Научная статья на тему 'Автоматизированная система диспетчерского управления теплоснабжением зданий на основе полевых технологий'

Автоматизированная система диспетчерского управления теплоснабжением зданий на основе полевых технологий Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
4900
144
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ТЕПЛОСНАБЖЕНИЕ / ДИСПЕТЧЕРСКОЕ УПРАВЛЕНИЕ / ТЕПЛОВЫЕ СЕТИ / ПОЛЕВЫЕ ТЕХНОЛОГИИ / HEAT SUPPLY SUPERVISORY CONTROL / HEAT NETWORKS / FIELD TECHNOLOGIES

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Шнайдер Дмитрий Александрович

В статье рассматривается структура, функции и технические особенности автоматизированной системы диспетчерского управления теплоснабжением зданий на основе полевых технологий, приводятся результаты цифрового мониторинга параметров теплоснабжения зданий, полученные на основе использования внедренных автоматизированных систем.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Шнайдер Дмитрий Александрович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Computer-based supervisory control system of building heat supply on the basis of field technologies

The article considers the structure, functions and technical peculiarities of computer-based supervisory control system of building heat supply on the basis of field technologies, results of digital monitoring of heat supply of buildings parameters obtained on the basis of usage of introduced computer-based systems are given.

Текст научной работы на тему «Автоматизированная система диспетчерского управления теплоснабжением зданий на основе полевых технологий»

УДК 50.49.37

АВТОМАТИЗИРОВАННАЯ СИСТЕМА ДИСПЕТЧЕРСКОГО УПРАВЛЕНИЯ ТЕПЛОСНАБЖЕНИЕМ ЗДАНИЙ НА ОСНОВЕ ПОЛЕВЫХ ТЕХНОЛОГИЙ

Д.А. Шнайдер

В статье рассматривается структура, функции и технические особенности автоматизированной системы диспетчерского управления теплоснабжением зданий на основе полевых технологий, приводятся результаты цифрового мониторинга параметров теплоснабжения зданий, полученные на основе использования внедренных автоматизированных систем.

Ключевые слова: теплоснабжение, диспетчерское управление, тепловые сети, полевые технологии.

В настоящее время базовым подходом для регулирования теплоснабжения на стороне потребителей является внедрение автоматизированных индивидуальных тепловых пунктов (АШИ) зданий. На основе внедрения АИТП решаются следующие задачи:

1. Вводится качественно-количественное регулирование потребления тепла, благодаря которому потребитель получает возможность отбирать то количество тепла, которое ему необходимо. При отсутствии же регулирования продавец тепла фактически диктует потребителю, какое количество тепла тот должен у него купить. Для рыночной экономики такая ситуация является неприемлемой. Кроме того, многие тепловые сети гидравлически разрегулированы, работают с пониженными температурными графиками. Внедрение АИТП позволяет адаптировать потребителей к этим условиям.

2. На основе использования АИТП можно оптимизировать режимы теплопотребления. Оптимизация состоит в том, что при заданном уровне комфортности потребителей можно значительно сократить потребление тепла за счет рационального регулирования тепловой нагрузки. Составляющими тепловой нагрузки для административнобытовых и жилых зданий являются отопление, горячее водоснабжение (ГВС) и вентиляция, а для производственных - дополнительно технологическая нагрузка. Для подавляющего большинства потребителей в настоящее время не осуществляется связного регулирования нагрузок, состоящего в рациональном перераспределении тепла.

Сказанное можно наглядно продемонстрировать на примере потребителей, имеющих нагрузку ГВС. В существующих схемах включения подогревателей ГВС без автоматического регулирования при снижении температуры наружного воздуха увеличивается подача тепла на отопление и одновременно на систему ГВС. В итоге, когда на улице мороз и наблюдается дефицит тепла на отопление из кранов ГВС идет

Шнайдер Дмитрий Александрович - к.т.н., доцент кафедры автоматики и управления ЮУрГУ; вИпау-der@ait.susu.ac.ru.

«кипяток», т.е. происходит нерациональное расходование тепловой энергии. Другим фактором, особенно существенным для параллельного включения нагрузки ГВС, является повышение температуры обратного теплоносителя, что говорит о низкой эффективности работы систем теплопотребления. Проведенные обследования реальных промышленных объектов показали, что в ряде случаев температурный перепад между подаваемым и обратным теплоносителем до установки автоматики составлял менее 5 °С. Введение автоматического регулирование и автоматизированного диспетчерского управления теплоснабжением зданий позволило решить указанные проблемы и получить ощутимую экономию как на жилых, так и промышленных объектов.

1. Структура и функции АСДУ

Укрупненная структурная схема автоматизированной системы диспетчерского управления (АСДУ) инженерными системами зданий, приведена на рис. 1.

Диспетчерский пункт

ПЭВМ ПЭВМ Сервер БД

оператора инженера

Локальная сеть (Ethernet)

♦___________

Радиоканал

(GSM/GPRS)

Выделенная линия (КЭ-485)

Объектовые сетевые контроллеры

Полевые сети сбора данных и управления (МісгоІАМ) ____________I__________

Приборы индивидуального и группового коммерческого учета тепла, воды, электроэнергии, домофоны,

Регулирующие клапаны отопления, вентиляции, ГВС, насосные установки, системы управления

Рис. 1. Структура АСДУ теплоснабжением зданий

АСДУ включает в себя на верхнем уровне рабочую станцию диспетчера, на нижнем уровне -тепловые пункты зданий, оснащенные системами сбора информации и автоматического регулирования процессов теплоснабжения.

Основными задачами внедрения АСДУ являются:

• снижение объемов потребления тепла за счет устранения нерационального его использования, особенно в ночные часы системами ГВС, и в осенне-весенний период системами отопления жилых зданий;

• обеспечения требуемых параметров теплоснабжения жилых зданий, повышения качества теплоснабжения и уровня комфортности у потребителей, в том числе при низких температурах наружного воздуха в зимний период.

АСДУ выполняет следующие функции:

• пофасадное качественно-количественное регулирование отопления зданий в зависимости от температуры наружного воздуха;

• двухрежимное регулирование горячего водоснабжения зданий, предусматривающее снижение температуры горячей воды в ночные часы и ее повышение в часы максимального водоразбора;

• задание режимов работы систем отопления и ГВС с операторской станции диспетчера;

• отображение на операторской станции текущих значений температур, расходов и давлений теплоносителя на тепловых вводах зданий, значений текущего и суммарного теплопотребления;

• контроль доступа в помещения тепловых пунктов;

• контроль и автоматическое отключение силового оборудования в случае затопления тепловых пунктов;

• ведение истории процесса, протоколирование событий;

• просмотр и печать отчётов, просмотр трендов.

2. Технические особенности АСДУ

Далее отметим отличительные особенности технической реализации АСДУ, на основе сети полевого уровня MicroLAN.

Сеть MicroLAN является разработкой фирмы Dallas Semiconductor (США), выпускающей широкий ряд оконечных устройств (микросхем), предназначенных для подключения к данной сети, среди которых есть цифровые датчики температуры, электронные ключи управления, устройства аналогового ввода (АЦП) и вывода (ЦАП), позволяющие организовать сбор данных и передачу сигналов управления между технологическим объектом и системой управления. При этом указанные оконечные устройства обладают низкой стоимостью (так, например, рыночная стоимость датчика температуры составляет $3).

Сеть МгсгоЬА!^ обладает следующими основными характеристиками:

• основывается на использовании распространённого двухпроводного либо четырёхпроводного телефонного кабеля или витой пары. Питание оконечных устройств и передача данных могут быть организованы по одним и тем же проводникам шины (двухпроводный кабель) или по отдельным проводам (четырёхпроводный кабель);

• сеть может строиться по шинной или древовидной структуре, что позволяет подключить к ней практически неограниченное число устройств. Адресное пространство составляет 256 устройств. При производстве гарантируется уникальность сетевого адреса для каждого прибора, что избавляет от необходимости назначения адресов в процессе монтажа и наладки. На практике максимальное количество датчиков в сегменте сети определяется главным образом длиной линии связи, нагрузочной способностью драйвера и может составлять 300 шт. и более;

• протяжённость сегмента сети без повторителей может достигать 300 метров;

• скорость обмена 16,3 кбит/с, скорость поиска новых устройств 72 устройства в секунду;

• в процессе функционирования сети 1уП-сгоЬАМ в любой момент времени к ней может быть подключено новое устройство. При этом ведущий (контроллер) может динамически его обнаружить и включить в обмен.

Преимущества подобной системы видны из таких ее характеристик: например, на ее основе можно охватить контролем все помещения жилого дома, при этом сбор информации осуществляется с помощью однопроводной сети, к которой подключены сотни датчиков температуры с цифровым измерением и централизованной обработкой данных. Таким же образом можно организовать измерение и передачу других сигналов, например, сигналов управления, сигналов пожарной и охранной сигнализации.

Для построения АСДУ используется микропроцессорный контроллер МКТ-22, представленный на рис. 1. Данный контроллер специально разработан для управления тепловыми процессами в жилых и промышленных зданиях с использованием современных технологий полевого уровня. Один контроллер может использоваться для автоматизации 5 тепловых пунктов с регулированием отопления, ГВС и вентиляции. В контроллере реализованы оригинальные алгоритмы, позволяющих реализовывать связное регулирование тепловых нагрузок и тем самым производить адаптацию потребителей к низкотемпературным режимам теплоснабжения. Контроллер сертифицирован и выпускается серийно ООО НПП «Политех-

Автоматика», г. Челябинск.

На базе контроллеров МКТ-22 разработана автоматизированная система диспетчерского

управления параметров тепло-, водо- и электро-

Автоматизированная система диспетчерского управления...

снабжения зданий (АСДУ). АСДУ включает в себя на верхнем уровне сервер базы данных на основе СУБД Огас1е и автоматизированные рабочие места (АРМ) диспетчеров, на нижнем уровне - узлы передачи данных и управления инженерными системами зданий.

АСДУ выполняет следующие основные функции:

• автоматическое регулирование отопления, водоснабжения и вентиляции жилых, административных и промышленных зданий;

• автоматическое управление уличным и подъездным электроосвещением;

• задание режимов (графиков) работы систем автоматического регулирования с АРМ диспетчеров;

• отображение на АРМ диспетчеров текущих значений параметров контролируемых технологических процессов;

• контроль доступа в тепловые пункты, электрощитовые и др. помещения зданий;

• просмотр и печать отчётов, просмотр трендов.

Для организации автоматизированных систем сбора и передачи АСДУ поддерживает протоколы обмена данными с теплосчетчиками «Взлет ТСР», «ТЭКОН-Ю/17», «ВКТ-4М», «Теплокон», «Multi-Data», водосчетчиками «US-800», электросчётчиками «ЦЭ6822», а также обеспечивает обмен с базами данных на основе СУБД InterBase и Oracle.

Пример окна программы диспетчера систем тепло- и водоснабжения жилого микрорайона приведен на рис. 2.

3. Цифровой мониторинг теплоснабжения жилых домов на базе АСДУ Как уже отмечалось, характерной особенностью эксплуатации многих сетей централизованного теплоснабжения, в том числе в г. Челябинске, в настоящее время является то, что вместо проектного графика теплоснабжения фактически используется низкотемпературный график, позволяющий

Автоматизированная система диспетчерского контрояя

~ Значения |j£i .'Згідніші! j і* Гобыги>|| <! Отчёты | «І* Графики | гічі.іііі ■■■ifrhviniH I ini i'iiimm »тми.

Твппд

І ТІ. ‘C 1 TP. -c |G1 т/ч IeJ ТА ІРЇ.МП» If.' МПа |(3. Гип/ч ІЕ. Гкая

“3

[комсомольский проспект, 100 N*1, ПОККДЛ 71.5. ШИКШШ 54.2 ШИШ1 22.080 ИШШМ 21.951 ато ШЯВЁЙЁЁВВШ 0.51 ММ— О 333 штш ■ШИЗ 183.0 ■ ш

Комсомольский проспект, 112 N*1, гкадьвг» 1 78.0 45.6 35.852 Э6.269: : 0.806 5137.0

Комсомольский проспект. 112 N»2, гкагьезд 13 72.1 52.7 52,184 52708 0.990 5311.0

до. 40 лет Победы, 10:: Ы*1,по«ьеэац5 6В.З 4ао 24.300 23.800 3350.3

до. 40 лег Победы, 10 М^гкяъ»8«11 БЄ.0 47.1 24.106 23.173 0.495 2747.0

до 40 лет Победы» 10 N*3, гк*гье?зд 14 68L2 45 6 16 450 16635 0.357 2238.0

до. 40 лет Победа, 4 Ыг1,падье®а& 6Б4 47.0 40.577 401981 0.786 3361.0 iE'

до. 40 пег Победы. 8 М^.подьезлб 71.4 49.5 33.910 34.300: 509.8 ffî

9/1 Чичерина, 1 N*î, PKWbea« î 65.0 48,0 4a зоо 4а 432 о. 815 4532.0 ill

до. Чичерин*. 1 . : N*2. подреза 9 67.0 49.0 53338 54 500 0910 3543.0 їй

до Чичерина, 5 N*1, иокъезд 2 71.3 37.4 27.315 25895-.: а5із 2546.0

до. Чичерина, 5 : N*2, тыш 5 700 43.3 35135 34 536 0.751 3512 0 л

Параметры теплоснабжения. Тепловые пункты, C8CS " ■шиви ■¡и ІІІРІІІ шФшт - |

Зааииг , 1 Тепловой пэикг илж&. І Зетогменмвітгбф ІТ2акгФ ІТ2*ілФ ІТ2 общ ІТнвр/СІТгвс ТІНдаФ іїідоф І

Комсомольский проспект, 100 Закрыта 52.0 □

Комсомольски* проспект, 104 N*1.подлая •Зарыта 650 'Мш

Комсомольский проспект. 112 №1, подъезд 1 : : ;3<ЗКрЬ{Га 52.0 m

Комсомольский проспект. 112 N*2. подъезд* 26.9 ;;4

Комсомольский проспект, 112 N*3, подъезд Э •Закрыт* Отсутствует 65.4 і 48.6 37.4 51.4 -11.9 68.4 69.4 704 fl

Комсомольский проспект. 112 f**4, подъезд 13 Закрыта Отсутствует 96.3 і- 41,Є 43.5 50.5 -11.9 64.6 70.0 70,3

до. 40 лет Победы. 10 МИ,пс*гьвзд5 Закрыта 58.3

до. 40 лег Победы, 10 N*2, подъезд 1 ! 63.6

до. 40 лет Победы. 10 N*3, гк»ье«д 14 Закрыт« 64.1

до 40 лег Победы, 4 N*1, пааъезд 5 : Закрыта 20.0 lv|

до. 40 пет Победы, 8 N*1, подыктб Закрыта 867

до. Чичерина, 1 N*1, гк&гьеэд і Зачл>гга 625 .»1

до Чичерина; 5 N*1, nofsbtsaa. 2 .Закрыта Отсутствует 64.3: ::ЗЄ4: 44 8 ..:53.1. 67.5 таз 690 ІІ

до Чичерина, 5 N*2, подъезд 5 Закрыта Отсутствует 57.9 : 3&Є: 41.5: 46.8 -11.3 650 698 69.3 Jj

Пшъммпи iftimtiUnMi Mfnruilhniiua iVUTl* ~ ~ t ' .... ШІШшш Ш ¡¡¡¡§|

:

Здание < ' II вод \Grnc тЛ 1 ap

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Комсомольский проспит, ТОО ::М*1,падвая 3153

Комсомольский проспект, 112 : : : N»2» ПОйЪвЗЛ і 3 2.058

до.Чичерима, 1 MŸ1, поеть/їзд 1 1.125 лі

Пидканмовмихим 1801 200617 23 44

Рис. 2. Пример окна программы диспетчера систем тепло- и водоснабжения жилого микрорайона

• контроль и автоматическое отключение силового оборудования в случае затопления тепловых пунктов;

• ведение истории процесса, протоколирование событий;

повысить выработку электроэнергии на ТЭЦ и снизить потребление топлива. Негативным фактором введения низкотемпературного графика на стороне потребителей является нехватка тепла на отопление зданий при низких температурах наружного воздуха. Отсюда актуальной является

задача выявления резервов тепла и нормализации теплоснабжения потребителей при низкотемпературных режимах.

В этой связи стоит обратить внимание, что низкотемпературное теплоснабжение используется как базовый подход к энергосбережению в передовых странах Запада и, в частности, в Дании. При этом датские исследования показали, что и для стран Восточной Европы существует заложенный при проектировании запас по площади отопительных приборов, достаточный для нормальной работы при пониженных температурах подаваемого теплоносителя.

В целях практического изучения возможностей адаптации потребителей к низкотемпературному теплоснабжению на базе АСДУ был проведен цифровой мониторинг теплоснабжения жилых домов Курчатовского района г. Челябинска при крайне низких температурах наружного воздуха (до -40 °С) в январе 2006 г.

На рис. 3-6 приведены графики изменения фактического потребления тепла домами, график изменения температуры воды в системе ГВС, а также графики изменения расходов и температур сетевой воды на вводах соответствующих тепловых пунктов и график изменения температуры наружного воздуха за рассматриваемый период.

8:00 20:00 8:00 20:00 8:00 20:00 8:00 20:00 8:00 Рис. 3. Тепловая нагрузка зданий, Гкал/ч

Рис. 4. Температура ГВС, °С

Рис. 5. Параметры обратной воды: температура, °С (верхние графики), расход, т/ч (нижние графики)

Рис. 6. Температура наружного воздуха, °С

Анализ графиков показывает, что при низких температурах наружного воздуха Г„ар подача тепла Q на дом, оборудованный системой автоматического регулирования, выше, чем дома без автоматики.

В то же время, автоматизированный дом имеет более низкий расход теплоносителя из сети С\ и более низкую температуру обратной воды Т2, возвращаемой в теплосеть.

При этом система автоматического регулирования обеспечивает поддержание температуры горячей воды Ггес вблизи заданного нормативного значения (60 °С), в то время как температура горячей воды в здании без автоматики значительно превышает нормативные значения.

С другой стороны опыт эксплуатации системы АСДУ при более высоких температурах, особенно в весенне-осенний период, показал, что экономия тепла и воды при ее использовании составляет до 20% и более в зависимости от погодных условий.

Заключение

АСДУ теплоснабжением на основе сети полевого уровня 1УПсгоЬАН позволяет организовать многообразные функции контроля и регулирования параметров тегоюпотребления в сетевом районе при минимальных затратах.

В комплексе представленное аппаратурное и программное обеспечение позволяет успешно решать задачи мониторинга и регулирования сложных тепловых систем с целью повышения их энергетической эффективности.

Литература

1. Шнайдер, Д. А. Автоматизированная система мониторинга и управления технологическими процессами на основе сети МкгоЬап / Д. А. Шнайдер, М. В. Шишкин // Новые программные средства для предприятий Урала, выпуск 1: Сборник трудов Региональной научно-технической конференции / ред. В. Д. Тутарова. -Магнитогорск: Изд-во МГТУ, 2002. - С. 84-89.

Поступила в редакцию 2 апреля 2008 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.