Научная статья на тему 'Automation of measurements of signals of aircraft transponders in information measuring stands on the basis of standard Vp and SDR technologies'

Automation of measurements of signals of aircraft transponders in information measuring stands on the basis of standard Vp and SDR technologies Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
142
30
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ВИРТУАЛЬНЫЙ ПРИБОР / ВИРТУАЛЬНАЯ ИЗМЕРИТЕЛЬНАЯ СИСТЕМА / ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ СИСТЕМА / AFDX / FPGA / SDR / LABVIEW / СТАНДАРТ PXI

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Simonov P.I., Kubankov Y.A., Ignatova V.N.

Currently, to solve measurement problems, measurement automation, there is an established set of measurement standards and platforms, as well as a set of software development tools. At the same time, it should be noted that the use of the open measuring standard PXI in conjunction with the graphical programming environment LabVIEW is currently not uncommon and is increasingly used in various fields [1, 2], including aircraft instrumentation [3]. At the same time, one of the most innovative approaches to building automated PXI/PXIe test benches is to use measurement modules based on programmable radio technology (software-defined radio, SDR) [4, 5], which greatly simplifies the programming and debugging process by using LabVIEW unified software development environment. The basic rules for transmitting request signals and receiving aircraft response signals in a secondary radar system are considered. The main components of automated test benches for checking aircraft transponders are considered. The main methods for measuring the energy and time characteristics of response signals are considered. The main functions of the measuring stand, built on the basis of the measuring standard PXI and SDR, are shown, its interaction with the aircraft transponder by means of protocols based on ARINC 664 Part 7 is shown. The main categories of checks of aircraft transponders are considered. It is noted that the use of traditional test equipment is undesirable due to the likely operator overload. It is shown that currently the AFDX networks are widely used in the design of onboard surveillance systems. It is noted that their inclusion in the contour of the automated measuring stand allows to increase the automation of checks.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Автоматизация измерений сигналов самолётных приемоответчиков в информационных измерительных стендах на основе стандартных технологий ВП и SDR

Рассмотрены основные правила передачи сигналов запроса и приема сигналов ответа воздушных судов в системе вторичной радиолокации. Описаны компоненты автоматизированных измерительных стендов для проверки приемоответчиков воздушных судов. Рассмотрены основные способы измерения энергетических и временных характеристик ответных сигналов. Приведены функции измерительного стенда, построенного на основе измерительного стандарта PXI и SDR, показано его взаимодействие с самолетным приемоответчиком посредством протоколов на основе спецификации ARINC 664 часть 7. Рассмотрены основные категории проверок самолетных приемоответчиков. Отмечено, что использование традиционной контрольно-проверочной аппаратуры нежелательно, ввиду вероятной перегрузки оператора. Показано, что в настоящее время получило широкое применение сетей AFDX при проектировании бортовых систем наблюдения. Сформулирован вывод, что включение этих сетей в контур автоматизированного измерительного стенда позволяет повысить автоматизацию проверок.

Текст научной работы на тему «Automation of measurements of signals of aircraft transponders in information measuring stands on the basis of standard Vp and SDR technologies»

AUTOMATION OF MEASUREMENTS OF SIGNALS OF AIRCRAFT TRANSPONDERS IN INFORMATION MEASURING STANDS ON THE BASIS OF STANDARD VP AND SDR TECHNOLOGIES

DOI 10.24411/2072-8735-2018-10239

Pavel I. Simonov,

State research Institute of aviation systems (SRIAS), Moscow, Russia, sonar83@mail.ru

Yuri A. Kubankov,

MTUCI, Moscow, Russia, yury.kubankov@ya.ru Valentina N. Ignatova,

All-Russia Research Institute "Etalon" (ARRI "Etalon"), Moscow, Russia, brs1701@ya.ru

Keywords: virtual instruments, virtual measurement system, information and measuring system, AFDX, FPGA, SDR, LabVIEW, PXI.

Currently, to solve measurement problems, measurement automation, there is an established set of measurement standards and platforms, as well as a set of software development tools. At the same time, it should be noted that the use of the open measuring standard PXI in conjunction with the graphical programming environment LabVIEW is currently not uncommon and is increasingly used in various fields [1, 2], including aircraft instrumentation [3]. At the same time, one of the most innovative approaches to building automated PXI/PXIe test benches is to use measurement modules based on programmable radio technology (software-defined radio, SDR) [4, 5], which greatly simplifies the programming and debugging process by using LabVIEW unified software development environment.

The basic rules for transmitting request signals and receiving aircraft response signals in a secondary radar system are considered. The main components of automated test benches for checking aircraft transponders are considered. The main methods for measuring the energy and time characteristics of response signals are considered. The main functions of the measuring stand, built on the basis of the measuring standard PXI and SDR, are shown, its interaction with the aircraft transponder by means of protocols based on ARINC 664 Part 7 is shown. The main categories of checks of aircraft transponders are considered. It is noted that the use of traditional test equipment is undesirable due to the likely operator overload. It is shown that currently the AFDX networks are widely used in the design of onboard surveillance systems. It is noted that their inclusion in the contour of the automated measuring stand allows to increase the automation of checks.

Information about authors:

Pavel I. Simonov, Candidate of Technical Sciences, Leading Engineer, State research Institute of aviation systems (SRIAS), Moscow, Russia Yuri A. Kubankov, Candidate of Economic Sciences, Associate Professor, MTUCI, Moscow, Russia Valentina N. Ignatova, engineer, All-Russia Research Institute "Etalon" (ARRI "Etalon"), Moscow, Russia

Для цитирования:

Симонов П.И., Кубанков Ю.А., Игнатова В.Н. Автоматизация измерений сигналов самолётных приемоответчиков в информационных измерительных стендах на основе стандартных технологий ВП и SDR // T-Comm: Телекоммуникации и транспорт. 2019. Том 13. №2. С. 70-75.

For citation:

Simonov P.I., Kubankov Yu.A., Ignatova V.N. (2019). Automation of measurements of signals of aircraft transponders in information measuring stands on the basis of standard VP and SDR technologies. T-Comm, vol. 13, no.2, pр. 70-75.

Introduction

Currently, Lab VI I* W is iun wily an elective so ft ware development tool for measuring systems based on traditional !'XI measurement modules, but also for f'XI modules that use built-in high-speed FPCAs let solve measurement problems, which! are the basis of SDR. Thus, I he basic parameters of the hardware components of tilt automated measuring stands will be reconfigurable (that is, programmable), and not hardwan> dcpcudent. as in traditional analogue transceiver systems.

This approach provides several advantages:

- the possibility of reconfiguration of the IPtiA in the automated measuring stand, depending on the type and purpose of ihe on-board unit being cheeked;

liie possibility of synthesizing almosi any measuring instrument developed for specific narrowly focused mCt*iUrit1g tasks;

- the possibility of analysing and researching rapid processes associated with tlie temporal characteristics of radio transceiver cycles;

relative simplicity oi integration into already existing measuring systems and complexes.

In particular, this approach is used in the construction of information measuring stands Jbr testing surveillance systems

Secondary location tasks

We give a brief description of the surveillance system. The basts of the observation system is a secondary location system whose operation boils down to ihe foflowing; a beam of a narrowly directed anicnna rotating 360 " ihnough pulses oi" a certain shape and sequence generates so-cailed, request [7], which is transmitted from the terrestrial interrogator to the aircraft's transponder at a frequency of 1030 MHz. Aircraft Ircinsponders receiving this request process it and t runs mil I he response information to the ground .station at a frequency of 1090 Mil/, also hi the fonn of a specific fonii and sequence of pulses (fig. t).

Jig. 1. Ck'nerat schcmc of functioning of SKK

In civil aviation, airborne transponders operate in ihe following modes: A/C modes ATCRliS fAir Traffic Conlrol Radar Beacon System) Mode Select (Mode S), which is currently the main.

The basis of the request signal of mode S is a pulse-modulated signal with internal phase modulation. Consider il in detail. Mode S request consists of three main pulses: lJl, ¡'2 and P6. lie lore putse P6, a pair of pulses PI - P2 is transmitted, which suppresses responses from transponders with A/C mode in order to eliminate synchronous distortions due to accidental operation from requests in mode S. Pulse Pi is phase-modulated, The very llrst phase change at I SOo is called synchronous phase reversal. Synchronous phase reversai in pulse P6 indicates the point in time from wltfcb the demodulation of time intervals (so-called data eltips) with a duration of 0.25 ps begins. Hits series of data chips begins 0.5 ps after synchronous phase reversal and ends 0.5 its before (he lulling edge of pulse T'6 dig. 21. The phase reversal may or may not lake place in front of each data chip for eneiiding, the value of binary information re Heeled by it. Phase reversal during dala transmission lakes plaec only al a time equal to N1x0.25 jjs + 11,02 |bs (N is equal to or greater ihan 2) after synchronous phase reversing. A pulse of P6 with a duration of Iii.25 pä contains no more lhan 5b rollovers of the data phase. Pulse Рб with a duration of 30,25 us contains no more than 112 phase overturns during data transmission.

2 0 и s

- г.?} и » *

J l£t|d

* OJïm - iS[ti

Üum) interval

■H h

4

SiMhranevi ;

pblMTWHl FT5tditid41

<Мщ -

TTTT T-

; ; : !

dJ!J (bp

5jfit lobe шрргвиюп ipnlral liyuf

0S pi

Fir. 2. -Structure of the request signal mwEe S

The mode S response signal is. based on a PPM modulated signal, the information in which is encoded by means of Ihe position of the pulses.

In this case, il Is a signal consisting of four preamble pulses (representing the entry into synchronism) and or 112 one microsecond segments, where a pulse of 0,5 fts is present eilher in its first or in the Second ha If one microsecond interval |7J. The pulse contained in the first pari of line microsecond segment is a binary ONE, and if ihe pulse is contained in the second pari one microsecond segment, then this is a binary ZLRU, The numbering of bits occurs in the order of their transmission, that is. il si arts from the first bit, uhcre the first hit transmitted in ihe message is the most significant bit (MSR) |7|, Information is encoded in fields, each of which consists of at least one hit. It should he noted that this mode is also used by other systems working in conjunction wjtfi the hota transponder, for esample, the AZN-U system (Automatic Dependent Surveillance System in the Liroadcasi Mode). The structure of S mode responses is shown in figure 2.

As it is easy lo assume Itoni fig, 2 and 3. requests and responses of mode S for the purpose o I unambiguous decoding is a deterministic set of bit fields containing a certain lype of request and response in the Ibnn of a certain lype of information

г r\

т

about ill и aircraft We lis! the main request formats (UF) and responses (DP) used by SSR and give them in table I.

ЕЛгЫхк

не mm ■

, I A I I ' I

•4* ■

JU1_ГШ.

•n lL£:

I I I

ngii"

\ I Ik ч

Tpll*

liijjjû

V

IllJ.Jt" 11. J

■ ¡»ТТЛ i

m ч Ф1 ■ in 11

Kir- Structure of Iht response signal mode S

Tabic i

The m л in formats of requests Lt г « I responses used by SSR

Bequest formai Response formai

UF ^—observation, request height data DF 4 - observation, response with height data

UF ы 5 - observation, ¡(Lmilkntion request I"ïF J - observation. Identification response

UГ H - pîmemi call in S mode only BF 11 - general call request

UF - Eieifihi dyia request. Comm-A 111 - lieigbt response, Comm-B

UT1' ■ 21 - identification request. Comm-Л DF 21 - identification response^ Comm-H

The l ask of checking a ire rail Ira us ponders

The specificity of cheeking aircraft transponders is that in the process of checking them. a sufficiently large number of'checked parameter are used: starting from the time parameters of the signals and ending with the time of issuing (he response to the request. !n addition, one of I he main types ol" checks Lire the physical parameters of the signals, both received by the transponder and transmitted by it,

A complete list ill'parameters U> be verified is set mil in DO-18IE "Minimum operational air traffic control radar beacon system/mode select (ATCRHS/mode S) airborne equipment", I lighlight the main categories of checks;

A. Configuring requests

- con figuration of physical parameters of requests: configuration of temporary parameters of requests:

- eon figuring mfcutnalion characteristics of requests:

- configuration of quantitative parameters of requests;

B: Control of accepted responses

■ control of the physical characteristics of response signals;

- control of lime characteristics of received responses;

- control of the quantitative characteristics of the received responses:

- conlnol of information characteristics of the received answers.

An analysis of the types of inspections of aircraft transponders set out in DO 18 It [8] showed thai:

a) lX>-IKni testing procedures involve the use of various traditional measuring instruments or lest equipment (CPS), such as T1C-4K or their equivalent, signal analyzers, etc.;

b) To implement the functionality of cheeks in automated lest benches, it is advisable u> use recotiligutable transceivers based on FFGA (Field Programmable (late Array}, In practice, one o!" these oplions is the use of programmable 1J'P(5A arrays as part of the FIcxftlQ 7966R digital modulator/demodulator and a transceiver module, such as the NT 5791R.

A typical scheme for cheeking aircrall transponders using traditional KlJA is show n in lig. 4,

As can be seen from fig, 4. the operator is entrusted with many functions associated with performing an inspection and requiring him to increase concentration and attention, Given the complexity and diversity of the ebecks performed, their scenarios, and, moreover, the variety of auxiliary work performed by the operator, lor example, recording measurement results in the protocol, performing various mechanical routine work, we should talk about its overload, which objectively reduces the speed of testing, repealabifily measurements, and also increases the likelihood of erroneous actions due to bis fatigue.

Increased aulomafion of verification through the use of AFDX

It is worth noting that there is already a trend towards the transition from on-hoard exchange networks, built on the basis of point-to-point channels and multiple access channels with centralized control, to switched networks based on the ARINC 664 standard «Aircraft Data Network. Part 7, ЛV¡ONICS FULL-DUPLEX SWITCHED ETHERNET NETWORK*. AJUNC 664 is a standard that de lines I he protocol and electrical connect ion specifications for information networks used in a\ ionics.

The main purpose о I" the ARINC 664 standard is to create a deterministic data transmission network that can be used Ibr ihe systems necessary for [light control. This goal is achieved by providing dedicated traffic handvv idths Гог each information ГОШ« in the network and ensuring the availability of the Quality of Service (QoS) specification al each system node 10|.

ГгшлДшимап and tiwri ct CFÇ si

Other Auxiliary

E'4|151JILELC[U Гги1к1л.1 Гог D-1HIK

'"'В- Typical lest scheme for aircraft irunsponders

T

Thus, in automated test benches, it is possible to extend the functionality and automate the verification by using Al-DX to control the operating ¡nodes ¿f the transponder, as well as 10 simulate the input data necessary for their operation.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The inclusion of AKDX in the circuit of the prototype of the stand allocs lest procedures nilining on the automated workplace of the operator (AWS) to control the verification process of the transponder, which is the object of control (OK) (fig. 5).

Taking into account the scheme shown in lig. 4. the operator selects one or several OK tests through the special software (OSS), after which the workstation through the TCP/IP protocol stack configures the stand for the selected test type, and also configures the Ok via Ah'DX protocol: sets the required operation mode and provides other necessary information provided by the lest program. Hie bench sends a lest signal, consisting generally of pulses that form the required request mode, receives a response signal, analy/es the required parameters provided by (he test program and transmits the results to the AWS via TCP/IP, and itself goes into standby mode until the beginning of the next test. The results of the analysis obtained by A KM are compared with (lie required standard, after which the nevl test is performed. Upon completion o Tal I the tests selected by the operator, a protocol with lest results is generated, stored and displayed on the display facilities.

Automated workplace

a,

O " CL. fe L

Ji □ M

H

P

Aulumaicd tnRpjrc lulíjülilctl tal Iwndb

I

rf

Llï[ll[|l|

FH CHASSIS

rrjb litct úpct-iñRig feYilctH

- 7« &fi&A$*i|iu! I.TDS) n

T—hB nm,Hwinni

RfpiS tifcifer aitlyéiTW-'A) RTi

Inrv - J r _- II

Hfml Tluif Ditpoicfafr

L «l' Ali tpa hi VDF !■■ ■■T» TM*B ■ M ■ wWPB It

<f",|f(1,|rHL|C|L,|||0.<ft MH,|

rrfatt jntrrrvfatr iqpial tptkf

iJvirirnaru dlKll lau^A i IMUdi)

JmreJWitfT [irwJ Jrmtfiipvi M4ui*r# upul

mtaiivcpuiirpuj umrrvn

I I I I I t

¡__Trii Dufo

t M

ülfp liv ,1 TI iw-mj'ill

IsaEB

tig. $, The general scheme of the automated measuring standi usinji AFDX

Based on the scheme shown in fig. 5, as well as the description of the verification process, the block diagram of the automated measuring stand is shown in tig. ft,

iiiven the above scheme, the verification process OK is as follows. Using cables, the stand is connected to the UK, after which the operator launches a top-level program on the HOST PC, lhe so-called, test manager, and selects one or more test programs.

Kelore the start of each lesl, the lest program, if necessary, configtqes the OK via AFDX, selects the required mode of its operation, and then generates the type oT testing signal and the required number of transceiver cycles, and then sends the given signal to OK- An FPGA-based Sim receiver eons ¡sting of a booth receives and demodulates signals received from the OC, measures the parameters provided by the test anil sends them {if necessary) to the real-time system lor decoding. The results of the measured parameters are relumed to I he test manager, where I lie test results from the measurement protocol.

Fiji, 6. Structural automated measuring bench

A test program is a file containing a set of commands thai form the verification algorithm. A test program is an API function that generates and transmits control commands via a TCP/IP protocol stack to a network packet manager in a realtime system. The network packet manager in the real-lime system receives incLiming packets, filters and distributes them to the appropriate subroutines responsible for the operation of the corresponding hardware. Each subroutine accepts commands that are intended only for it and translates them into low-level hardware control commands, receives data from the hardware, translates them into network packets, and sends them back to the packet manager, which then transfers ihem lo the test program. The architecture of open source software is shown in fig. 7.

fie. 1. Spécial software architecture

7T\

T

References

Conclusion

Thus, the inclusion of AFDX networks in the circuit of an automated measuring bench allowed us to automate the following processes related to the verification of aircraft transponders:

- execution of test procedures associated with the change in the physical parameters of signals in time;

- execution of test procedures associated with the change in the quantitative parameters of signals in time;

- counting the received answers and decoding them;

- setting up the modes of operation of aircraft transponders;

- recording of measurement results in the protocol and comparing them with the norm;

- taking into account the accumulated statistics for each verified transponder, it is possible to predict their technical condition.

The analysis of DO-181E, as well as the stages of work on the verification of aircraft transponders, allows us to conclude that:

- the combined use of virtual instrument technology and SDR reduces the development time of new and adaptation of existing automated measurement stands and systems through a single development environment;

- to increase the functionality of the automated measuring stand through the use of ^configurable measuring modules based on PXI/PXIe.

Using the capabilities of AFDX in the design of automated booths provides a number of the following advantages:

- increase the rate of automation of verification procedures by using the AFDX protocol to control the OK;

- the ability to analyze and explore the rapid processes associated with the transmission and reception of aviation signals, through the use of modular high-speed vector transceivers based on FPGA.

1. Simonov P.I., Kubankov Yu.A. Improving the quality of testing high-frequency radio equipment with radio measuring equipment based on PXI/PXIe standards II Special equipment. 2016. No. 5, pp. 16-21.

2. Simonov P.I. Proposals to increase the number of available devices in virtual measuring systems with a limited number of measuring paths II Systems and means of communication, television and broadcasting. 2012. No I, 2, pp. 65-66,

3. Simonov P.I. The method of decoding ADS-B messages as part of the quality check of the on-board systems of the aircraft as part of automated test benches built in the environment of the graphical programming language LabVIEW // High-Tech Technologies in Earth Space Research. 2018. No. 2, pp. 12-21.

4. Software Defined Radio: Past, Present, and Future. // National Instruments: [website], [2017] .URL: http://www.ni.com/while-paper/53706/en/ (appeal date: 01/17/2019).

5. Technology Software Defined Radio. Theory, Principles and Examples of Hardware Platforms // Wireless Technologies: Network Journal. №2, 2007. URL: http://wireless-e.ru/articles/technologies/2007 2 22.php (appeal date: 07/27/2018).

6. Simonov P.I. Use of VP and SDR technology in automated measurement stands for verification of aircraft transponders // Telecommunication. 2018. No. 12, pp. 52-57.

7. Aviation telecommunications. Volume 4. Observation and collision avoidance systems. Annex 10 to the Convention on International Civil Aviation. — International Civil Aviation Organization. Fifth edition, 2014.

8. DO-181E Airborne Equipment / Washington, DC Minimum Operational Performance Standards for Air Traffic Control (ATCRBS / Mode S) SC-209. RTCA Inc. 2011.

9. Vdovin P.M., Kostenko V.A. Organization of messaging in AFDX networks // Programming. 2017. No. 1, pp. 5-20.

10. Vdovin P.M. Tool system for designing APDX networks // Proceedings of the Moscow Institute of Physics and Technology. 2015. Vol. 7. No. 2 (26), pp. 131-137.

т

АВТОМАТИЗАЦИЯ ИЗМЕРЕНИЙ СИГНАЛОВ САМОЛёТНЫХ ПРИЕМООТВЕТЧИКОВ В ИНФОРМАЦИОННЫХ ИЗМЕРИТЕЛЬНЫХ СТЕНДАХ НА ОСНОВЕ СТАНДАРТНЫХ ТЕХНОЛОГИЙ ВП И SDR

Симонов Павел Игоревич, Государственный научно-исследовательский институт авиационных систем (ГосНИИАС),

Москва, Россия, sonar83@mail.ru Кубанков Юрий Александрович, МТУСИ, Москва, Россия, yury.kubankov@ya.ru Игнатова Валентина Николаевна, Всероссийский научно-исследовательский институт "Эталон" (ВНИИ "Эталон"),

Москва, Россия, brs1701@ya.ru

Аннотация

Рассмотрены основные правила передачи сигналов запроса и приема сигналов ответа воздушных судов в системе вторичной радиолокации. Описаны компоненты автоматизированных измерительных стендов для проверки приемоответчиков воздушных судов. Рассмотрены основные способы измерения энергетических и временных характеристик ответных сигналов. Приведены функции измерительного стенда, построенного на основе измерительного стандарта PXI и SDR, показано его взаимодействие с самолетным при-емоответчиком посредством протоколов на основе спецификации ARINC 664 часть 7. Рассмотрены основные категории проверок самолетных приемоответчиков. Отмечено, что использование традиционной контрольно-проверочной аппаратуры нежелательно, ввиду вероятной перегрузки оператора. Показано, что в настоящее время получило широкое применение сетей AFDX при проектировании бортовых систем наблюдения. Сформулирован вывод, что включение этих сетей в контур автоматизированного измерительного стенда позволяет повысить автоматизацию проверок.

Ключевые слова: виртуальный прибор, виртуальная измерительная система, информационно-измерительная система, AFDX, FPGA, SDR, LabVIEW, стандарт PXI.

Литература

1. Симонов П.И., Кубанков Ю.А. Повышение качества проверки высокочастотных радиотехнических средств радиоизмерительным оборудованием на основе стандартов PXI/PXIe // Специальная техника. 2016. № 5. C. 16-21.

2. Симонов П.И. Предложения по увеличению числа доступных приборов в виртуальных измерительных системах с ограниченным числом измерительных трактов // Системы и средства связи, телевидения и радиовещания. 2012. №1, 2. C. 65-66.

3. Симонов П.И. Методика декодирования сообщений ADS-B как часть проверки качества бортовых систем воздушного судна в составе автоматизированных измерительных стендов, построенных в среде графического языка программирования LabVIEW // Наукоёмкие технологии в космических исследованиях Земли. 2018. № 2. С.12-21.

4. Software Defined Radio: Past, Present, and Future. // National Instruments: [сайт]. [2017]. URL: http://www.ni.com/white-paper/53706/en/ (дата обращения: 17.01.2019).

5. Технология Software Defined Radio. Теория, принципы и примеры аппаратных платформ // Беспроводные технологии: сетевой журн. №2. 2007. URL: http://wireless-e.ru/articles/technologies/2007_2_22.php (дата обращения: 27.07.2018).

6. Симонов П.И. Использование технологии ВП и SDR в автоматизированных измерительных стендах для верификации самолетных приемоответчиков // Электросвязь. 2018. № 12. С.52-57.

7. Авиационная электросвязь. Том 4. Системы наблюдения и предупреждения столкновений. Приложение 10 к Конвенции о международной гражданской авиации. Международная организация гражданской авиации. Издание пятое, 2014.

8. DO-I8IE Minimum Operational Performance Standards for Air Traffic Control Radar Beacon System/Mode Select (ATCRBS/Mode S) Airborne Equipment/ Washington, DC. SC-209. RTCA Inc. 2011.

9. Вдовин П.М., Костенко В.А. Организация передачи сообщений в сетях AFDX// Программирование. 2017. №1. С. 5-20.

10. Вдовин П.М. Инструментальная система проектирования сетей AFDX // Труды Московского физико-технического института. 2015. Т. 7. № 2 (26). С. 131-137.

Информация об авторах:

Симонов Павел Игоревич, к.т.н., ведущий инженер, Государственный научно-исследовательский институт авиационных систем (ГосНИИАС), Москва, Россия

Кубанков Юрий Александрович, к.э.н., доцент, МТУСИ, Москва, Россия

Игнатова Валентина Николаевна, инженер, Всероссийский научно-исследовательский институт "Эталон" (ВНИИ "Эталон"), Москва, Россия

ш

T-Comm Vol.13. #2-2019

i Надоели баннеры? Вы всегда можете отключить рекламу.