7. Прогнозирование долгосрочных когнитивных результатов после рака молочной железы с помощью ФМРТ в состоянии покоя перед лечением и машинного обучения / С.Р. Кеслер [и др.]. 2017; C. 11:555.
UDC 621.311.243
SELF-CONTAINED PORTABLE POWER SOURCE (АВТОНОМНЫЙ ПОРТАТИВНЫЙ ИСТОЧНИК ЭЛЕКТРОЭНЕРГИИ)
Karlakov D.S., 2-year postgraduate student in scientific specialty 4.3.2 Electrical technologies, electrical equipment and power supply of the agro-industrial complex. Scientific supervisor: C.Sc. (Technology), Associate Professor S.I. Belov, Language advisor: C.Sc. (Pedagogy), Associate Professor A.Yu. Alipichev.
FSBEI HE RT SAU
АННОТАЦИЯ
Разработан автономный портативный источник электроэнергии, способный обеспечивать питание различных электроприборов постоянным и переменным током, а также заряжать встроенные литий-ионные аккумуляторные батареи за счет встроенной солнечной панели.
КЛЮЧЕВЫЕ СЛОВА
Солнечная энергетика, аккумуляторы, аккумуляторная батарея, портативное зарядное устройство, накопление энергии, накопитель энергии.
ABSTRACT
The paper describes a developed self-contained portable power source capable of powering various electrical appliances with direct or alternating current as well as charging built-in lithium-ion rechargeable batteries due to the built-in solar panel.
KEYWORDS
Solar energy, batteries, rechargeable battery, portable charger, energy storage, energy storage device.
Introduction. Electric energy is one of the main types of energy used by mankind. However, most of the territories of our country are not equipped with centralized power supply [2]. Partially, this problem can be solved by the installation of autonomous power supply systems, as well as distributed power generation [3, 4]. At the moment, the majority of autonomous power supply systems are based on fuel-fired power generators. The main disadvantage of such power plants is the high price of fuel, and the cost of electricity obtained from fuel-fired power generators significantly exceeds the cost of electricity obtained from solar power plants [1]. Also, a significant disadvantage of fuel generators is high fuel consumption even at low power of the connected load, which can make their use economically inexpedient [5].
The purpose of the research is to develop an autonomous, portable, non-fuel source of electricity, from affordable and available components, capable of storing energy, as well as suitable for power supply to low-power loads of both DC and AC, in order to reduce the use of fuel-fired power generators.
Materials and methods of research. To achieve the purpose of the research we have performed technical analysis and selection of components, conducted an experiment to design a prototype of the device and test it. To simplify the subsequent assembly of the device, we made its schematic diagram, shown in Figure 1.
Figure 1 - Schematic diagram of a portable autonomous power source
Results and their discussion. Within the framework of the study, we managed to solve the task of designing a workable prototype of an autonomous portable power source (Figures 2 and 3), capable of providing power to various electrical appliances in the absence of centralized power supply or in case of interruptions in its operation.
Figure 2 - View of the portable autonomous power source
Figure 3 - Internal structure of the portable autonomous power source
The prototype device uses 18650 size lithium-ion batteries for energy storage, which ensures high energy density and long lifetime. These batteries can provide a discharge current twice their capacity and are widely used in electric vehicles, power tools and mobile equipment (including on the secondary market).
Two batteries with a nominal voltage of 11.1 volts were assembled from the batteries, equipped with BMS protection boards with a maximum board operating current of 40 amps, to provide protection against overcurrent, overcharge, and deep discharge. The batteries were connected in parallel with each other.
The maximum current flowing through the BMS boards for lithium-ion battery packs was calculated using Formula 1.
IbMS =Pmax ^ U min (1)
Where: Pmax - maximum load power, Watts;
Umin - minimum battery voltage, Volts.
Since we used an inverter that converts the constant voltage of accumulator batteries into an alternating voltage of 220 volts and provides power to the load with a capacity of up to 750 watts, independently disconnecting at the discharge of batteries to a voltage of 10 volts, then the maximum current BMS: Ibms =750^10=75 amps.
Instead of one BMS board capable of providing a discharge current of 75 amps, we used 2 boards of 40 amps each, as this solution is more economically feasible.
A solar PWM controller with a maximum charge current of 10 amps was used to charge the built-in batteries from both the built-in and external solar panels. The main characteristics of the developed prototype are presented in Table 1.
Table 1 - Characteristics of the portable autonomous power source
Rated power of the built-in solar panel, Watts 20
Rated capacity of built-in batteries, Watts hour 400
Maximum inverter output power, Watts 750
Rated AC output voltage, Volts 220
Permissible continuous discharge current through the cigarette lighter socket, Amps 30
Cigarette lighter socket output voltage, Volts 9 to 12.6
Permissible continuous charging current (through the 5.5*2.1 port), Amps 5
Permissible charging voltage (through 5.5*2.1 port), Volts 12.5 to 23
Protection against overload, overheating and short circuits Yes
Dimensions, in centimeters 46x34x15
Weight, kilograms 5.5
The advantages of such a device are its autonomy, light weight, ease of operation, the ability to connect external power sources to charge the built-in batteries, high operating life, the ability to be used indoors and low cost.
Conclusions. The development of this concept opens up a technical possibility to increase the capacity of built-in accumulator batteries up to 1000 Watt hour while increasing the weight up to 9.5 kilograms and keeping the external dimensions. Also, it is possible to increase the size of the device with a proportional increase in the capacity of built-in accumulator batteries and inverter power in order to increase the autonomous operation time and power of connected electrical appliances. Thus, the developed portable autonomous power source can become an alternative to the use of fuel power generators as a more economical, environmentally friendly, convenient in operation, and quiet solution.
Библиография:
1. Баринова В.А., Ланьшина Т.А. Сопоставление нормированной стоимости электроэнергии в России: ВИЭ против дизельных электростанций // Новая наука: проблемы и перспективы. 2016. № 3. С. 52-55.
2. Вопросы энергоснабжения ряда населенных пунктов РФ обсудят в рамках выставки «Агрос-2021» // URL: https://www.elec.ru/news/2020/12/15/konferenciya-decentralizovannoe-energosnabzhenie-p.html (дата обращения 16.04.2024).
3. Лештаев О.В., Стушкина Н.А. Аспекты проектирования солнечных электростанций. // Доклады ТСХА. 2020. С. 153-156.
4. Лештаев О.В., Стушкина Н.А. Прогнозирование эффективности солнечной электростанции // Экспериментальные и теоретические исследования в современной
науке: сб. ст. по матер. XXXVI-XXXVII междунар. науч.-практ. конф. № 6-7(33). Новосибирск: СибАК, 2019. С. 47-50.
5. Определение показателей надежности электроснабжения сельскохозяйственного производства / Т.Б. Лещинская, С.И. Белов ; Т.Б. Лещинская, С.И. Белов. М. : Агроконсалт, 2004. 152 с.
6. Оценка эффективности работы электроэнергетической системы с распределенной генерацией / В.И. Загинайлов, Т. А. Мамедов, Н.А., Стушкина, О.В. Лештаев // Международный технико-экономический журнал. 2022. № 4. С. 147-159.
7. Расход топлива генератора // URL: https://rental-power.com.ua/rashod-topliva-generatora/ (дата обращения 19.04.2024).
References:
1. Barinova V.A., Lanshina T.A. Comparison of the standardized cost of electricity in Russia: renewable energy sources versus diesel power plants // New Science: Problems and Prospects. 2016. No. 3. P. 52-55.
2. Energy supply issues for a number of populated areas of the Russian Federation will be discussed at the Agros-2021 exhibition // URL: https://www.elec.ru/news/2020/12/15/konferenciya-decentralizovannoe-energosnabzhenie-p.html (accessed on 16.04.2024).
3. Leshtaev O.V., Stushkina N.A. Aspects of solar power plant design. // Reports of the Timiryazev Agricultural Academy. 2020. P. 153-156.
4. Leshtaev O.V., Stushkina N.A. Forecasting the efficiency of a solar power plant // Experimental and theoretical research in modern science: Coll. art. on materials of XXXVI-XXXVII international. scientific-practical. conf. No. 6-7(33). Novosibirsk: SibAK, 2019. P. 4750.
5. Determination of reliability indicators of power supply for agricultural production / T.B. Leshchinskaya, S.I. Belov; T.B. Leshchinskaya, S.I. Belov. Moscow: Agroconsult, 2004. 152 p.
6. Evaluation of the efficiency of an electric power system with distributed generation / V.I. Zaginailov, T.A. Mamedov, N.A., Stushkina, O.V. Leshtaev // International technical and economic journal. 2022. No. 4. P. 147-159.
7. Generator fuel consumption // URL: https://rental-power.com.ua/rashod-topliva-generatora/ (accessed 19.04.2024).
UDC 621.355.2
INFLUENCE OF CHARGING VOLTAGE ON CAPACITY REDUCTION OF LEAD-ACID
BATTERIE
(ВЛИЯНИЕ НАПРЯЖЕНИЯ ЗАРЯДА НА СНИЖЕНИЕ ЁМКОСТИ СВИНЦОВО-КИСЛОТНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ)
Karlakov D.S., 2-year postgraduate student in scientific specialty 4.3.2 Electrical technologies, electrical equipment and power supply of the agro-industrial complex. Scientific supervisor: C.Sc. (Technology), Assistant Professor A.A. Tsedyakov. Language advisor: C.Sc. (Pedagogy), Associate Professor A.Yu. Alipichev.
FSBEI HE RT SAU
АННОТАЦИЯ
Исследовано влияние зарядного напряжения на сокращение ёмкости свинцово-кислотных аккумуляторных батарей. При зарядном напряжении 101,5% от потенциала разомкнутой цепи снижение ёмкости было наибольшим, а при напряжении 109,5% -наименьшим.