubstituted products 2b-d without any products of partial substitution. Rather, bifunctional dibromoalkanes may lead to the products of intramolecular and intermolecular crosslink (in the case of 1,2-dibromoethane[17] or 1,6-dibromohexane)[14] and give lower yields of target products 2. For this reason, the substitution of Mitsunobu protocol (triphenylphosphine (TPP) / diethylazodicarboxylate (DEAD) system) for

alkali salt-mediated nucleophilic substitution in the case of 2-bromoethanol seems more convenient and affords bromoethoxy-substituted thiacalix[4]arene 2a in 75 % yield. Analogously, alkynyloxy derivatives 4 were synthesized in higher yields (80-85 %) using available acetylenic alcohols.[15] Note that propynyloxy derivative 4a exists as the mixture of 1,3-alternate and partial cone stereoisomers due to the rotation of propynyloxy fragments through the annulus of calixarene and may at first sight restrict the synthetic applicability of this compound in the synthesis of multicalixarenes. Thermal isomerization is also possible in the case of tetrapropoxythiacalix[4]arene.[18] However, Burilov et al.[19] showed that the partial cone-to-1,3-alternate transition occurs upon azide-alkyne coupling with copper catalyst and exclusively 1,3-alternate atropoisomer of triazole product is formed.

To convert bromine-substituted thiacalixarenes 2 into corresponding azide derivatives 4, we employed sodium azide in DMF; this approach proved effective for the synthesis of ethoxy to pentoxy substituents at 90-110 °C, though it took longer time to obtain azidoethoxy derivatives probably due to the steric hindrance of carbon-bromine bond by neighboring tert-butyl groups for azide nucleophile. In the latter case, we avoided the mixture of partial cone and 1,3-alternate atropoisomers of 3a as in the case of analogous azidoethoxy derivatives of amphiphilic thiacalixarenes,[20] which underwent the rotation of substituents at much higher

OH O^OH HO

m=3-5

TPP/DEAD PhCH3, 40°C

B^Br

k2co3

, Me2CO, 60°C

ir Br 2a-d 36-75%

3a-d 84-91%

Scheme 2. Synthesis of tetrasubstituted thiacalixarenes by Mitsunobu protocol[15] (2a, 4) and K2CO3-medaited alkylation of 1[14] followed by the reaction of 2 with NaN3 (3).

temperatures (150-160 °C) possibly due to the dissociation of C-Br bond according to SN1 mechanism and through-the-annulus rotation of resulting ethoxy carbocation.

The next component for CuAAC click reaction, monosubstituted thiacalix[4]arenes, highlights challenges to the substitution of a particular number of hydroxyl groups. In contrast to calixarene platform, where iteroselective modification[21] of the lower and upper rims is more straightforward due to large differences in stepwise deprotonation constants of hydroxyl groups,[22] thiacalixarenes have less distinguishable stepwise deprotonation constants.[23] A natural result of this behavior is a very small number of papers, which concern the direct alkylation of thiacalix[4]arene by small excess of alkylating reagent, according to which the products are obtained as the mixtures of iteromers in generally low yields.[24] We also noticed the formation of the mixture of various products when reacting TCA 1 with equimolar amounts of TPP/DEAD and acetylenic alcohols, among which no monosubstituted product was detected (Scheme 3).

However, recent research of distally disubstituted thiacalixarene derivatives, which are accessible by Mitsunobu reaction,[25] provides some useful procedures (though not so wide in scope) towards monosubstituted thiacalixarenes. One of them is base-mediated cleavage of one ether group on the lower rim using TBAB.[26] However, when applied to distally disubstituted alkynyloxythiacalixrenes 5, which were prepared using 3-fold excess of TPP/DEAD system, these conditions resulted in a 4:1 mixture of target product 6 and parent thiacalix[4]arene 1 in low overall yield. On the one hand, the reason for such instability of monosubstituted derivatives may arise from the anchimeric effect of the terminal triple bond of substituent. On the other hand, tuning the basicity of medium and other environmental conditions such as temperature and time of reaction may afford the target product in higher yields.

As a weaker base, we focused on n-butylamine, which was effective in the preparation of monopropyloxy/ monoacetophenyloxy derivatives of thiacalix[4]arene[27] (Scheme 3). Optimization of reaction conditions is summarized in Table 1. In the case of butynyloxy to hexynyloxy derivatives, optimal temperature and reaction time were 115-125 °C and 20-27 h, respectively, while an increase in the reaction time or rise of temperature assisted the increase in the rate of elimination of remaining alkoxy group to give thiacalixarene 1. In contrast to longer-chain monoalkoxy derivatives 6b-d, propynyloxy derivative 6a requires significantly milder conditions, more specifically, 100 °C and 7 h, otherwise the fraction of thiacalixarene would

Scheme 3. Synthesis of monosubstituted products 6 by butylamine-assisted elimination of disubstituted intermediates 5.

be too large and even exceed the content of monoderivative in the reaction mixture (after heating at 130 °C). An interesting point here is that propynyloxy derivative 6a is represented in solution by a single cone conformer (SI, Fig. S17) in contrast with analogous distally disubstituted derivative 5a,[15b] which was found to exist in partial cone-1,2-alternate conformational equilibrium. The rationalization of peculiar stability of cone conformation in 6a requires detailed quantum-chemical investigation and will be discussed elsewhere.

Table 1. Optimization of reaction conditions towards monoalkynyloxythiacalix[4]arenes 6a-d (temperature, time of reaction).

Product t (°C) Time, h Yield of 6 (%) Yield of 1 (%)

130 36 18 58

110 30 42 26

6a; n=1 100 24 47 36

100 7.5 64 18

100 7 76 8

120 35 28 36

6b; n=2 120 12 85 8

115 27 93 -

125 23 85 3

6c; n=3

125 19 87 <1

130 22 70 21

6d; n=4

125 27 91 2

The introduction of one azide group in thiacalixarene appears not to differ significantly from that for alkyne group; however, the reactivity of azide group does not allow Mitsunobu conditions, because it can participate in Staudinger ligation and formation of amino derivatives. This limitation forced us to add one more step including bromide groups (compounds 7, Scheme 4), which may further be converted into azide derivatives by nucleophilic substitution with sodium azide in DMF followed by basemediated cleavage of a single ether group. We firstly aimed at the synthesis of corresponding disubstituted derivatives using 8-fold excess of sodium azide; surprisingly, we detected only monosubstituted azidoalkoxy derivatives 8, which were obtained in high yields (Scheme 4).

This unusual behavior can be interpreted either by the enhanced anchimeric assistance of azide group in disubstituted derivative towards the cleavage of one ether group on the lower rim of thiacalix[4]arene or nucleophilic attack of azide anion or primary dealkylation

of bromoalkyl fragment in 7 followed by nucleophilic substitution by sodium azide. To eliminate the latter two possibilities, we reduced the excess of sodium azide to 2.2-fold and observed only distally disubstituted azide derivatives of thiacalix[4]arene.

In summary, we obtained necessary precursors represented by tetra- and monosubstituted thiacalix[4]arenes containing terminal azide and ethynyl functional groups in 1,3-alternate and cone configurations, respectively, and optimized the dealkylation protocol for distally disubstituted thiacalixarenes by varying the reaction time and temperature (in the case of alkynes), as well as excess of reagent (in the case of azides). We recently suggested a common explanation towards high reactivity of only one ether group towards elimination pathway in distally disubstituted derivatives and will describe it in detail elsewhere.

Synthesis of Multicalixarenes

Our successful attempts to prepare mono-and tetrasubstituted azide and alkyne derivatives of thiacalixarene allowed us to carry out the final step of the synthetic chain towards multithiacalixarenes. Having previously discussed the instability of monosubstituted derivatives at high temperatures and basic conditions, it was particularly important to maintain as low temperature as possible, avoid air oxygen in order to prevent alkyne homocoupling, and optimize the amount of copper ions, which is taken at excess due to the possible complexation with sulfur and oxygen atoms of thiacalixarene molecules. Unfortunately, assumption of these conditions still did not give satisfactory yields of target multicalixarenes and we looked into the way how the reagent ratio, time of reaction, and heating conditions affect the yields of the products by the example of multicalixarene 9c (Table 2). We discovered that stoichiometric 4c-to-8a reagent ratio gives the mixture of the products of partial cycloaddition according to MALDI TOF mass spectrometry, while an increase in the excess of monosubstituted derivative increases the yield by 1.5 times along with that for thiacalixarene 1 (from <1 % (entry 1) to 11 % (entry 2)), which is presumably caused by the copper-assisted cleavage of one ether group in monosubstituted derivative.1[28] The most important factor towards the optimization of the yield of target multi(thia)calixarenes was the employment of microwave irradiation, which provided a remarkable decrease in the reaction time by one order (from 105 h (entry 3) to 11 h (entry 4)) and improved the yield of multicalixarene from

n NaN3

1 1 DMF

p , 80-85 °C

Br'

8a, b 82-91%

Scheme 4. Synthesis of azidoalkoxythiacalix[4]arenes 8 by the reaction of bromoderivatives 7 with sodium azide.

42 % to 73 %. The most probable explanation to this behavior is a selective heating of copper catalyst, on the surface of which the cycloaddition reaction proceeds much faster, and a small effect on competitive elimination to give thiacalixarene 1.

Table 2. Optimization of CuAAC reaction conditions for compound 9c (mode of heating, reagent ratio, time of reaction) in toluene-triethylamine.

Entry 4c-to-8a Reagent ratio Heating element t, h Yield of 9c (%) Yield of 1 (%)

1 1:4 Hot plate 82 25 <1

2 1:6 Hot plate 84 39 11

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3 1:5 Hot plate 105 42 6

4 1:5 MW (400 W) 11 73 3

Given the optimized reaction conditions, we obtained dendrimer-shaped multicalixarenes 9-14 in moderate to high yields (Scheme 5), which were much higher than those for previously reported amide derivatives of pentakis-thiacalixarenes[24e] and comparable to those of calixarene dendrimers.[310d10e] Following aspects should be emphasized in this reaction. Firstly, in spite of large size of macrocycles, the yields were satisfactory even in the case of short alkyl chain length (m,n=l-2), which links ethynyl and azide functional groups with calixarene (from 44 % for 12a to 78 % for 9b), and gradually increased with an increase in the alkyl chain length up to 80 % for 13d. This dependence is almost not influenced upon the exchange of azide and alkyne groups between tetra- and monosubstituted derivatives (from 9, 10 to 11-14).

The structure of the synthesized compounds was determined by a series of physical methods such as highresolution MALDI TOF mass spectrometry and NMR spectroscopy (see SI, Fig. S98). A clear indication of the 1,4-regioisomer formation is the difference of chemical shifts of C1 (149.2 ppm) and C5 (127.7 ppm) atoms of triazole ring in 13C NMR spectrum (21.5 ppm), which is similar

to that of theoretically calculated by DFT method (~27 ppm). [29] Proton NMR spectrum of 12c (Figure 1) shows a broad signal of hydroxyl groups at 9.35 ppm and a singlet of CH-triazole proton at 7.81 ppm, which suggests the symmetric orientation of calixarene pendant groups around the core calixarene molecule and triazole linker, respectively, as well as the retention of the conformation of monosubstituted azide derivative due to similar chemical shifts of hydroxyl groups (Fig. S97). However, no clear information can be deduced about the shape that pendant groups acquire around the core molecule and, consequently, the accessibility of the "binding pocket", which consists of three hydroxyl groups and triazole ring. Broad peaks of hydroxyl groups and methylene units (from 4.4. to 1.8 ppm) indicate the high conformational mobility of calixarene units around alkyl chain at the temperature of experiment (293 K).

Structural investigations of multicalixarene den-drimers are of certain interest, because varying the length of alkyl chain, we not only attempt to assess the synthetic availability of the given dendrimers, but also look into the gold standard, at which the binding domain would be most efficient towards particular guest ion/molecule at the given alkyl chain length. Our further research will follow this principle by theoretical modeling of the binding behavior of multicalixarenes and experimental study of their receptor activity (by solution-state NMR and on the solid phase as an ultrathin film).

Conclusions

Synthesis of tetra- and disubstituted thiacalix[4]arenes by nucleophilic substitution on the lower rim has been optimized. New method for the preparation of monosubstituted thiacalix[4]arene derivatives has been suggested and optimized, which is based on the instability of disubstituted derivatives in alkaline medium. A series of dendrimer-shaped multicalixarenes with bridging triazole units has been synthesized in 44-80 % yields. The effect of MW irradiation on the acceleration of 1,3-dipolar azide-alkyne

Scheme 5. Synthesis of multi(thia)calixarenes 9-14 using CuAAC reaction.

9.5 9!O 8.5 8.0 7^5 7^0 6.5 6!o 5.5 5^0 4.5 ¿Q 3.5 3^0 2.5 2.0 1.5 1.0

Chemical shift (ppm)

Figure 1. 'H NMR spectrum of pentakis-thiacalix[4]arene 12c (CDCl3, 400 MHz, 293 K).

cycloaddition and increase in the yield of pentakisthiaca-lix[4]arenes has been established.

Acknowledgements. The work was funded by the Russian Foundation for Basic Research (project No. 15-53-61021-Egypt-a) and the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities.

References

1. a) DesigningDendrimers (Campagna S., Ceroni P., Puntoriero F., Eds.) Hoboken: Wiley, 2011. 616 p.; b) Astruc D., Boisselier E., Ornelas C. Chem. Rev. 2010, 110, 1857-1959; c) Dendrimers, Dendrons, and Dendritic Polymers (Tomalia D.A., Christensen J.B., Boas U., Eds.) Cambridge: Cambridge Univ. Press, 2012. 412 p.

2. a) Calixarenes. An Introduction (Gutsche C.D., Ed.) Cambridge: Royal Society of Chemistry, 2008. 276 p.; b) Moro-hashi N., Narumi F., Iki N., Hattori T., Miyano S. Chem. Rev. 2006, 106, 5291-5316; c) Konovalov A.I., Antipin I.S. Mendeleev Commun. 2008, 18, 229-237; d) Kumar R., Lee Y.O., Bhalla V., Kumar M., Kim J.S. Chem. Soc. Rev. 2014, 43, 4824-4870; e) Muravev A.A., Burilov V.A., Solov'eva S.E., Strel'nik A.G., Latypov S.K., Bazanova O.B., Sharafutdinova D.R., Antipin I.S., Konovalov A.I. Russ. Chem. Bull. 2014, 63, 214.

3. Rudzevich Y., Fischer K., Schmidt M., Böhmer V. Org. Biomol. Chem. 2005, 3, 3916-3925.

4. Rotan O., Sokolova V., Gilles P., Hu W., Dutt S., Schräder T., EppleM.Mat.-wiss. u.Werkstofftech. 2013, 44, 176-182.

5. a) Lalor R., DiGesso J.L., Mueller A., Matthews S.E. Chem. Commun. 2007, 46, 4907-4909; b) Lu Y., Xiao C., Yu Z., Zeng X., Ren Y., Li C. J. Mater. Chem. 2009, 19, 87968802.

6. a) Jiansen L., Zhenlin Z., Yuanyin C., Xueran L. Tetrahedron Lett. 1998, 39, 6507-6510; b) Tilki T., §ener I., Karci F., Gülce A., Deligöz H. Tetrahedron 2005, 61, 9624-9629; c) Bhalla V., Nagendra Babu J., Kumar M., Hattori T., Miyano S. Tetrahedron Lett. 2007, 48, 1581-1585.

7. Hamdi A., Lee Y.H., Kim Y., Kusumahastuti D.K.A., Ohto K., Abidi R., Vicens J. Tetrahedron Lett. 2009, 50, 540-543.

8. a) Csokai V., Balázs B., Tóth G., Horváth G., Bitter I. Tetrahedron 2004, 60, 12059-12066; b) Khomich E., Kashapov M., Vatsouro I., Shokova E., Kovalev V. Org. Biomol. Chem. 2006, 4, 1555-1560; c) Kim S.K., Sim W., Vicens J., Kim J.S. Tetrahedron Lett. 2003, 44, 805-809; d) Muravev A.A., Galieva F.B., Bazanova O.B., Sharafutdinova D.R., Solovieva S.E., Antipin I.S., Konovalov A.I. Supramol. Chem. 2016, 28, 589-600.

9. a) Pappalardo A., Ballistreri F.P., Li Destri G., Mineo P.G., Tomaselli G.A., Toscano R.M., Sfrazzetto G.T. Macromolecules 2012, 45, 7549-7556; b) Wiktorowicz S., Aseyev V., Tenhu H. Polym. Chem. 2012, 3, 1126-1129; c) Prata J.V., Costa A.I., Pescitelli G., Pinto H.D. Polym. Chem. 2014, 5, 5793-5803.

10. a) Galán H., Teresa Murillo M., Quesada R., Escudero-Adán E.C., Benet-Buchholz J., Prados P., de Mendoza J. Chem. Commun. 2010, 46, 1044-1046; b) Feng J., Liu K., Li Y., Yang M. Polym. Adv. Technol. 2009, 20, 514-518; c) Gattuso G., Grasso G., Marino N., Notti A., Pappalardo A., Pappalardo S.,

Parisi M.F. Eur. J. Org. Chem. 2011, 5696-5703; d) Lalor R., Gunning A.P., Morris V.J., Matthews S.E. Chem. Commun. 2010, 46, 8665-8667; e) Bu J.-H., Zheng Q.-Y., Chen C.-F., Huang Z.-T. Tetrahedron 2005, 61, 897-902; f) Wang J., Gutsche C.D. J. Org. Chem. 2002, 67, 4423-4429; g) Szemes F., Drew M.G.B., Beer P.D. Chem. Commun. 2002, 1228-1229; h) Stastny V., Stibor I., Dvorakova H., Lhotak P. Tetrahedron 2004, 60, 3383-3391.

11. a) Fischer C., Weber E. J. Incl. Phenom. Macrocycl. Chem. 2014, 79, 151-160; b) Morales-Sanfrutos J., Ortega-Muñoz M., Lopez-Jaramillo J., Hernandez-Mateo F., Santoyo-Gonzalez F. J. Org. Chem. 2008, 73, 7768-7771; c) Hwang G.T., Kim B.H. Tetrahedron 2002, 58, 9019-9028.

12. a) Li H., Zhan J., Chen M., Tian D., Zou Z. J. Incl. Phenom Macrocycl Chem. 2010, 66, 43-47; b) Wang N.J., Sun C.M., Chung W.S. Sens. Actuators, B 2012, 171-172, 984-993; c) Cecioni S., Lalor R., Blanchard B., Praly J.P., Imberty A., Matthews S.E., Vidal S. Chem. Eur. J. 2009, 15, 13232-13240.

13. Purification of Laboratory Chemicals (Armarego W.L.F., Chai C.L.L., Eds.) Oxford: Butterworth-Heinemann, 2009. 760 p.

14. Tyuftin A.A., Solovieva S.E., Murav'ev A.A., Polyantsev F.M., Latypov Sh.K., Antipin I.S. Russ. Chem. Bull. 2009, 58, 145-151.

15. a) Bitter I., Csokai V. Tetrahedron Lett. 2003, 44, 2261-2265; b) Muravev A.A., Galieva F.B., Strel'nik A.G., Nugmanov R.I., Gruner M., Solov'eva S.E., Latypov Sh.K., Antipin I.S., Konovalov A.I. Russ. J. Org. Chem. 2015, 51, 1334-1342.

16. Solov'eva S.E., Murav'ev A.A., Latypov Sh.K., Antipin I.S., Konovalov A.I. Dokl. Chem. 2011, 438, 170-174.

17. Akdas H., Bringel L., Bulach V., Graf E., Hosseini M.W., De Cian A. Tetrahedron Lett. 2002, 43, 8975-8979.

18. Lang J., Vlach J., Dvorakova H., Lhotak P., Himl M., Harbal R., Stibor I. J. Chem. Soc, Perkin Trans. 2 2001, 576-580.

19. Burilov V.A., Ibragimova R.R., Nugmanov R.I., Sitdikov R.R., Islamov D.R., Kataeva O.N., Solov'eva S.E., Antipin I.S. Russ. Chem. Bull. 2015, 64, 2114-2124.

20. Burilov V.A., Nugmanov R.I., Ibragimova R.R., Solovieva S.E., Antipin I.S. Mendeleev Commun. 2015, 25, 177-179.

21. Lavendomme R., Leroy A., Luhmer M., Jabin I. J. Org. Chem. 2014, 79, 6563-6570.

22. Lavendomme R., Zahim S., De Leener G., Inthasot A., Mattiuzzi A., Luhmer M., Reinaud O., Jabin I. Asian J. Org. Chem. 2015, 4, 710-722.

23. Matsumiya H., Terazono Y., Iki N., Miyano S. J. Chem. Soc., Perkin Trans. 2 2002, 1166-1172.

24. a) Omran O.A. Heterocycles 2016, 92, 1085-1094; b) Kasyan O., Healey E.R., Drapailo A., Zaworotko M., Cecillon S., Coleman A.W., Kalchenko V. J. Incl. Phenom. Macrocycl. Chem. 2007, 58, 127-132; c) Galukhin A.V., Zaikov E.N., Antipin I.S., Konovalov A.I., Stoikov I.I. Macroheterocycles 2012, 5, 266-274; d) Stoikov I.I., Ibragimova D.S., Shestakova N.V., Krivolapov D.B., Litvinov I.A., Antipin I.S., Konovalov A.I., Zharov I. Supramol. Chem. 2009, 21, 564-571; e) Nosov R.V., Stoikov I.I. Macroheterocycles 2015, 8, 120-127; f) Dvorakova H., Lang J., Vlach J., Sykora J., Cajan M., Himl M., Pojarova M., Stibor I., Lhotak P. J. Org. Chem. 2007, 72, 7157-7166.

25. a) Solovieva S.E., Muravev A.A., Zakirzyanov R.T., Latypov S.K., Antipin I.S., Konovalov A.I. Macroheterocycles 2012, 5, 17-22; b) Muravev A.A., Solovieva S.E., Latypov S.K., Antipin I.S., Konovalov A.I. Phosphorus, Sulfur Silicon Relat. Elem. 2013, 188, 499-502; c) Muravev A.A., Solovieva S.E., Kochetkov E.N., Mel'nikova N.B., Safiullin R.A., Kadirov M.K., Latypov S.K., Antipin I.S., Konovalov A.I. Macroheterocycles 2013, 6, 302-307.

26. Lamouchi M., Jeanneau E., Chiriac R., Ceroni D., Meganem F., Brioude A., Coleman A.W., Desroches C. Tetrahedron Lett. 2012, 53, 2088-2090.

27. Solovieva S.E., Popova E.V., Omran A.O., Gubaidullin A.T., Kharlamov S.V., Latypov Sh.K., Antipin I.S., Konovalov A.I. Russ. Chem. Bull. 2011, 60, 486-498.

28. Nakamura Y., Tanaka S., Serizawa R., Morohashi N., Hattori T. J. Org. Chem. 2011, 76, 2168-2179.

29. Latypov S., Epifanova N., Popova E., Vasilevsky S., Solovieva S., Antipin I., Konovalov A. Appl. Magn. Reson. 2011, 41, 467-475.

Received 31.03.2017 Accepted 15.05.2017

i Надоели баннеры? Вы всегда можете отключить рекламу.