Научная статья на тему 'Автоматизированная система экологического мониторинга промышленного района'

Автоматизированная система экологического мониторинга промышленного района Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
387
106
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — И. Н. Дорохов, В. Н. Смирнов

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Автоматизированная система экологического мониторинга промышленного района»

АВТОМАТИЗИРОВАННАЯ СИСТЕМА ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ПРОМЫШЛЕННОГО РАЙОНА

И.Н. Дорохов, В.Н. Смирное

В предлагаемой работе рассматриваются вопросы, связанные с алгоритмической, программной и технической реализацией автоматизированной системы экологического мониторинга воздушной среды промышленного района на примере

Астраханского газоперерабатывающего завода (АГПЗ), на котором содержание сероводорода в продукции около

25 %. Для успешной и безопасной работы такого завода необходимо осуществлять оперативный контроль за загрязнением воздуха в районе газоперерабатывающего завода. Важность этой проблемы обусловлена высокой токсичностью выбрасываемых веществ, большими объемами перерабатываемого газа.

Загрязнение воздуха происходит как от высотных, так и от низких источников, при этом приземная концентрация вредных веществ может превышать санитарные нормы на значительных расстояниях от промышленной площадки.

Наибольшую опасность представляют низкие источники загрязнения, которые выбрасывают в атмосферу вредные вещества. Причиной появления этих источников могут быть утечки через аварийные разрывы оборудования. В результате создаются загазованные зоны, в которых концентрация загрязняющих веществ может быть опасной и даже смертельной для человека. При аварийных выбросах такие зоны образуются в течение нескольких секунд с последующим распространением загрязнителя на значительные расстояния от источника выброса.

В связи с этим для принятия своевременных управляющих решений необходимо оперативно выявлять зоны загрязнения и прогнозирования скорости движения и концентрации вредных веществ в зависимости от сложившихся ситуаций.

Организацию эффективного контроля за загрязнением воздуха в районе АГПЗ можно осуществлять с помощью автоматизированной системы экологического мониторинга загрязняющих веществ, блок-схема которой показана на рисунке 1.

Система автоматизированного мониторинга и управления загрязнением атмосферы предназначена для своевременного обнаружения вредных компонентов в приземном слое воздуха в населенных пунктах, близлежащих к АГПЗ, и для сигнализации в том случае, если их концентрация превышает санитарные нормы, а также для управления выбросами источников АГПЗ.

Основные функции системы экологического мониторинга', измерение содержания вредных компонентов в воздухе (сероводорода, сернистого газа, окислов азота, окиси углерода, углеводородов и меркаптанов); измерение метеорологических

Центр мониторинга

Рис. 2. Структурная схема автоматизированной системы экологического мониторинга и управления выбросами вредных веществ на АГПЗ

параметров (скорости и направления ветра, влажности и температуры воздуха, количества осадков); сбор и передача информации по радиоканалу; обработка информации на центральном пункте (индикация измерений); цветовая индикация превышения предельно допустимых концентраций (ПДК); отображение в виде графиков; архивирование; протоколирование; прогнозирование; сигнализация в случае превышения ПДК.

Структурная схема автоматизированной системы экологического мониторинга и управления выбросами вредных веществ на АГПЗ представлена на рисунке 2 [1-3].

В системе экологического мониторинга можно выделить три основных блока: информационно-измерительный; центр мониторинга (ЦМ); сеть пользовательских терминалов.

Информационно-измерительный блок представляет собой совокупность источников информации о состоянии атмосферного воздуха, связанных каналами передачи данных с ЦМ.

ЦМ обеспечивает решение всего комплекса задач сбора, накопления, обработки и распределения мониторинговой информации. Сеть пользовательских терминалов предназначена для оперативного обеспечения пользователей справочной информацией о результатах мониторинга.

Информационно-измерительная система представляется сетью автоматических стационарных станций мониторинга атмосферного воздуха (рис. 3) и передвижными лабораториями наблюдения

загрязнений воздушной среды.

В состав автоматической станции мониторинга входят следующие функциональные устройства: система воздухоотбора и пробоподготовки; автоматические газоанализаторы; датчики метеопараметров; центральное устройство управления с аппаратурой передачи данных; система охранной и пожарной сигнализации.

Наиболее подходящими методами определения малых концентраций вредных веществ в выбросах АГПЗ оказались спектроскопические, термохимические и ионизационные методы, на основе которых в ряде стран серийно выпускают спе-

циализированные газоанализаторы.

Задача поиска и выбора газоанализаторов является ключевой в создании системы мониторинга загрязнения атмосферы. Существует множество газоанализаторов технического и экологического назначения. Они различаются по принципам действия, степени автоматизации, уровню сервисного обслуживания, по цене и т.п. Несмотря на многообразие типов газоанализаторов только немногие из них пригодны для контроля состояния воздуха на АГПЗ и в близлежащих районах. На основании анализа приборов для измерения примесей сероводорода, окислов азота, диоксида серы, оксида углерода и углеводородов были выбраны газоанализаторы фирмы MBL Environmetal Systems. Характеристики приборов даны в таблице 1.

Приведем краткое описание оптического газоанализатора 9830 для определения концентрации углекислого газа (СО) в воздухе. Принципиальная схема анализатора показана на рисунке 4. Принцип действия газоанализатора 9830 основан на избирательном поглощении газами лучистой энергии в инфракрасном (ИК) спектре. Проба газа, нагнетаемая насосом, проходит через тефло-новый фильтр и вводится в измерительную камеру с длинным оптическим путем (5,6 м). Луч, испускающийся ИК источником, попеременно проходит через ячейку с СО и пустую ячейку, а затем через измерительную камеру и оптический

Рис. 3. Автоматическая станция мониторинга атмосферного воздуха

Таблица 1

Прибор Назначение Диапазон измерений Принцип действия Необходимость расходных материалов

9850 измерение S03 0 - 20 ррт УФ нет

8775 измерение H3S 0 - 20 ррт конвертор катализатор

9841 измерение NOx 0 - 20 ррт хем.люм. катализатор

9830 измерение СО 0 - 200 ррт Ж нет

Проба | Фильтр |

| Насос |

Мотор Колесо сравнения Источник

Источник Мотор

, т 9 1

г II —I

Оптический фильтр

Рис. 4. Принципиальная схема газоанализатора 9830

фильтр, размещенный перед детектором. Когда ИК луч проходит через ячейку с СО, то поглощаются все линии, характерные для оксида углерода. На луч не может оказывать дополнительное воздействие СО, содержащийся в пробе. Этот луч принимается за эталон. Когда луч проходит через пустую ячейку, то поглощаемые оксидом углерода линии определяют содержание СО в пробе. Поток ИК излучения, проходящий через слой анализируемой газовой смеси, теряет в ней часть энергии пропорционально содержанию оксида углерода в смеси. Высокочувствительный ИК детектор измеряет энергетический уровень, и микропроцессор дифференциально измеряет концентрацию СО в ррт и мг/м3 согласно закону Ламберта.

Ни одна из анализируемых фирм не выпускает специализированных газоанализаторов на меркаптаны по причине чрезвычайно высоких требований к чувствительности приборов. Диапазон измерения для меркаптанов

0-0.009 мг/м3 . При более высоких содержаниях меркаптанов в воздухе могут быть частично использованы анализаторы H2S/S02 после конверсии меркаптанов в оксид серы. Однако в этом случае невозможно отличить меркаптаны от содержащегося в воздухе сероводорода. Единственно рациональным решением для АГПЗ является портативный анализатор запахов Odor Monitor, который позволяет определить ряд сильнопахнущих веществ, в том числе и меркаптаны. С помощью данного анализатора можно выполнять точные и надежные тесты за несколько минут. Не нужно

времени на прогрев и не надо опасаться, что проба улетучится. Анализатор прост в применении и не требует высококвалифицированного обслуживающего персонала. К достоинствам прибора относятся его низкая цена и небольшие эксплуатационные расходы. Кроме показа на дисплее результатов изменения интенсивности запахов, сохраняется наибольший уровень запаха в памяти. Благодаря этому всегда можно вызвать это пиковое значение. У прибора также имеется выходное устройство, позволяющее получать результаты на бумаге.

Комплект газоанализаторов обеспечивает непрерывное автоматическое измерение в локальной

Таблица 2

Намеряемый параметр ПДК, мг/м3 Точность измерения Диапазон юм„ мг/ м3

Сероводород Н28 0.008 0,002 0-0.2

Окислы азота ИОх 0.04 0,02 0-2.0

Диоксид серы 802 0.05 0,02 0-1.0

Оксид углерода СО 1 0,05 0-5.0

Углеводороды СпНт - 0,5 0 - 50.0

Сумма меркаптанов 9 10" в 0 - 0.009

точке концентраций загрязняющих веществ, приведенных в таблице 2.

Метеорологические датчики обеспечивают измерение метеопараметров, приведенных в таблице 3.

Таблица 3

Наименование Единица Диапазон

метеопараметров измерения

Скорость ветра м/с 0.5-50.0

Направление ветра град 0-360

Температура воздуха град С -50 - +50

Относительная влажность % 5-98

воздуха

Давление мм рт ст 746 - 786

Количество осадков мм 0-50

Система воздухоотбора и пробоподготовки обеспечивает подачу подогретых проб воздуха на комплект газоанализаторов.

Центральное устройство управления осуществляет управление работой станции: опрос датчиков, первичная обработка и накопление результатов измерения, сравнение полученных значений концентраций вредных веществ с ПДК, изменение режима работы станции, формирование сообщений и передача их по каналам радиосвязи.

В состав центра управления станции мониторинга входят: микро-ЭВМ, совместимая с IBM PC; устройство сопряжения с газоанализаторами, датчиками метеорологических параметров, с системой жизнеобеспечения; аппаратура передачи данных.

цх

Детектор

Дисплей

Микропроцессор

Система жизнеобеспечения снабжает устройства станции электропитанием и поддерживает температуру внутри павильона в заданных пределах.

Все оборудование автоматической станции размещается в павильоне с габаритными размерами 3000x2500x2500 мм, общий вес которого не более 200 кг.

Центр мониторинга решает следующие задачи: сбор и накопление информации, поступающей из информационно-измерительной сети; математическое моделирование экологических процессов (исследование переноса и трансформации загрязнений, анализ и прогноз динамики загрязнений); определение источников, снижение выбросов которых приводит к снижению повышенного уровня загрязнения воздуха; накопление и архивирование данных измерений и результатов мониторинга; формирование и выдача выходных документов об экологическом состоянии воздушной среды; оперативное представление полей концентраций загрязняющих веществ на дисплее компьютера; организация диалога оператора и системы; информационное обслуживание пользователей; управление работой всех элементов ЦМ.

В качестве средств обработки информации в ЦМ используются персональные компьютеры, совместимые с IBM PC моделей 386 и 486. В состав программного обеспечения входят пакеты, реализующие обработку и представление текущего экологического состояния воздушной среды в районе расположения АГПЗ для всех точек кон-

Таблица 4

№ и/ п Наименование станции контроля (СК) Высота подъема антенны (м) Расстояние до ЦМ (км)

1. СК № 1 Досанг 16 24

2. СК № 2 Комсомольский 6 18

3. СК № 3 Совхоз им. 50-лет. ВЖСМ 6 16

4. СК № 4 Айсапай 6 12

5. СК № 5 Аксарайский-1 9 9

6. СК № 6 Аксарайский-2 3 9

7. ЦМ 12 0

8. СК № 7 Степной

9. СК № 8 Придельтовское лесничество 6 12

10. СК № 9 Придельтовское лесничество 6 16

11. СК № 10 Придельтовское лесничество 6 18

12. СК № 11 Назурбай-Шока 3 2

13. СК № 12 Лесничество 3 4

14. СК № 13 Водокачка 16 5

15. СК № 14 Белячный 9 8

16. СК № 15 Волжское 12 22

троля в виде таблиц, графиков, номограмм.

Подсистема передачи данных предназначена для передачи информации, считываемой с датчиков измерения концентрации вредных веществ в атмосфере и метеодатчиков, расположенных на станциях контроля, до аппаратуры обработки этой информации в ЦМ.

Подсистема передачи данных включает комплекты приемно-передающей аппаратуры на каждой станции контроля и ЦМ, с помощью которой осуществляется двусторонняя связь в системе.

Анализ расположения объектов автоматизированной системы экологического мониторинга в районе расположения АГПЗ показал (табл. 4), что максимальное удаление станции контроля от ЦМ не превышает 24 км, минимальное - 2 км. ЦМ расположен на относительно высокой местности, что является достаточным для организации радиальной связи ЦМ со станциями контроля.

Система работает на базе контроллера, совместимого с IBM PC, связанного посредством специальной платы-расширителя с выходными каналами автоматических газоанализаторов и датчиков метеопараметров. Сбор данных осуществляется посредством периодического опроса приборов с последующим усреднением показателей. Число опросов поддается регулированию пользователем.

Система воспринимает и фиксирует на жестком диске следующие типы входных сигналов: значение концентраций загрязняющих веществ; значение метеопараметров; сигналы датчиков аварийных ситуаций.

Система обеспечивает возможность непосредственного диалога оператора станции мониторинга с оператором ЦМ.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Пример технической реализации системы приведен на рисунке 5.

Система экологического мониторинга и управления загрязнением воздушной среды состоит из ЦМ, где происходит прием и обработка информации, и 15 станций контроля загрязненности воздушной среды в районе расположения АГПЗ (рис. 5). На нижнем уровне системы располагаются датчики для измерения концентраций различных газов и метеопараметров. Принципиально новым является использование в автоматизированной системе экологического мониторинга и управления датчиков производства фирмы MBL Environmental Systems. Датчики могут иметь либо аналоговый выход (4-10 мА), либо цифровой по интерфейсу RS-232/RS-485. Если датчик снабжен цифровым выходом, то может быть реализован режим измерения нескольких параметров.

Информация от нескольких датчиков станций контроля поступает в технологический контроллер. Технологические контроллеры предна-

Рис. 5. Техническая реализация системы управления процессом загрязнения

значены для сбора информации от датчиков первичной обработки информации, для обработки результатов измерения, передачи информации на вышестоящий уровень системы, для приема команд управления от вышестоящего уровня и выдачи команд управления исполнительным устройствам.

Если количество контролируемых параметров на станции контроля невелико, то в качестве контроллера рекомендуется ставить RTU 3310. При большом количестве контролируемых параметров целесообразно устанавливать контроллер DPC 3330. Если же количество контролируемых параметров очень велико, то к контроллеру можно подключить до 10 расширителей ввода/вывода RIO 3331. В этом случае количество параметров, обрабатываемых контроллером, может достигать 800.

Связь между контроллерами может осуществляться по интерфейсу RS-232/RS-485 или по радиоканалу.

Подсистема передачи данных включает комплекты приемно-передающей аппаратуры на каждой станции контроля и центральном пункте; с ее помощью осуществляется двусторонняя связь в

системе. В связи с тем, что расстояние между станцией контроля и центральным пунктом может достигать более 30 км, экономически наиболее выгодно использовать радиоканалы.

На верхнем уровне системы располагается пункт управления. В состав пункта управления входят технологический контроллер (концентратор данных), подключенный к приемно-передающей аппаратуре, и операторская станция.

Концентратор служит для сбора информации с нижестоящих уровней системы и для связи с операторской станцией. В качестве концентратора данных используют DPC 3335.

Основные функции ЦМ реализуются операторской станцией, для чего используют свободно-программируемый компьютер с необходимым объемом оперативной памяти, внешние запоминающие устройства (диски, дискеты) и средства для связи с пользователями (дисплей, клавиатура, принтер). В качестве операторской станции применяют персональный компьютер IBM PC 386/486.

Компьютер IBM PC служит для загрузки программного обеспечения в сеть технологических контроллеров, для отображения состояния процесса, ведения архива данных процесса загрязнения и для ввода команд управления технологическим процессом.

Разработанное программное обеспечение компьютера включает пакет программ для математического моделирования процесса загрязнения воздушной среды вредными токсичными веществами на АГПЗ и обеспечивает решение задач, связанных с переносом и трансформацией загрязняющих веществ в атмосфере. Входными параметрами этого пакета являются данные о метеопараметрах, поступающие со станций контроля, данные о количестве газовоздушной смеси, выбрасываемой источниками выброса. Выходные параметры - концентрации загрязняющих веществ в данной точке контроля.

Список литературы

1. Смирнов В.Н. Модульная система программного обеспечения АСУ ТП // Сб.: Проблемы программного обеспечения АСУ ТП. - 1979. - Ч. 1. - С. 32-35.

2. Смирнов В.Н. Опыт разработки и внедрения автоматизированных систем управления в химии, энергетике, металлургии // Приборы и системы управления,- 1982. - 1 1.

Ипатов Е.Г., Смирнов В.Н. Технология разработки и внедрение управления // Приборы и системы управления. - 1993. -№ 11.

i Надоели баннеры? Вы всегда можете отключить рекламу.