УДК 517.98

ATOMICITY IN INJECTIVE BANACH LATTICES¹

A. G. Kusraev

To Semën Kutateladze on occasion of his 70th birthday

This note is aimed to examine a Boolean valued interpretation of the concept of atomic Banach lattice and to give a complete description of the corresponding class of injective Banach lattices.

Mathematics Subject Classification (2010): 46B42, 47B65.

Key words: Injective Banach lattice, atomic Banach lattice, Boolean valued representation, classification.

1. Introduction

The aim of this note is to examine a Boolean valued interpretation of the concept of atomic Banach lattice and to give a complete description of the corresponding class of injective Banach lattices. Some representation and isometric classification results for general injective Banach lattices were announced in [1, 2].

Section 2 collects some needed Boolean valued representation results following [3]. In Section 3 we demonstrate that a Boolean valued interpretation of atomicity yields some "module atomicity" over a certain f-subalgebra of the center. Section 4 deals with Boolean valued Banach lattices of summable families, which turn out to be "building blocks" for general module atomic injective Banach lattices. Section 5 exposes the main results on representation and classification of injective Banach lattices with atomic Boolean valued representation, i. e. those which are atomic with respect to their natural f-module structure.

The needed information on the theory of Banach lattices can be found in [1, 5]. Recall some definitions and notation. A real Banach lattice X is said to be *injective* if, for every Banach lattice Y, every closed vector sublattice $Y_0 \,\subset Y$, and every positive linear operator $T_0: Y_0 \to X$ there exists a positive linear extension $T: Y \to X$ of T_0 with $||T_0|| = ||T||$; see [5, Definition 3.2.3]. Equivalently, X is an injective Banach lattice if, whenever X is lattice isometrically imbedded into a Banach lattice Y, there exists a positive contractive projection from Y onto X; one more equivalence definition states that each positive operator from X to any Banach lattice admits a norm preserving positive extension to any Banach lattice containing X as a vector sublattice, see [3, Theorem 5.10.6]. This concept was introduced by Lotz [6]; a significant advance towards the structure theory of injectives was made by Cartwright [7] and Haydon [8].

^{© 2015} Kusraev A. G.

¹ The study was supported by the Russian Foundation for Basic Research, projects N° 12-01-00623-a, N° 14-01-91339 HHUO-a, and N° 15-51-53119 $\Gamma \Phi EH$ a.

In what follows X stands for a real Banach lattice. We denote by $\mathbb{P}(X)$ the Boolean algebra of all band projections in X. A crucial role in the theory of injective Banach lattices is played by the concept of M-projection. A band projection π in a Banach lattice X is called an *M*-projection if $||x|| = \max\{||\pi x||, ||\pi^{\perp} x||\}$ for all $x \in X$, where $\pi^{\perp} := I_X - \pi$. The collection $\mathbb{M}(X)$ of all M-projections in X is a subalgebra of the Boolean algebra $\mathbb{P}(X)$.

Throughout the sequel \mathbb{B} is a complete Boolean algebra with unit 1 and zero \mathbb{O} , while $\Lambda := \Lambda(\mathbb{B})$ is a Dedekind complete unital AM-space such that \mathbb{B} is isomorphic to $\mathbb{P}(\Lambda)$. The unit of Λ is also denoted by 1. A *partition of unity* in \mathbb{B} is a family $(b_{\xi})_{\xi \in \Xi} \subset \mathbb{B}$ such that $\bigvee_{\xi \in \Xi} b_{\xi} = 1$ and $b_{\xi} \wedge b_{\eta} = \mathbb{O}$ whenever $\xi \neq \eta$. We let := denote the assignment by definition, while \mathbb{N} , \mathbb{Q} , and \mathbb{R} symbolize the naturals, the rationals, and the reals.

2. Boolean Valued Representation

Boolean valued analysis is an useful tool in studying of injective Banach lattices [9]. We need some Boolean valued representation results as presented in [3] and [25].

Applying the Transfer and Maximum Principles to the ZFC-theorem "There exists a field of reals" we find an element $\mathscr{R} \in \mathbb{V}^{(\mathbb{B})}$ for which $[\![\mathscr{R}]$ is a field of reals $]\!] = 1$. We call \mathscr{R} the *reals* within $\mathbb{V}^{(\mathbb{B})}$. The following remarkable result due to Gordon [28] tells us that the interpretation of the reals in $\mathbb{V}^{(\mathbb{B})}$ is a universally complete vector lattice with the Boolean algebra of band projections isomorphic to \mathbb{B} .

Theorem 2.1. Let \mathscr{R} be the reals within $\mathbb{V}^{(\mathbb{B})}$. Then $\mathscr{R} \downarrow$ (with the descended operations and order) is a universally complete vector lattice with a weak order unit $\mathbb{1} := 1^{\wedge}$. Moreover, there exists a Boolean isomorphism χ of \mathbb{B} onto $\mathbb{P}(\mathscr{R} \downarrow)$ such that the equivalences

$$\chi(b)x = \chi(b)y \Longleftrightarrow b \leqslant \llbracket x = y \rrbracket,$$

$$\chi(b)x \leqslant \chi(b)y \Longleftrightarrow b \leqslant \llbracket x \leqslant y \rrbracket$$
(G)

hold for all $x, y \in \mathscr{R} \downarrow$ and $b \in \mathbb{B}$.

 \triangleleft See [3, Theorem 2.2.4] and [25, Theorem 10.3.4]. \triangleright

DEFINITION 2.2. A complete Boolean algebra of *M*-projections in *X* is an arbitrary order complete and order closed subalgebra $\mathbb{B} \subset \mathbb{M}(X)$. A Banach lattice *X* is said to be \mathbb{B} -cyclic whenever it is a \mathbb{B} -cyclic Banach space with respect to a complete Boolean algebra \mathbb{B} of *M*projections. If *X* has the Fatou and Levi properties (see [3, 5.7.2]), then $\mathbb{M}(X)$ itself is an order closed subalgebra of the complete Boolean algebra $\mathbb{P}(X)$.

DEFINITION 2.3. Let $\Lambda = \mathscr{R} \Downarrow$ be the bounded part of the universally complete vector lattice $\mathscr{R} \downarrow$; i. e., Λ is the order-dense ideal in $\mathscr{R} \downarrow$ generated by the weak order unit $\mathbb{1} := 1^{\wedge} \in \mathscr{R} \downarrow$. Take a Banach space \mathscr{X} within $\mathbb{V}^{(\mathbb{B})}$ and put $\mathscr{X} \Downarrow := \{x \in \mathscr{X} \downarrow : |x| \in \Lambda\}$. Equip $\mathscr{X} \Downarrow$ with some *mixed norm* by putting $||x|| := |||x|||_{\infty}$ for all $x \in X$, where the order unit norm $|| \cdot ||_{\infty}$ is defined as $||\lambda||_{\infty} := \inf\{0 < \alpha \in \mathbb{R} : |\lambda| \leq \alpha \mathbb{1}\}$ ($\lambda \in \Lambda$). In this situation, $(\mathscr{X} \Downarrow, || \cdot ||)$ is a Banach space called the *bounded descent* of \mathscr{X} . The terms \mathbb{B} -isomorphism and \mathbb{B} -isometry mean that isomorphism or isometry under consideration commutes with the projections from \mathbb{B} , see [3, 5.8.9].

Theorem 2.4. A bounded descent of a Banach lattice from the model $\mathbb{V}^{(\mathbb{B})}$ is a \mathbb{B} -cyclic Banach lattice. Conversely, if X is a \mathbb{B} -cyclic Banach lattice, then in the model $\mathbb{V}^{(\mathbb{B})}$ there exists up to the isometric isomorphism a unique Banach lattice \mathscr{X} whose bounded descent is isometrically \mathbb{B} -isomorphic to X. Moreover, $\mathbb{B} = \mathbb{M}(X)$ if and only if [[there is no M-projection in \mathscr{X} other than 0 and \mathscr{X}]] = 1.

 \triangleleft See [3, Theorem 5.9.1]. \triangleright

DEFINITION 2.5. The element $\mathscr{X} \in \mathbb{V}^{(\mathbb{B})}$ from Theorem 2.1 is said to be the *Boolean-valued representation of X*.

Theorem 2.6. Let X be a Banach lattice with the complete Boolean algebra $\mathbb{B} = \mathbb{M}(X)$ of M-projections, Λ be a Dedekind complete unital AM-space such that $\mathbb{P}(\Lambda)$ is isomorphic to \mathbb{B} . Then the following assertions are equivalent:

(1) X is injective.

(2) X is lattice \mathbb{B} -isometric to the bounded descent of some AL-space from $\mathbb{V}^{(\mathbb{B})}$.

(3) There exists a strictly positive Maharam operator $\Phi : X \to \Lambda$ with the Levi property such that $X = L^1(\Phi)$ and $||x|| = ||\Phi(|x|)||_{\infty}$ for all $x \in X$.

(4) There is a Λ -valued additive norm on X such that $(X, |\cdot|)$ is a Banach–Kantorovich lattice and $||x|| = ||\mathbf{x}||_{\infty}$ for all $x \in X$.

 \triangleleft See [3, Theorem 5.12.5]. \triangleright

Theorem 2.7. Suppose that X is a Banach lattice and \mathscr{X} is the completion of the metric space X^{\wedge} within $\mathbb{V}^{(\mathbb{B})}$. Then $[\![\mathscr{X}]$ is a Banach lattice $]\!] = \mathbb{1}$ and $\mathscr{X} \Downarrow$ is lattice \mathbb{B} -isometric to $C_{\#}(Q, X)$ equipped with the norm $\|\varphi\| = \sup\{\|\varphi(q)\| : q \in \operatorname{dom}(\varphi) \subset Q\}$ ($\varphi \in C_{\#}(Q, X)$).

 \triangleleft The proof is a due modification of [25, 11.3.8]. \triangleright

3. Boolean Valued Atomicity

In this section we present Boolean valued interpretation of atomicity.

DEFINITION 3.1. A positive element x of a B-cyclic Banach lattice X is said to be Bindecomposable or a B-atom if for any pair of disjoint elements $y, z \in X_+$ with $y + z \leq x$ there exists a projection $\pi \in \mathbb{B}$ such that $\pi y = 0$ and $\pi^{\perp} z = 0$, while X is called B-atomic if the only element of X disjoint from every B-atom is the zero element.

Denote by $\operatorname{at}(\mathscr{X})$ and $\mathbb{B}\operatorname{-at}(X)$ the sets of atoms in \mathscr{X} and $\mathbb{B}\operatorname{-atoms}$ in X, respectively. Let $\operatorname{at}_1(\mathscr{X}) := \{x \in \operatorname{at}(\mathscr{X}) : \|x\| = 1\}$, while $\mathbb{B}\operatorname{-at}_1(X)$ consists of all $x \in \mathbb{B}\operatorname{-at}(X)$ with $\|\pi x\| = 1$ for all $\pi \in \mathbb{B}$. It is easy to see that $\mathbb{B}\operatorname{-at}_1(X) = \{x \in \mathbb{B}\operatorname{-at}(X) : \|x\| = 1\}$.

Proposition 3.2. Let X be a \mathbb{B} -cyclic Banach lattice identified with the bounded descent $\mathscr{X} \Downarrow$ of a Banach lattice \mathscr{X} , its Boolean valued representation $\mathscr{X} \in \mathbb{V}^{(\mathbb{B})}$. Then the following assertions hold:

- (1) \mathbb{B} -at $(X) = \operatorname{at}(\mathscr{X}) \Downarrow$.
- (2) \mathbb{B} -at₁(X) = at₁(\mathscr{X}) \Downarrow .
- (3) X is \mathbb{B} -atomic if and only if $[\mathscr{X} \text{ is atomic}] = \mathbb{1}$.

 \triangleleft (1) Observe that $x \in \operatorname{at}(\mathscr{X})$ if and only if $x \in \mathscr{X}_+$ and for any two positive disjoint elements $x_1, x_2 \in \mathscr{X}$ with $x_1 + x_2 \leq x$ we have $x_1 = 0$ or $x_2 = 0$. Now, given $x \in \operatorname{at}(\mathscr{X}) \Downarrow$ with $y + z \leq x$ for some disjoint $y, z \in X_+$, we put $b := \llbracket y = 0 \rrbracket$ and $\pi := \chi(b)$. Since $\llbracket y \neq 0 \to z = 0 \rrbracket = 1$, we have $\llbracket y \neq 0 \rrbracket \leq \llbracket z = 0 \rrbracket$ and thus $b^* = \llbracket y \neq 0 \rrbracket \leq \llbracket z = 0 \rrbracket$. By (G) we have $\pi y = 0$ and $\pi^{\perp} z = \chi(b^*) z = 0$. Thus, $\operatorname{at}(\mathscr{X}) \Downarrow \subset \mathbb{B}\operatorname{-at}(X)$ and for the converse inclusion the argument is similar.

(2) Taking into account the representation $\mathbb{B}\operatorname{-at}_1(X) = \{x \in \mathbb{B}\operatorname{-at}(X) : |x| = 1\}$ the claim follows easily from the following chain of equivalences:

$$x \in \operatorname{at}_1(\mathscr{X}) \Downarrow \iff \llbracket x \in \operatorname{at}_1(\mathscr{X}) \rrbracket = \mathbb{1} \iff \llbracket x \in \operatorname{at}(\mathscr{X}) \rrbracket = \llbracket \Vert x \Vert_{\mathscr{X}} = \mathbb{1} \rrbracket = \mathbb{1} \\ \iff x \in \mathbb{B}\text{-}\operatorname{at}(\mathscr{X}) \land \Vert x \Vert = \mathbb{1} \iff x \in \mathbb{B}\text{-}\operatorname{at}_1(X).$$

(3) Let for a while \bot , \blacksquare , and \blacksquare stand for disjoint complements in \mathscr{X} , $X = \mathscr{X} \Downarrow$, and $\mathscr{X} \downarrow$, respectively. The third claim is immediate from the first one, since the disjoint complement and the descent commute: $(A^{\perp}) \downarrow = (A \downarrow)^{\blacksquare}$, see [3, 1.5.3]. Indeed,

$$(A^{\perp}) \Downarrow = (A^{\perp}) \downarrow \cap X = (A \downarrow)^{\mathbb{I}} \cap X = (A \downarrow \cap X)^{\mathbb{I}} \cap X = (A \Downarrow)^{\mathbb{I}},$$

hence putting $A := \operatorname{at}(\mathscr{X})$ and making use of (1) we deduce that $\operatorname{at}(\mathscr{X})^{\perp} = \{0\}$ within $\mathbb{V}^{(\mathbb{B})}$ if and only if $(\mathbb{B}\operatorname{-at}(X))^{\perp} = \{0\}$. \rhd

Corollary 3.3. Let \mathbb{B} , X, and \mathscr{X} be the same as in Proposition 3.2 and $\Lambda = \Lambda(\mathbb{B})$. Then the following assertions hold:

(1) $x \in X_+$ is a \mathbb{B} -atom if and only if for each $0 \leq y \leq x$ there exists $\lambda \in \Lambda_+$ with $y = \lambda x$.

(2) If x and y are \mathbb{B} -atoms in X_+ then there exist a pair of disjoint projections $\pi, \rho \in \mathbb{B}$ such that $\pi x \perp \pi y$, $\rho x = \lambda u$ and $\rho y = \mu u$ for some $\mu, \lambda \in \Lambda_+$ and u = x + y.

 \triangleleft Interpreting in the model $\mathbb{V}^{(\mathbb{B})}$ the well-known claims corresponding to that particular case when $\mathbb{B} = \{0, I_X\}$ (see [13, Theorem 26.4.]) and using Proposition 3.2 yields the required properties. \triangleright

DEFINITION 3.4. Given a cardinal γ , say that a \mathbb{B} -cyclic Banach lattice X is purely (\mathbb{B}, γ) atomic if $X = \mathscr{D}_0^{\perp \perp}$ for some subset $\mathscr{D}_0 \subset \mathbb{B}$ -at₁(X) of cardinality γ and for every nonzero projection $\pi \in \mathbb{B}$ and every subset $\mathscr{D} \subset \mathbb{B}$ -at₁ (πX) with $\pi X = \mathscr{D}^{\perp \perp}$ we have card $(\mathscr{D}) \geq \gamma$. Evidently, X is purely ($\{0, I_X\}, \gamma$)-atomic if and only if X is atomic and the cardinality of at₁(X) is γ or, equivalently, X is atomic and the cardinality of the set of atoms in $\mathbb{B}(X)$ equals γ . In this case we say also that X is γ -atomic.

Proposition 3.5. A \mathbb{B} -cyclic Banach lattice X is purely (\mathbb{B}, γ) -atomic for some cardinal γ if and only if $[\![\gamma^{\wedge}]$ is a cardinal and \mathscr{X} is γ^{\wedge} -atomic $]\!] = \mathbb{1}$.

 $\leq Sufficiency. Assume that \gamma^{\wedge} is a cardinal and \mathscr{X} is \gamma^{\wedge}-atomic within \mathbb{V}^{(\mathbb{B})}. The latter means that \mathscr{X} is atomic and card(at_1(\mathscr{X})) = \gamma^{\wedge} within \mathbb{V}^{(\mathbb{B})}. If \Delta := at_1(\mathscr{X}) then there exists \phi \in \mathbb{V}^{(\mathbb{B})}$ such that $\llbracket \phi : \gamma^{\wedge} \to \Delta$ is a bijection $\rrbracket = \mathbb{1}$. Note that $\phi \downarrow$ embeds γ into $\Delta \downarrow$ by [3, 1.5.8] and $\Delta \downarrow = \mathbb{B}$ -at_1(X) by Proposition 3.1. It follows that the set $\mathscr{D} := \phi \downarrow(\gamma)$ of cardinality γ is contained in \mathbb{B} -at_1(X) and $X = \mathscr{D}^{\perp \perp}$, since $\Delta = \mathscr{D} \uparrow$ and $\mathscr{X} = \Delta^{\perp \perp}$. Take $b \in \mathbb{B}$ and a set \mathscr{D}' of cardinality β which is contained in \mathbb{B} -at_1(X) and generates bX, i. e. $bX = (\mathscr{D}')^{\perp \perp}$. Then $\mathscr{D}' \uparrow$ is of cardinality card(β^{\wedge}) and $\mathscr{X} = (\mathscr{D}' \uparrow)^{\perp \perp}$ within the relative universe $\mathbb{V}^{([\mathbb{O}, b])}$. By [3, 1.3.7] $\llbracket \gamma^{\wedge} = \operatorname{card}(\gamma^{\wedge}) \leq \operatorname{card}(\beta^{\wedge}) \leq \beta^{\wedge} \rrbracket = \mathbb{1}$ and so $\gamma \leq \beta$.

Necessity. Assume now that X is purely (\mathbb{B}, γ) -atomic and $X = \mathscr{D}^{\perp \perp}$ for some $\mathscr{D} \subset \mathbb{B}$ at₁(X) of cardinality γ . Then within $\mathbb{V}^{(\mathbb{B})}$ we have $\Delta := \mathscr{D} \uparrow \subset \operatorname{at}_1(\mathscr{X}), \ \mathscr{X} = \Delta^{\perp \perp}$ and and the cardinalities of Δ and γ^{\wedge} coincide, i. e. $\operatorname{card}(\Delta) = \operatorname{card}(\gamma^{\wedge})$. By [3, 1.9.11] the cardinal $\operatorname{card}(\gamma^{\wedge})$ has the representation $\operatorname{card}(\gamma^{\wedge}) = \min_{\alpha \leq \gamma} b_{\alpha} \alpha^{\wedge}$, where $(b_{\alpha})_{\alpha \leq \gamma}$ is a partition of unity in \mathbb{B} . It follows that $b_{\alpha} \leq [\![\Delta^{\perp \perp} = X \text{ and } \Delta \text{ is of cardinality } \alpha^{\wedge}]\!] = 1$. If $b_{\alpha} \neq \mathbb{O}$ then $(b_{\alpha} \wedge \Delta)^{\perp \perp} = b_{\alpha} \wedge \mathscr{X}$ and $b_{\alpha} \wedge \Delta$ is of cardinality $\operatorname{card}(\gamma^{\wedge}) = \alpha^{\wedge} \leq \gamma^{\wedge}$ in the relative universe $\mathbb{V}^{[\mathbb{O}, b_{\alpha}]}$. (Concerning $b_{\alpha} \wedge \Delta$ and $b_{\alpha} \wedge \mathscr{X}$ and their properties see [3, 1.3.7].) It is easy that $b_{\alpha} \wedge \Delta = (b_{\alpha} \mathscr{D})^{\uparrow}$ and so $(b_{\alpha} \mathscr{D})^{\perp \perp} = bX$. By hypothesis X is purely (\mathbb{B}, γ) -atomic, consequently, $\alpha \geq \operatorname{card}(b_{\alpha} \mathscr{D}) \geq \gamma$, so that $\alpha = \gamma$, since $\alpha \leq \gamma$ if and only if $\alpha^{\wedge} \leq \gamma^{\wedge}$. Thus, $\operatorname{card}(\gamma^{\wedge}) = \gamma^{\wedge}$ whenever $b_{\alpha} \neq \mathbb{O}$ and γ^{\wedge} is a cardinal within $\mathbb{V}^{(\mathbb{B})}$. \triangleright

DEFINITION 3.6. Let γ is a cardinal. A complete Boolean algebra \mathbb{B} (as well as its Stone representation space) is said to be γ -stable whenever $\mathbb{V}^{(\mathbb{B})} \models \gamma^{\wedge} = \operatorname{card}(\gamma^{\wedge})$, i.e. $[\![\gamma^{\wedge}]$ is a cardinal $]\!] = \mathbb{1}$. An element $b \in \mathbb{B}$ is called γ -stable if the relative Boolean algebra $[\mathbb{O}, b]$ is γ -stable, see [25, Definition 12.3.7]. Finally, say that a partition of unity $(\pi_{\gamma})_{\gamma \in \Gamma}$ in \mathbb{B} with Γ a set of cardinals is stable if π_{γ} is γ -stable for all $\gamma \in \Gamma$. **Theorem 3.7.** Let X be a B-atomic B-cyclic Banach lattice. There exist a set of cardinals Γ and a partition of unity $(\pi_{\gamma})_{\gamma \in \Gamma}$ such that $\mathbb{B}_{\gamma} := [\mathbb{O}, \pi_{\gamma}]$ is γ -stable and $\pi_{\gamma}X$ is purely $(\mathbb{B}_{\gamma}, \gamma)$ -atomic for all $\gamma \in \Gamma$.

⊲ If a B-cyclic Banach lattice X is B-atomic then its Boolean valued representation \mathscr{X} is atomic within $\mathbb{V}^{(\mathbb{B})}$ according to Proposition 3.1. Denote $\gamma_0 := \operatorname{card}(\operatorname{at}_1(\mathscr{X}))$. By [3, 1.9.11] γ_0 is a mixture of some set of relatively standard cardinals. More precisely, there are nonempty set of cardinals Γ and a partition of unity $(b_{\gamma})_{\gamma \in \Gamma}$ in \mathbb{B} such that $x = \min_{\gamma \in \Gamma} b_{\gamma} \gamma^{\wedge}$ and $\mathbb{V}^{(\mathbb{B}_{\gamma})} \models \gamma^{\wedge} = \operatorname{card}(\gamma^{\wedge})$ with $\mathbb{B}_{\gamma} := [\mathbb{O}, b_{\gamma}]$ for all $\gamma \in \Gamma$. It follows that $b_{\gamma} \wedge \mathscr{X}$ is atomic Banach lattice and $\gamma^{\wedge} = \operatorname{card}(\operatorname{at}_1(b_{\gamma} \wedge \mathscr{X}))$ within $\mathbb{V}^{(\mathbb{B}_{\gamma})}$. It remains to apply Proposition 3.5. ⊳

4. The Banach Lattices $l^1(\Gamma, \Lambda)$ and $C_{\#}(Q, l^1(\Gamma))$

We now consider some special injective Banach lattices that are building blocks for the class of all \mathbb{B} -atomic injective Banach lattices. Recall that $\Lambda = \Lambda(\mathbb{B})$.

Given a non-empty set Γ , denote by $l^1(\Gamma^{\wedge}) \in \mathbb{V}^{(\mathbb{B})}$ the internal Banach lattice of all summable families $x := (x_{\gamma})_{\gamma \in \Gamma^{\wedge}}$ in \mathscr{R} with the norm $||x||_1 := \sum_{\gamma \in \Gamma^{\wedge}} |x_{\gamma}|$.

Let $l^1(\Gamma, \Lambda)$ stand for the vector space of all order summable families in Λ , i.e.

$$l^1(\Gamma,\Lambda) := \Big\{ \mathbf{x}: \Gamma \to \Lambda: \ |\mathbf{x}|_1 := o \text{-} \sum_{\gamma \in \Gamma} |\mathbf{x}(\gamma)| \in \Lambda \Big\}.$$

The order on $l^1(\Gamma, \Lambda)$ is defined by letting $\mathbf{x} \leq \mathbf{y}$ if and only if $\mathbf{x}(\gamma) \leq \mathbf{y}(\gamma)$ for all $\gamma \in \Gamma$. Evidently, $l^1(\Gamma, \Lambda)$ is an order ideal of the Dedekind complete vector lattice Λ^{Γ} , hence so is $l^1(\Gamma, \Lambda)$. Moreover, $l^1(\Gamma, \Lambda)$ equipped with the norm $\|\mathbf{x}\| := \|\mathbf{x}\|_1\|_{\infty}$ ($\mathbf{x} \in l^1(\Gamma, \Lambda)$) is a \mathbb{B} -cyclic Banach lattice, since $\mathbb{B} = \mathbb{B}(\Lambda)$.

Proposition 4.1. $l^1(\Gamma^{\wedge})$ is a Boolean valued representation of $l^1(\Gamma, \Lambda)$ and thus $l^1(\Gamma, \Lambda)$ and $l^1(\Gamma^{\wedge}) \Downarrow$ are lattice \mathbb{B} -isometric.

 $\exists \mathbf{X} = \|\mathbf{x}^{\Gamma^{\wedge}}\|_{1}$ Straightforward verification shows that $l^{1}(\Gamma, \Lambda)$ is a Banach *f*-module over Λ , see [3, Definitions 2.11.1 and 5.7.1]. The modified ascent mapping $\mathbf{x} \mapsto \mathbf{x}^{\wedge}_{1}$ is a bijection from $(\mathscr{R}\downarrow)^{\Gamma}$ onto $(\mathscr{R}^{\Gamma^{\wedge}})\downarrow$, see [3, 1.5.9]. It follows from [3, 2.4.7] that $|\cdot|_{1}$ is the bounded descent of $\|\cdot\|_{1}$ and hence $\mathbf{x} \in l^{1}(\Gamma, \Lambda)$ if and only if $[\![\mathbf{x}^{\wedge}_{1} \in l^{1}(\Gamma^{\wedge})]\!] = \mathbb{1}$. Moreover, in this event $[\![\mathbf{x}]_{1} = \|\mathbf{x}^{\wedge}_{1}\|_{1}^{2}] = \mathbb{1}$ so that the modified descent induces an isometric bijection between $l^{1}(\Gamma, \Lambda)$ and $(l^{1}\Gamma^{\wedge})\downarrow$. Making use of the definition of modified descent it can be easily checked that this bijection is Λ -linear and order preserving. \triangleright

Proposition 4.2. The Banach lattice $l^1(\Gamma, \Lambda)$ is \mathbb{B} -atomic and injective with $\mathbb{M}(X)$ isomorphic to \mathbb{B} . Moreover, $l^1(\Gamma, \Lambda)$ is purely (\mathbb{B}, γ) -atomic if and only if $[\![\gamma^{\wedge} = \operatorname{card}(\Gamma^{\wedge})]\!] = \mathbb{1}$.

 \triangleleft By Theorem 2.6 (2) and Propositions 3.2 and 4.1 X is injective with $\mathbb{M}(X) \simeq \mathbb{B}$ and \mathbb{B} -atomic. The second part follows from Propositions 3.5 and 4.1, since $l^1(\Gamma^{\wedge})$ is card(Γ^{\wedge})-atomic within $\mathbb{V}^{(\mathbb{B})}$. \triangleright

Proposition 4.3. The norm completion of \mathbb{R}^{\wedge} -normed space $l^{1}(\Gamma)^{\wedge}$ within $\mathbb{V}^{(\mathbb{B})}$ is a Banach lattice which is lattice isometric to the internal Banach lattice $l^{1}(\Gamma^{\wedge})$.

 \triangleleft Denote by \mathscr{L}_1 the completion of $l^1(\Gamma)^{\wedge}$ inside $\mathbb{V}^{(\mathbb{B})}$. Let A be the set of all norm-one atoms in $l^1(\Gamma)$ which is of course bijective with Γ . Then A^{\wedge} and Γ^{\wedge} are also bijective and A^{\wedge} can be considered as the set of all norm-one atoms in $l^1(\Gamma^{\wedge})$. Denote by \mathbb{Q} -lin(A) the set of all linear combinations of the members of A with rational coefficients. Then by [12, 8.4.10] we have $(\mathbb{Q}\text{-lin}(A))^{\wedge} = \mathbb{Q}^{\wedge}\text{-lin}(A^{\wedge})$. Clearly, $\mathbb{Q}^{\wedge}\text{-lin}(A^{\wedge})$ is a dense sublattice in $l^1(\Gamma^{\wedge})$, while $(\mathbb{Q}-\operatorname{lin}(A))^{\wedge}$ is a dense sublattice in $l^{1}(\Gamma)^{\wedge}$ and thus in \mathscr{L}_{1} , since $\mathbb{Q}-\operatorname{lin}(A)$ is dense in $l^{1}(\Gamma)$. Moreover, the norms induced in $(\mathbb{Q}-\operatorname{lin}(A))^{\wedge}$ by $l^{1}(\Gamma^{\wedge})$ and $l^{1}(\Gamma)^{\wedge}$ coincide. Indeed, if $x \in (\mathbb{Q}-\operatorname{lin}(A))^{\wedge}$ is of the form $\sum_{k \in n} r(k) u(k)$ whith $n \in \mathbb{N}$, $r : n \to \mathbb{Q}$, and $u : n \to A$, then $r^{\wedge} : n^{\wedge} \to \mathbb{Q}^{\wedge}$, $u^{\wedge} : n^{\wedge} \to A^{\wedge}$ and $x^{\wedge} = \sum_{k \in n^{\wedge}} r^{\wedge}(k) u^{\wedge}(k)$; therefore,

$$\|x\|_{l^{1}(\Gamma)^{\wedge}} = \|x\|^{\wedge} = \left(\sum_{k \in n} |r(k)|\right)^{\wedge} = \sum_{k \in n^{\wedge}} |r^{\wedge}(k)| = \|x\|_{l^{1}(\Gamma^{\wedge})}.$$

It follows that \mathscr{L}_1 and $l^1(\Gamma^{\wedge})$ are lattice isometric. \triangleright

Corollary 4.4. Let Q be the Stone representation space of $\mathbb{B} = \mathbb{P}(\Lambda)$. Then the injective Banach lattices $l^1(\Gamma, \Lambda)$ and $C_{\#}(Q, l^1(\Gamma))$ are lattice \mathbb{B} -isometric.

 \triangleleft This is immediate from Theorem 2.7 and Proposition 4.3. \triangleright

Corollary 4.5. Given an arbitrary infinite cardinals γ_1 and γ_2 , we may find a Boolean algebra \mathbb{B} such that the injective Banach lattices $l^1(\gamma_1, \Lambda)$ and $l^1(\gamma_2, \Lambda)$ are lattice \mathbb{B} -isometric provided that $\Lambda = \Lambda(\mathbb{B})$. If Q is the Stone representation space of \mathbb{B} then the injective Banach lattices $C_{\#}(Q, l^1(\gamma_1))$ and $C_{\#}(Q, l^1(\gamma_2))$ are also lattice \mathbb{B} -isometric.

 \triangleleft The claim follows from Proposition 4.3 and Corollary 4.4 making use of the *cardinal* collapsing phenomena: There exists a complete Boolean algebra \mathbb{B} such that the ordinals γ_1^{\wedge} and γ_2^{\wedge} have the same cardinality within $\mathbb{V}^{(\mathbb{B})}$, see [3, 1.13.9]. \triangleright

DEFINITION 4.6. A B-cyclic Banach lattice X is called B-separable, if there is a sequence $(x_n) \subset X$ such that the norm closed B-cyclic subspace, generated by the set $\{bx_n : n \in \mathbb{N}, b \in \mathbb{B}\}$, coincides with X. In more detail, X is called B-separable whenever for every $x \in X$ and $0 < \varepsilon \in \mathbb{R}$ there exist an element $x_{\varepsilon} \in X$ and a partition of unity $(\pi_n)_{n \in \mathbb{N}}$ in B such that $||x - x_{\varepsilon}|| \leq \varepsilon$ and $\pi_n x = \pi_n x_n$ for all $n \in \mathbb{N}$. It can be easily seen that X is B-separable if and only if its Boolean valued representation is separable within $\mathbb{V}^{(\mathbb{B})}$. Denote by ω the countable cardinal and put $l^1 := l^1(\omega)$.

Corollary 4.7. For every infinite cardinal γ , there exists a Stonean space Q such that the injective Banach lattice $C_{\#}(Q, l^1(\gamma))$ is \mathbb{B} -separable, with \mathbb{B} standing for the Boolean algebra of the characteristic functions of clopen subsets of Q.

 \triangleleft Apply Corollary 4.5 with $\gamma_1 := \gamma$ and $\gamma_2 := \omega$, where ω is the countable cardinal. It follows that $C_{\#}(Q, l^1(\gamma) \text{ and } C_{\#}(Q, l^1(\omega)))$ are lattice \mathbb{B} -isometric. Moreover, $[l^1(\omega^{\wedge})]$ is separable]] = 1 by transfer principle. Taking into account Proposition 4.1 it remains to observe that $[\mathscr{X}]$ is separable]] = 1 if and only if $\mathscr{X} \Downarrow$ is \mathbb{B} -separable. \triangleright

5. The Main Results

Now we are able to state and prove the main representation and classification results for \mathbb{B} -atomic injective Banach spaces.

DEFINITION 5.1. Let X be an injective Banach lattice. Say that X is centrally atomic if X is B-atomic with $\mathbb{B} = \mathbb{M}(X)$. According to corollary 3.3 this amounts to saying that there is no nonzero element in X disjoint from all Λ -atom, while a Λ -atom is any element $x \in X_+$ such that the principal ideal generated by x is equal to $\Lambda x := \{\lambda x : \lambda \in \Lambda\}$. Given a family of Banach lattices $(X_{\gamma}, \|\cdot\|_{\gamma})_{\gamma \in \Gamma}$, denote by $(\sum_{\gamma \in \Gamma}^{\oplus} b_{\gamma} X)_{l^{\infty}}$ the l^{∞} -sum, the Banach lattice of all families $\mathbf{x} := (\mathbf{x}(\gamma))_{\gamma \in \Gamma}$ with $\mathbf{x}(\gamma) \in X_{\gamma}$ for all $\gamma \in \Gamma$ and $\|\mathbf{x}\| := \sup\{\|\mathbf{x}(\gamma)\|_{\gamma} : \gamma \in \Gamma\} < \infty$.

Lemma 5.2. For a centrally atomic injective Banach lattice X there exist a set of cardinals Γ and a stable partition of unity $(\pi_{\gamma})_{\gamma \in \Gamma}$ in $\mathbb{M}(X)$ such that $\pi_{\gamma}X$ is purely $(\gamma, \mathbb{B}_{\gamma})$ -atomic with $\mathbb{B}_{\gamma} := [\mathbb{O}, \pi_{\gamma}]$ for all $\gamma \in \Gamma$ and injective and the representation holds:

$$X \simeq_{\mathbb{B}} \left(\sum_{\gamma \in \Gamma}^{\oplus} b_{\gamma} X \right)_{l^{\infty}}.$$

 \triangleleft This is immediate from Proposition 3.7. \triangleright

Lemma 5.3. Suppose that the injective Banach lattices $C_{\#}(Q, l^1(\gamma))$ and $C_{\#}(Q, l^1(\delta))$ are lattice \mathbb{B} -isometric, where Q is the Stone space of \mathbb{B} , while γ and δ are infinite cardinals. If \mathbb{B} is γ -stable and δ -stable then $\gamma = \delta$.

 $\exists \ \mathrm{If} \ C_{\#}(Q, l^{1}(\Gamma)) \ \mathrm{and} \ C_{\#}(Q, l^{1}(\Delta)) \ \mathrm{are \ lattice} \ \mathbb{B}\text{-isometric then} \ \mathbb{V}^{(\mathbb{B})} \models ``l^{1}(\gamma^{\wedge}) \ \mathrm{and} \ l^{1}(\delta^{\wedge}) \ \mathrm{are \ lattice \ isometric"} \ \mathrm{and \ thus} \ \mathbb{V}^{(\mathbb{B})} \models \mathrm{card}(\gamma^{\wedge}) = \mathrm{card}(\delta^{\wedge}). \ \mathrm{It \ remains \ to \ observe \ that} \ \mathbb{B} \ \mathrm{isometric"} \ \gamma\text{-stable} \ (\delta\text{-stable}) \ \mathrm{if \ and \ only \ if} \ \mathbb{V}^{(\mathbb{B})} \models \mathrm{card}(\gamma^{\wedge}) = \gamma^{\wedge} \ (\mathrm{respectively \ card}(\delta^{\wedge}) = \delta^{\wedge}). \ \triangleright$

Theorem 5.4. Let X be a centrally atomic injective Banach lattice. Then there is a set of cardinals Γ and a stable partition of unity $(\pi_{\gamma})_{\gamma \in \Gamma}$ in $\mathbb{B} = \mathbb{M}(X)$ such that the following lattice \mathbb{B} -isometry holds:

$$X \simeq_{\mathbb{B}} \left(\sum_{\gamma \in \Gamma}^{\oplus} l^1(\gamma, \Lambda_{\gamma}) \right)_{l^{\infty}},$$

where $\Lambda_{\gamma} = \pi_{\gamma} \Lambda$ ($\gamma \in \Gamma$). If a partition of unity $(\rho_{\delta})_{\delta \in \Delta}$ in \mathbb{B} satisfies the same conditions as $(\pi_{\gamma})_{\gamma \in \Gamma}$, then $\Gamma = \Delta$, and $\pi_{\gamma} = \rho_{\gamma}$ for all $\gamma \in \Gamma$.

 \lhd The required representation follows from Proposition 4.2 and Lemma 5.2.

Assume now that a partition of unity $(\rho_{\delta})_{\delta \in \Delta}$ in \mathbb{B} satisfies the same conditions as $(\pi_{\gamma})_{\gamma \in \Gamma}$. Fix $\delta \in \Delta$ and put $\sigma_{\gamma\delta} := \pi_{\gamma}\rho_{\delta}$ for arbitrary $\gamma \in \Gamma$. If $\sigma_{\gamma\delta} \neq 0$, then the injective Banach lattices $l^{1}(\gamma, \sigma_{\gamma\delta}\Lambda)$ and $l^{1}(\delta, \sigma_{\gamma\delta}\Lambda)$ are lattice $[\mathbb{O}, \sigma_{\delta\gamma}]$ -isometric to the same band $\sigma_{\delta\gamma}X$. By Lemma 5.3 $\gamma = \delta$ and thus $\Delta \subset \Gamma$ and $\rho_{\delta} \leq \pi_{\gamma}$ for all $\delta \in \Delta$. Similarly, $\Gamma \subset \Delta$ and $\rho_{\delta} \geq \pi_{\gamma}$ for all $\gamma \in \Gamma$. \triangleright

REMARK 5.5. Let Q be the Stone representation space of \mathbb{B} . Corollary 4.4 enables us to replace $l^1(\gamma, \Lambda_{\gamma})$ by $C_{\#}(Q_{\gamma}, l^1(\gamma))$ in Theorem 5.4 with a stable partition of unity $(Q_{\gamma})_{\gamma \in \Gamma}$ in he Boolean algebra of clopen subsets of Q. Moreover, if some partition of unity $(P_{\delta})_{\delta \in \Delta}$ satisfies the same conditions, then $\Gamma = \Delta$, and $P_{\gamma} = Q_{\gamma}$ for all $\gamma \in \Gamma$.

Corollary 5.6. Let X be an injective Banach lattice and Q the Stone representation space of $\mathbb{B} = \mathbb{M}(X)$. If X is \mathbb{B} -separable, then X is lattice \mathbb{B} -isometric to $C_{\#}(Q, l^1)$, $l^1 = l^1(\omega)$.

 \triangleleft In Theorem 5.4 each component $l^1(\gamma, \Lambda_{\gamma})$ is \mathbb{B}_{γ} -separable and hence its Boolean valued representation is a separable Banach lattice which is lattice isometric to the internal Banach lattice $l^1(\omega^{\wedge})$. It follows that $l^1(\gamma, \Lambda_{\gamma})$ is lattice \mathbb{B}_{γ} -isometric to $C_{\#}(Q_{\gamma}, l^1)$ for all $\gamma \in \Gamma$ by Proposition 4.1 and Corollary 4.4. From this it is obvious that X is \mathbb{B} -isometric to $C_{\#}(Q, l^1)$. \triangleright

Proposition 5.7. A \mathbb{B} -cyclic Banach lattice is atomic if and only if it is \mathbb{B} -atomic and the Boolean algebra \mathbb{B} is atomic.

 \triangleleft The complete Boolean algebra \mathbb{B} is atomic if and only if $\mathbb{B} = \mathscr{P}(A)$ for some set Aand then X is the l^{∞} -sum of a family of Banach lattices $(X_a)_{a \in A}$. This l^{∞} -sum is evidently atomic if and only if X_a is atomic for all $a \in A$. \triangleright

The following corollary should be compared with [7, Theorem 5.6].

Corollary 5.8. An injective Banach lattice X is atomic if and only if there is a set of cardinals Γ such that the following lattice isometry holds:

$$X \simeq \left(\sum_{\gamma \in \Gamma}^{\oplus} l^1(\gamma)\right)_{l^{\infty}}.$$

 \triangleleft In Remark 5.5 each Q_{γ} is a one-point space by Proposition 5.8 and hence $C_{\#}(Q_{\gamma}, l^{1}(\gamma))$ is lattice isometric to $l^{1}(\gamma)$. \triangleright

DEFINITION 5.9. The partition of unity $(\pi_{\gamma})_{\gamma \in \Gamma}$ in $\mathbb{B} = \mathbb{M}(X)$ satisfying the claim of Theorem 5.4 is called the *decomposition series* of X and is denoted by d(X). Say that the decomposition series $d(X) = (\pi_{\gamma})_{\gamma \in \Gamma}$ and $d(Y) = (\rho_{\gamma})_{\gamma \in \Gamma}$ of centrally atomic injective Banach lattices X and Y are *congruent* if there exists a Boolean isomorphism τ from $\mathbb{M}(X)$ onto $\mathbb{M}(Y)$ such that $\tau(\pi_{\gamma}) = \rho_{\gamma}$ for all $\gamma \in \Gamma$.

Theorem 5.10. Centrally atomic injective Banach lattices X and Y are lattice isometric if and only if the Boolean algebras $\mathbb{M}(X)$ and $\mathbb{M}(Y)$ are isomorphic and the decomposition series d(X) and d(Y) are congruent.

 $\exists Sufficiency. Let X and Y be centrally atomic injective Banach lattices with <math>d(X) = (\pi_{\gamma})_{\gamma \in \Gamma}$ and $d(Y) = (\rho_{\gamma})_{\gamma \in \Gamma}$ and let \mathscr{X} and \mathscr{Y} be their respective Boolean valued representations. We identify X and Y with $\mathscr{X} \Downarrow$ and $\mathscr{Y} \Downarrow$, respectively. Denote $\mathbb{B} := \mathbb{M}(X)$ and $\mathbb{D} := \mathbb{M}(Y)$ and assume that there exists a Boolean isomorphism τ from \mathbb{B} onto \mathbb{D} such that $\tau(\pi_{\gamma}) = \rho_{\gamma}$ for all $\gamma \in \Gamma$. Recall that there is a bijective mapping $\tau^* : \mathbb{V}^{(\mathbb{B})} \to \mathbb{V}^{(\mathbb{D})}$ such that a ZFC-formula $\varphi(x_1, \ldots, x_n)$ is true within $\mathbb{V}^{(\mathbb{B})}$ if and only if $\varphi(\tau^*x_1, \ldots, \tau^*x_n)$ is true within $\mathbb{V}^{(\mathbb{D})}$ for all $x_1, \ldots, x_n \in \mathbb{V}^{(\mathbb{B})}$, see [3, 1.3.1, 1.3.2, and 1.3.5 (2)]. It follows that $\tau^*(\mathscr{X})$ is an atomic injective Banach lattice within $\mathbb{V}^{(\mathbb{D})}$. Moreover, the mapping $x \mapsto \tau^*(x)$ ($x \in \mathscr{X} \Downarrow$) ia a lattice isometry from $\mathscr{X} \Downarrow$ onto $\tau^*(\mathscr{X}) \Downarrow$. If $\alpha = \operatorname{card}(\operatorname{at}_1(\mathscr{X}))$ and $\beta = \operatorname{card}(\operatorname{at}_1(\mathscr{Y}))$, then $\tau^*(\alpha) = \min_{\gamma \in \Gamma} \tau(\pi_{\gamma}) \gamma^{\wedge}$ and $\beta = \min_{\gamma \in \Gamma} \rho \gamma^{\wedge}$, so that $\beta = \tau^*(\alpha)$. By [3, 1.3.5 (2)] we have $\tau^*(\alpha) = \operatorname{card}(\operatorname{at}_1(\tau^*(\mathscr{X})))$ and $\operatorname{card}(\operatorname{at}_1(\mathscr{Y})) = \operatorname{card}(\operatorname{at}_1(\tau^*(\mathscr{X})))$. It follows that $\tau^*(\mathscr{X})$ and \mathscr{Y} are lattice isometric and hence $\tau^*(\mathscr{X}) \Downarrow$ and $\mathscr{Y} \Downarrow$ are lattice \mathbb{B} -isometric.

Necessity. Suppose that h is a lattice isomorphism from X onto Y. Then the mapping τ from \mathbb{B} onto \mathbb{D} defined by $\tau(\pi) = h \circ \tau \circ h^{-1}$ is a Boolean isomorphism. Moreover, $h(\mathbb{B}\operatorname{-at}_1(\pi X)) = \mathbb{B}\operatorname{-at}_1(\tau(\pi)Y)$. Now it can be easily verified that πX is $([\mathbb{O}, \pi], \gamma)$ -atomic if and only if $\tau(\pi)Y$ is $([\mathbb{O}, \tau(\pi)], \gamma)$ -atomic. It follows that d(X) and d(Y) are congruent. \triangleright

Corollary 5.11. Let X be a centrally atomic injective Banach lattice. Then there is a family of Stonean spaces $(Q_{\gamma})_{\gamma \in \Gamma}$, with Γ a set of cardinals, such that Q_{γ} is γ -stable for all $\gamma \in \Gamma$ and the following lattice \mathbb{B} -isometry holds:

$$X \simeq_{\mathbb{B}} \left(\sum_{\gamma \in \Gamma}^{\oplus} C_{\#} (Q_{\gamma}, l^{1}(\gamma)) \right)_{l^{\infty}}.$$

If some family $(P_{\delta})_{\delta \in \Delta}$ of Stonean spaces satisfies the above conditions, then $\Gamma = \Delta$, and P_{γ} is homeomorphic with Q_{γ} for all $\gamma \in \Gamma$.

 \triangleleft This is immediate from Theorem 5.10 and since Corollary 4.4 (see Remark 5.5). \triangleright

DEFINITION 5.12. The second \mathbb{B} -dual of a \mathbb{B} -cyclic Banach space is defined by $X^{\#\#} := (X^{\#})^{\#} := \mathscr{L}_{\mathbb{B}}(X^{\#}, \Lambda)$. A \mathbb{B} -cyclic Banach space is said to be \mathbb{B} -reflexive if the image of X under the canonical embedding $X \to X^{\#\#}$ coincide with $X^{\#\#}$, see [3, p. 316].

Theorem 5.13. Let X be a \mathbb{B} -reflexive injective Banach lattice with $\mathbb{B} = \mathbb{M}(X)$. Then there are a sequence of Stonean spaces $(Q_k)_{k \in \mathbb{N}}$, and an increasing sequence of naturals (n_k) such that the following lattice \mathbb{B} -isometry holds:

$$X \simeq \left(\sum_{k \in \mathbb{N}}^{\oplus} C_{\#}(Q_k, l^1(n_k))\right)_{l^{\infty}}.$$

If some family $(P_k)_{k \in \mathbb{N}}$ of Stonean spaces satisfies the above conditions, then Q_k and P_k are homeomorphic for all $k \in \mathbb{N}$.

 \triangleleft Again identify X with $\mathscr{X} \Downarrow$, where \mathscr{X} is an AL-space in $\mathbb{V}^{(\mathbb{B})}$. It follows from Theorem [3, Theorem 5.8.12] that $\mathscr{X}^* \Downarrow = \mathscr{X} \Downarrow^{\#}$ and $\mathscr{X}^{**} \Downarrow = \mathscr{X} \Downarrow^{\#\#}$. Therefore, X is \mathbb{B} -reflexive if and only if $[\mathscr{X}$ is reflexive $] = \mathbb{1}$. Since a reflexive AL-space is finite-dimensional, we have

$$\mathbb{1} = \llbracket (\exists \, n \in \mathbb{N}^{\wedge}) \dim(\mathscr{X}) = n \rrbracket = \bigvee_{n \in \mathbb{N}} \llbracket \dim(\mathscr{X}) = n^{\wedge} \rrbracket.$$

This relation enables us to choose a countable partition of unity (b_n) in \mathbb{B} such that $b_n \leq [\![\mathcal{X}]$ is a n^{\wedge} -dimensional AL-space]. Pick the sequence (n_k) of indices of nonzero projections in (b_n) and denote by Q_k the Stonean space of a Boolean algebra $\mathbb{B}_k := [\mathbb{O}, b_{n_k}]$. Now, by the Transfer Principle we conclude that $\mathbb{V}^{(\mathbb{B}_k)} \models "b_{n_k} \wedge \mathcal{X}$ is lattice isometric to $l^1(n_k^{\wedge})$ ". The proof is concluded with the help of Theorem 5.10 taking into consideration that for each finite cardinal γ every complete Boolean algebra is γ -stable and γ^{\wedge} is a finite cardinal within $\mathbb{V}^{(\mathbb{B})}$.

References

- Kusraev A. G. Boolean valued analysis and injective Banach lattices // Dokl. RAS.-2012.-Vol. 444, № 2.-P. 143-145.
- 2. Kusraev A. G. Classification of injective Banach lattices // Dokl. RAS.-2013.-Vol. 453, Nº 1.-P. 12-16.
- 3. Kusraev A. G. and Kutateladze S. S. Boolean Valued Analysis: Selected Topics.—Vladikavkaz: Vladikavkaz Scientific Center Press, 2014.—iv+400 p.—(Trends in Science. The South of Russia).
- 4. Aliprantis C. D. and Burkinshaw O. Positive Operators.-London etc.: Acad. Press Inc., 1985.xvi+367 p.
- 5. Meyer-Nieberg P. Banach Lattices.-Berlin etc.: Springer, 1991.-xvi+395 p.
- Lotz H. P. Extensions and liftings of positive linear mappings on Banach lattices // Trans. Amer. Math. Soc.-1975.-Vol. 211.-P. 85-100.
- Cartwright D. I. Extension of positive operators between Banach lattices // Memoirs Amer. Math. Soc.-1975.-164 p.
- 8. Haydon R. Injective Banach lattices // Math. Z.-1974.-Vol. 156.-P. 19-47.
- Kusraev A. G. A Boolean transfer principle for injective Banach lattices // Sib. Mat. Zh.-2015.-Vol. 56, № 5.-[DOI 10.17377/smzh.2015.56.511].
- Kusraev A. G. and Kutateladze S. S. Introduction to Boolean Valued Analysis.-M.: Nauka, 2005.-526 p.-[in Russian].
- 11. Gordon E. I. Real numbers in Boolean-valued models of set theory and K-spaces // Dokl. Akad. Nauk SSSR.—1977.—Vol. 237, № 4.—P. 773–775.
- 12. Kusraev A. G. Dominated Operators.-M.: Nauka, 2003.- 619 p.-[in Russian].
- Luxemburg W. A. J. and Zaanen A. C. Riesz Spaces. Vol. 1.—Amsterdam and London: North-Holland, 1971.—514 p.

Received August 31, 2015.

KUSRAEV ANATOLY GEORGIEVICH Vladikavkaz Science Center of the RAS, *Chaiman* 22 Markus Street, Vladikavkaz, 362027, Russia; K. L. Khetagurov North Ossetian State University 44-46 Vatutin Street, Vladikavkaz, 362025, Russia E-mail: kusraev@smath.ru

АТОМИЧНОСТЬ В ИНЪЕКТИВНЫХ БАНАХОВЫХ РЕШЕТКАХ

Кусраев А. Г.

Цель заметки — рассмотреть булевозначную интерпретацию понятия атомической банаховой решетки и дать полное описание соответствующего класса инъективных банаховых решеток.

Ключевые слова: инъективная банахова решетка, атомическая банахова решетка, булевозначное представление, классификация.