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1. Introduction

The aim of this note is to examine a Boolean valued interpretation of the concept of
atomic Banach lattice and to give a complete description of the corresponding class of injective
Banach lattices. Some representation and isometric classification results for general injective
Banach lattices were announced in [1, 2].

Section 2 collects some needed Boolean valued representation results following [3]. In
Section 3 we demonstrate that a Boolean valued interpretation of atomicity yields some
“module atomicity” over a certain f -subalgebra of the center. Section 4 deals with Boolean
valued Banach lattices of summable families, which turn out to be “building blocks” for
general module atomic injective Banach lattices. Section 5 exposes the main results on
representation and classification of injective Banach lattices with atomic Boolean valued
representation, i. e. those which are atomic with respect to their natural f -module structure.

The needed information on the theory of Banach lattices can be found in [1, 5]. Recall
some definitions and notation. A real Banach lattice X is said to be injective if, for every
Banach lattice Y , every closed vector sublattice Y0 ⊂ Y , and every positive linear operator
T0 : Y0 → X there exists a positive linear extension T : Y → X of T0 with ‖T0‖ = ‖T‖; see
[5, Definition 3.2.3]. Equivalently, X is an injective Banach lattice if, whenever X is lattice
isometrically imbedded into a Banach lattice Y , there exists a positive contractive projection
from Y onto X; one more equivalence definition states that each positive operator from X

to any Banach lattice admits a norm preserving positive extension to any Banach lattice
containing X as a vector sublattice, see [3, Theorem 5.10.6]. This concept was introduced
by Lotz [6]; a significant advance towards the structure theory of injectives was made by
Cartwright [7] and Haydon [8].
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In what follows X stands for a real Banach lattice. We denote by P(X) the Boolean
algebra of all band projections in X. A crucial role in the theory of injective Banach lattices
is played by the concept of M -projection. A band projection π in a Banach lattice X is
called an M -projection if ‖x‖ = max{‖πx‖, ‖π⊥x‖} for all x ∈ X, where π⊥ := IX − π. The
collection M(X) of all M -projections in X is a subalgebra of the Boolean algebra P(X).

Throughout the sequel B is a complete Boolean algebra with unit 1 and zero O, while
Λ := Λ(B) is a Dedekind complete unital AM -space such that B is isomorphic to P(Λ). The
unit of Λ is also denoted by 1. A partition of unity in B is a family (bξ)ξ∈Ξ ⊂ B such that
∨

ξ∈Ξ bξ = 1 and bξ ∧ bη = O whenever ξ 6= η. We let := denote the assignment by definition,
while N, Q, and R symbolize the naturals, the rationals, and the reals.

2. Boolean Valued Representation

Boolean valued analysis is an useful tool in studying of injective Banach lattices [9]. We
need some Boolean valued representation results as presented in [3] and [25].

Applying the Transfer and Maximum Principles to the ZFC-theorem “There exists a field
of reals” we find an element R ∈ V(B) for which [[R is a field of reals ]] = 1. We call R

the reals within V(B). The following remarkable result due to Gordon [28] tells us that the
interpretation of the reals in V(B) is a universally complete vector lattice with the Boolean
algebra of band projections isomorphic to B.

Theorem 2.1. Let R be the reals within V(B). Then R↓ (with the descended operations

and order) is a universally complete vector lattice with a weak order unit 1 := 1∧. Moreover,

there exists a Boolean isomorphism χ of B onto P(R↓) such that the equivalences

χ(b)x = χ(b)y ⇐⇒ b 6 [[x = y ]],

χ(b)x 6 χ(b)y ⇐⇒ b 6 [[x 6 y ]]
(G)

hold for all x, y ∈ R↓ and b ∈ B.

⊳ See [3, Theorem 2.2.4] and [25, Theorem 10.3.4]. ⊲

Definition 2.2. A complete Boolean algebra of M -projections in X is an arbitrary order
complete and order closed subalgebra B ⊂ M(X). A Banach lattice X is said to be B-cyclic
whenever it is a B-cyclic Banach space with respect to a complete Boolean algebra B of M -
projections. If X has the Fatou and Levi properties (see [3, 5.7.2]), then M(X) itself is an
order closed subalgebra of the complete Boolean algebra P(X).

Definition 2.3. Let Λ = R⇓ be the bounded part of the universally complete vector
lattice R↓; i. e., Λ is the order-dense ideal in R↓ generated by the weak order unit 1 := 1∧ ∈
R ↓. Take a Banach space X within V(B) and put X ⇓ := {x ∈ X ↓ : x ∈ Λ}. Equip
X ⇓ with some mixed norm by putting ‖x‖ := ‖ x ‖∞ for all x ∈ X, where the order unit
norm ‖ · ‖∞ is defined as ‖λ‖∞ := inf{0 < α ∈ R : |λ| 6 α1} (λ ∈ Λ). In this situation,
(X ⇓, ‖ · ‖) is a Banach space called the bounded descent of X . The terms B-isomorphism
and B-isometry mean that isomorphism or isometry under consideration commutes with the
projections from B, see [3, 5.8.9].

Theorem 2.4. A bounded descent of a Banach lattice from the model V(B) is a B-cyc-

lic Banach lattice. Conversely, if X is a B-cyclic Banach lattice, then in the model V(B)

there exists up to the isometric isomorphism a unique Banach lattice X whose bounded

descent is isometrically B-isomorphic to X. Moreover, B = M(X) if and only if [[there is no

M -projection in X other than 0 and X ]] = 1.

⊳ See [3, Theorem 5.9.1]. ⊲
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Definition 2.5. The element X ∈ V(B) from Theorem 2.1 is said to be the Boolean-

valued representation of X.

Theorem 2.6. Let X be a Banach lattice with the complete Boolean algebra B = M(X)
of M -projections, Λ be a Dedekind complete unital AM -space such that P(Λ) is isomorphic

to B. Then the following assertions are equivalent:

(1) X is injective.

(2) X is lattice B-isometric to the bounded descent of some AL-space from V(B).

(3) There exists a strictly positive Maharam operator Φ : X → Λ with the Levi property

such that X = L1(Φ) and ‖x‖ = ‖Φ(|x|)‖∞ for all x ∈ X.

(4) There is a Λ-valued additive norm on X such that (X, · ) is a Banach–Kantorovich

lattice and ‖x‖ =
∥

∥ x
∥

∥

∞
for all x ∈ X.

⊳ See [3, Theorem 5.12.5]. ⊲

Theorem 2.7. Suppose that X is a Banach lattice and X is the completion of the metric

space X∧ within V(B). Then [[X is a Banach lattice ]] = 1 and X ⇓ is lattice B-isometric to

C#(Q,X) equipped with the norm ‖ϕ‖ = sup{‖ϕ(q)‖ : q ∈ dom(ϕ) ⊂ Q} (ϕ ∈ C#(Q,X)).

⊳ The proof is a due modification of [25, 11.3.8]. ⊲

3. Boolean Valued Atomicity

In this section we present Boolean valued interpretation of atomicity.

Definition 3.1. A positive element x of a B-cyclic Banach lattice X is said to be B-
indecomposable or a B-atom if for any pair of disjoint elements y, z ∈ X+ with y + z 6 x

there exists a projection π ∈ B such that πy = 0 and π⊥z = 0, while X is called B-atomic if
the only element of X disjoint from every B-atom is the zero element.

Denote by at(X ) and B-at(X) the sets of atoms in X and B-atoms in X, respectively.
Let at1(X ) := {x ∈ at(X ) : ‖x‖ = 1}, while B-at1(X) consists of all x ∈ B-at(X) with
‖πx‖ = 1 for all π ∈ B. It is easy to see that B-at1(X) = {x ∈ B-at(X) : x = 1}.

Proposition 3.2. Let X be a B-cyclic Banach lattice identified with the bounded descent

X ⇓ of a Banach lattice X , its Boolean valued representation X ∈V(B). Then the following

assertions hold:

(1) B-at(X) = at(X )⇓.

(2) B-at1(X) = at1(X )⇓.

(3) X is B-atomic if and only if [[X is atomic]] = 1.

⊳ (1) Observe that x ∈ at(X ) if and only if x ∈ X+ and for any two positive disjoint
elements x1, x2 ∈ X with x1 + x2 6 x we have x1 = 0 or x2 = 0. Now, given x ∈ at(X )⇓
with y + z 6 x for some disjoint y, z ∈ X+, we put b := [[y = 0]] and π := χ(b). Since
[[y 6= 0 → z = 0]] = 1, we have [[y 6= 0]] 6 [[z = 0]] and thus b∗ = [[y 6= 0]] 6 [[z = 0]]. By (G) we
have πy = 0 and π⊥z = χ(b∗)z = 0. Thus, at(X )⇓ ⊂ B-at(X) and for the converse inclusion
the argument is similar.

(2) Taking into account the representation B-at1(X) = {x ∈ B-at(X) : x = 1} the claim
follows easily from the following chain of equivalences:

x ∈ at1(X )⇓ ⇐⇒ [[x ∈ at1(X )]] = 1 ⇐⇒ [[x ∈ at(X )]] = [[‖x‖X = 1]] = 1

⇐⇒ x ∈ B- at(X ) ∧ x = 1 ⇐⇒ x ∈ B- at1(X).
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(3) Let for a while ⊥, ⊥⊥, and ⊥⊥⊥ stand for disjoint complements in X , X = X ⇓, and X ↓,
respectively. The third claim is immediate from the first one, since the disjoint complement
and the descent commute: (A⊥)↓ = (A↓)⊥⊥⊥, see [3, 1.5.3]. Indeed,

(A⊥)⇓ = (A⊥)↓ ∩X = (A↓)⊥⊥⊥ ∩X = (A↓ ∩X)⊥⊥⊥ ∩X = (A⇓)⊥⊥,

hence putting A := at(X ) and making use of (1) we deduce that at(X )⊥ = {0} within V(B)

if and only if (B-at(X))⊥⊥ = {0}. ⊲

Corollary 3.3. Let B, X, and X be the same as in Proposition 3.2 and Λ = Λ(B). Then
the following assertions hold:

(1) x ∈ X+ is a B-atom if and only if for each 0 6 y 6 x there exists λ ∈ Λ+ with y = λx.

(2) If x and y are B-atoms in X+ then there exist a pair of disjoint projections π, ρ ∈ B

such that πx ⊥ πy, ρx = λu and ρy = µu for some µ, λ ∈ Λ+ and u = x+ y.

⊳ Interpreting in the model V(B) the well-known claims corresponding to that particular
case when B = {0, IX} (see [13, Theorem 26.4.]) and using Proposition 3.2 yields the required
properties. ⊲

Definition 3.4. Given a cardinal γ, say that a B-cyclic Banach lattice X is purely (B, γ)-
atomic if X = D⊥⊥

0 for some subset D0 ⊂ B-at1(X) of cardinality γ and for every nonzero
projection π ∈ B and every subset D ⊂ B-at1(πX) with πX = D⊥⊥ we have card(D) > γ.
Evidently, X is purely ({0, IX}, γ)-atomic if and only if X is atomic and the cardinality of
at1(X) is γ or, equivalently, X is atomic and the cardinality of the set of atoms in B(X)
equals γ. In this case we say also that X is γ-atomic.

Proposition 3.5. A B-cyclic Banach lattice X is purely (B, γ)-atomic for some cardinal γ

if and only if [[ γ∧ is a cardinal and X is γ∧-atomic ]] = 1.

⊳ Sufficiency. Assume that γ∧ is a cardinal and X is γ∧-atomic within V(B). The latter
means that X is atomic and card(at1(X )) = γ∧ within V(B). If ∆ := at1(X ) then there
exists φ ∈ V(B) such that [[φ : γ∧ → ∆ is a bijection]] = 1. Note that φ↓ embeds γ into ∆↓
by [3, 1.5.8] and ∆↓ = B-at1(X) by Proposition 3.1. It follows that the set D := φ↓(γ) of
cardinality γ is contained in B-at1(X) and X = D⊥⊥, since ∆ = D↑ and X = ∆⊥⊥. Take
b ∈ B and a set D ′ of cardinality β which is contained in B-at1(X) and generates bX, i. e.
bX = (D ′)⊥⊥. Then D ′↑ is of cardinality card(β∧) and X = (D ′↑)⊥⊥ within the relative
universe V([O,b]). By [3, 1.3.7] [[γ∧ = card(γ∧) 6 card(β∧) 6 β∧]] = 1 and so γ 6 β.

Necessity. Assume now that X is purely (B, γ)-atomic and X = D⊥⊥ for some D ⊂ B-
at1(X) of cardinality γ. Then within V(B) we have ∆ := D↑ ⊂ at1(X ), X = ∆⊥⊥ and and
the cardinalities of ∆ and γ∧ coincide, i. e. card(∆) = card(γ∧). By [3, 1.9.11] the cardinal
card(γ∧) has the representation card(γ∧) = mixα6γ bαα

∧, where (bα)α6γ is a partition of
unity in B. It follows that bα 6 [[∆⊥⊥ = X and ∆ is of cardinality α∧]] = 1. If bα 6= O

then (bα ∧∆)⊥⊥ = bα ∧ X and bα ∧∆ is of cardinality card(γ∧) = α∧ 6 γ∧ in the relative
universe V[O,bα]. (Concerning bα ∧ ∆ and bα ∧ X and their properties see [3, 1.3.7].) It is
easy that bα ∧∆ = (bαD)↑ and so (bαD)⊥⊥ = bX. By hypothesis X is purely (B, γ)-atomic,
consequently, α > card(bαD) > γ, so that α = γ, since α 6 γ if and only if α∧ 6 γ∧. Thus,
card(γ∧) = γ∧ whenever bα 6= O and γ∧ is a cardinal within V(B). ⊲

Definition 3.6. Let γ is a cardinal. A complete Boolean algebra B (as well as its Stone
representation space) is said to be γ-stable whenever V(B) |= γ∧ = card(γ∧), i. e. [[γ∧ is a
cardinal ]] = 1. An element b ∈ B is called γ-stable if the relative Boolean algebra [O, b] is
γ-stable, see [25, Definition 12.3.7]. Finally, say that a partition of unity (πγ)γ∈Γ in B with Γ
a set of cardinals is stable if πγ is γ-stable for all γ ∈ Γ.
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Theorem 3.7. Let X be a B-atomic B-cyclic Banach lattice. There exist a set of

cardinals Γ and a partition of unity (πγ)γ∈Γ such that Bγ := [O, πγ ] is γ-stable and πγX is

purely (Bγ , γ)-atomic for all γ ∈ Γ.

⊳ If a B-cyclic Banach lattice X is B-atomic then its Boolean valued representation X

is atomic within V(B) according to Proposition 3.1. Denote γ0 := card(at1(X )). By [3,
1.9.11] γ0 is a mixture of some set of relatively standard cardinals. More precisely, there are
nonempty set of cardinals Γ and a partition of unity (bγ)γ∈Γ in B such that x = mixγ∈Γ bγγ

∧

and V(Bγ) |= γ∧ = card(γ∧) with Bγ := [O, bγ ] for all γ ∈ Γ. It follows that bγ ∧ X

is atomic Banach lattice and γ∧ = card(at1(bγ ∧ X )) within V(Bγ). It remains to apply
Proposition 3.5. ⊲

4. The Banach Lattices l1(Γ,Λ) and C#(Q, l1(Γ))

We now consider some special injective Banach lattices that are building blocks for the
class of all B-atomic injective Banach lattices. Recall that Λ = Λ(B).

Given a non-empty set Γ, denote by l1(Γ∧) ∈ V(B) the internal Banach lattice of all
summable families x := (xγ)γ∈Γ∧ in R with the norm ‖x‖1 :=

∑

γ∈Γ∧ |xγ |.

Let l1(Γ,Λ) stand for the vector space of all order summable families in Λ, i.e.

l1(Γ,Λ):=
{

x : Γ → Λ : x 1 := o-
∑

γ∈Γ
|x(γ)| ∈ Λ

}

.

The order on l1(Γ,Λ) is defined by letting x 6 y if and only if x(γ) 6 y(γ) for all γ ∈ Γ.
Evidently, l1(Γ,Λ) is an order ideal of the Dedekind complete vector lattice ΛΓ, hence so
is l1(Γ,Λ). Moreover, l1(Γ,Λ) equipped with the norm ‖x‖ := ‖ x 1‖∞ (x ∈ l1(Γ,Λ)) is a
B-cyclic Banach lattice, since B = B(Λ).

Proposition 4.1. l1(Γ∧) is a Boolean valued representation of l1(Γ,Λ) and thus l1(Γ,Λ)
and l1(Γ∧)⇓ are lattice B-isometric.

⊳ Straightforward verification shows that l1(Γ,Λ) is a Banach f -module over Λ, see [3,
Definitions 2.11.1 and 5.7.1]. The modified ascent mapping x 7→ x↑ is a bijection from (R↓)Γ

onto (RΓ∧

)↓, see [3, 1.5.9]. It follows from [3, 2.4.7] that · 1 is the bounded descent of
‖ · ‖1 and hence x ∈ l1(Γ,Λ) if and only if [[x↑ ∈ l1(Γ∧)]] = 1. Moreover, in this event
[[ x 1 = ‖x↑‖1]] = 1 so that the modified descent induces an isometric bijection between
l1(Γ,Λ) and (l1Γ∧)⇓. Making use of the definition of modified descent it can be easily checked
that this bijection is Λ-linear and order preserving. ⊲

Proposition 4.2. The Banach lattice l1(Γ,Λ) is B-atomic and injective with M(X) iso-
morphic to B. Moreover, l1(Γ,Λ) is purely (B, γ)-atomic if and only if [[γ∧ = card(Γ∧)]] = 1.

⊳ By Theorem 2.6 (2) and Propositions 3.2 and 4.1 X is injective with M(X) ≃ B and
B-atomic. The second part follows from Propositions 3.5 and 4.1, since l1(Γ∧) is card(Γ∧)-
atomic within V(B). ⊲

Proposition 4.3. The norm completion of R∧-normed space l1(Γ)∧ within V(B) is a Ba-

nach lattice which is lattice isometric to the internal Banach lattice l1(Γ∧).

⊳ Denote by L1 the completion of l1(Γ)∧ inside V(B). Let A be the set of all norm-one
atoms in l1(Γ) which is of course bijective with Γ. Then A∧ and Γ∧ are also bijective and
A∧ can be considered as the set of all norm-one atoms in l1(Γ∧). Denote by Q-lin(A) the
set of all linear combinations of the members of A with rational coefficients. Then by [12,
8.4.10] we have (Q-lin(A))∧ = Q∧-lin(A∧). Clearly, Q∧-lin(A∧) is a dense sublattice in l1(Γ∧),
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while (Q-lin(A))∧ is a dense sublattice in l1(Γ)∧ and thus in L1, since Q-lin(A) is dense in
l1(Γ). Moreover, the norms induced in (Q-lin(A))∧ by l1(Γ∧) and l1(Γ)∧ coincide. Indeed, if
x ∈ (Q-lin(A))∧ is of the form

∑

k∈n r(k)u(k) whith n ∈ N, r : n → Q, and u : n → A, then
r∧ : n∧ → Q∧, u∧ : n∧ → A∧ and x∧ =

∑

k∈n∧ r∧(k)u∧(k); therefore,

‖x‖l1(Γ)∧ = ‖x‖∧ =
(

∑

k∈n
|r(k)|

)

∧

=
∑

k∈n∧
|r∧(k)| = ‖x‖l1(Γ∧).

It follows that L1 and l1(Γ∧) are lattice isometric. ⊲

Corollary 4.4. Let Q be the Stone representation space of B = P(Λ). Then the injective

Banach lattices l1(Γ,Λ) and C#(Q, l1(Γ)) are lattice B-isometric.

⊳ This is immediate from Theorem 2.7 and Proposition 4.3. ⊲

Corollary 4.5. Given an arbitrary infinite cardinals γ1 and γ2, we may find a Boolean

algebra B such that the injective Banach lattices l1(γ1,Λ) and l1(γ2,Λ) are lattice B-isometric

provided that Λ = Λ(B). If Q is the Stone representation space of B then the injective Banach

lattices C#(Q, l1(γ1) and C#(Q, l1(γ2)) are also lattice B-isometric.

⊳ The claim follows from Proposition 4.3 and Corollary 4.4 making use of the cardinal

collapsing phenomena: There exists a complete Boolean algebra B such that the ordinals γ∧

1

and γ∧

2 have the same cardinality within V(B), see [3, 1.13.9]. ⊲

Definition 4.6. A B-cyclic Banach lattice X is called B-separable, if there is a sequence
(xn) ⊂ X such that the norm closed B-cyclic subspace, generated by the set {bxn : n ∈ N, b ∈
B}, coincides with X. In more detail, X is called B-separable whenever for every x ∈ X and
0 < ε ∈ R there exist an element xε ∈ X and a partition of unity (πn)n∈N in B such that
‖x−xε‖ 6 ε and πnx = πnxn for all n ∈ N. It can be easily seen that X is B-separable if and
only if its Boolean valued representation is separable within V(B). Denote by ω the countable
cardinal and put l1 := l1(ω).

Corollary 4.7. For every infinite cardinal γ, there exists a Stonean space Q such that the

injective Banach lattice C#(Q, l1(γ)) is B-separable, with B standing for the Boolean algebra

of the characteristic functions of clopen subsets of Q.

⊳ Apply Corollary 4.5 with γ1 := γ and γ2 := ω, where ω is the countable cardinal.
It follows that C#(Q, l1(γ) and C#(Q, l1(ω)) are lattice B-isometric. Moreover, [[l1(ω∧) is
separable ]] = 1 by transfer principle. Taking into account Proposition 4.1 it remains to
observe that [[X is separable ]] = 1 if and only if X ⇓ is B-separable. ⊲

5. The Main Results

Now we are able to state and prove the main representation and classification results for
B-atomic injective Banach spaces.

Definition 5.1. Let X be an injective Banach lattice. Say that X is centrally atomic

if X is B-atomic with B = M(X). According to corollary 3.3 this amounts to saying that there
is no nonzero element in X disjoint from all Λ-atom, while a Λ-atom is any element x ∈ X+

such that the principal ideal generated by x is equal to Λx := {λx : λ ∈ Λ}. Given a family of
Banach lattices (Xγ , ‖·‖γ)γ∈Γ, denote by

(
∑⊕

γ∈Γ bγX
)

l∞
the l∞-sum, the Banach lattice of all

families x :=
(

x(γ)
)

γ∈Γ
with x(γ) ∈ Xγ for all γ ∈ Γ and ‖x‖ := sup{‖x(γ)‖γ : γ ∈ Γ} < ∞.

Lemma 5.2. For a centrally atomic injective Banach lattice X there exist a set of cardi-

nals Γ and a stable partition of unity (πγ)γ∈Γ in M(X) such that πγX is purely (γ,Bγ)-atomic

with Bγ := [O, πγ ] for all γ ∈ Γ and injective and the representation holds:

X ≃B

(

∑⊕

γ∈Γ
bγX

)

l∞
.
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⊳ This is immediate from Proposition 3.7. ⊲

Lemma 5.3. Suppose that the injective Banach lattices C#(Q, l1(γ)) and C#(Q, l1(δ))
are lattice B-isometric, where Q is the Stone space of B, while γ and δ are infinite cardinals.

If B is γ-stable and δ-stable then γ = δ.

⊳ If C#(Q, l1(Γ)) and C#(Q, l1(∆)) are lattice B-isometric then V(B) |=“l1(γ∧) and l1(δ∧)
are lattice isometric” and thus V(B) |= card(γ∧) = card(δ∧). It remains to observe that B is
γ-stable (δ-stable) if and only if V(B) |= card(γ∧) = γ∧ (respectively card(δ∧) = δ∧). ⊲

Theorem 5.4. Let X be a centrally atomic injective Banach lattice. Then there is a set

of cardinals Γ and a stable partition of unity (πγ)γ∈Γ in B = M(X) such that the following

lattice B-isometry holds:

X ≃B

(

∑⊕

γ∈Γ
l1
(

γ,Λγ

)

)

l∞
,

where Λγ = πγΛ (γ ∈ Γ). If a partition of unity (ρδ)δ∈∆ in B satisfies the same conditions as

(πγ)γ∈Γ, then Γ = ∆, and πγ = ργ for all γ ∈ Γ.

⊳ The required representation follows from Proposition 4.2 and Lemma 5.2.
Assume now that a partition of unity (ρδ)δ∈∆ in B satisfies the same conditions as (πγ)γ∈Γ.

Fix δ ∈ ∆ and put σγδ := πγρδ for arbitrary γ ∈ Γ. If σγδ 6= 0, then the injective Banach
lattices l1(γ, σγδΛ) and l1(δ, σγδΛ) are lattice [O, σδγ ]-isometric to the same band σδγX. By
Lemma 5.3 γ = δ and thus ∆ ⊂ Γ and ρδ 6 πγ for all δ ∈ ∆. Similarly, Γ ⊂ ∆ and ρδ > πγ
for all γ ∈ Γ. ⊲

Remark 5.5. Let Q be the Stone representation space of B. Corollary 4.4 enables us to
replace l1

(

γ,Λγ

)

by C#(Qγ , l
1(γ)) in Theorem 5.4 with a stable partition of unity (Qγ)γ∈Γ

in he Boolean algebra of clopen subsets of Q. Moreover, if some partition of unity (Pδ)δ∈∆
satisfies the same conditions, then Γ = ∆, and Pγ = Qγ for all γ ∈ Γ.

Corollary 5.6. LetX be an injective Banach lattice andQ the Stone representation space

of B = M(X). If X is B-separable, then X is lattice B-isometric to C#(Q, l1), l1 = l1(ω).

⊳ In Theorem 5.4 each component l1
(

γ,Λγ

)

is Bγ-separable and hence its Boolean valued
representation is a separable Banach lattice which is lattice isometric to the internal Banach
lattice l1(ω∧). It follows that l1

(

γ,Λγ

)

is lattice Bγ-isometric to C#(Qγ , l
1) for all γ ∈ Γ

by Proposition 4.1 and Corollary 4.4. From this it is obvious that X is B-isometric to
C#(Q, l1). ⊲

Proposition 5.7. A B-cyclic Banach lattice is atomic if and only if it is B-atomic and

the Boolean algebra B is atomic.

⊳ The complete Boolean algebra B is atomic if and only if B = P(A) for some set A

and then X is the l∞-sum of a family of Banach lattices (Xa)a∈A. This l
∞-sum is evidently

atomic if and only if Xa is atomic for all a ∈ A. ⊲

The following corollary should be compared with [7, Theorem 5.6].

Corollary 5.8. An injective Banach lattice X is atomic if and only if there is a set of

cardinals Γ such that the following lattice isometry holds:

X ≃
(

∑⊕

γ∈Γ
l1(γ)

)

)

l∞
.

⊳ In Remark 5.5 each Qγ is a one-point space by Proposition 5.8 and hence C#

(

Qγ , l
1(γ))

is lattice isometric to l1(γ). ⊲

Definition 5.9. The partition of unity (πγ)γ∈Γ in B = M(X) satisfying the claim of
Theorem 5.4 is called the decomposition series of X and is denoted by d(X). Say that
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the decomposition series d(X) = (πγ)γ∈Γ and d(Y ) = (ργ)γ∈Γ of centrally atomic injective
Banach lattices X and Y are congruent if there exists a Boolean isomorphism τ from M(X)
onto M(Y ) such that τ(πγ) = ργ for all γ ∈ Γ.

Theorem 5.10. Centrally atomic injective Banach lattices X and Y are lattice isometric

if and only if the Boolean algebras M(X) and M(Y ) are isomorphic and the decomposition

series d(X) and d(Y ) are congruent.

⊳ Sufficiency. Let X and Y be centrally atomic injective Banach lattices with d(X) =
(πγ)γ∈Γ and d(Y ) = (ργ)γ∈Γ and let X and Y be their respective Boolean valued repre-
sentations. We identify X and Y with X ⇓ and Y ⇓, respectively. Denote B := M(X) and
D := M(Y ) and assume that there exists a Boolean isomorphism τ from B onto D such that
τ(πγ) = ργ for all γ ∈ Γ. Recall that there is a bijective mapping τ∗ : V(B) → V(D) such that
a ZFC-formula ϕ(x1, . . . , xn) is true within V(B) if and only if ϕ(τ∗x1, . . . , τ

∗xn) is true within
V(D) for all x1, . . . , xn ∈ V(B), see [3, 1.3.1, 1.3.2, and 1.3.5 (2)]. It follows that τ∗(X ) is an
atomic injective Banach lattice within V(D). Moreover, the mapping x 7→ τ∗(x) (x ∈ X ⇓) ia
a lattice isometry from X ⇓ onto τ∗(X )⇓. If α = card(at1(X )) and β = card(at1(Y )), then
τ∗(α) = mixγ∈Γ τ(πγ)γ

∧ and β = mixγ∈Γ ργ
∧, so that β = τ∗(α). By [3, 1.3.5 (2)] we have

τ∗(α) = card(at1(τ
∗(X ))) and card(at1(Y )) = card(at1(τ

∗(X ))). It follows that τ∗(X )
and Y are lattice isometric and hence τ∗(X )⇓ and Y ⇓ are lattice B-isometric.

Necessity. Suppose that h is a lattice isomorphism from X onto Y . Then the map-
ping τ from B onto D defined by τ(π) = h ◦ τ ◦ h−1 is a Boolean isomorphism. Moreover,
h(B-at1(πX)) = B-at1(τ(π)Y ). Now it can be easily verified that πX is ([O, π], γ)-atomic if
and only if τ(π)Y is ([O, τ(π)], γ)-atomic. It follows that d(X) and d(Y ) are congruent. ⊲

Corollary 5.11. Let X be a centrally atomic injective Banach lattice. Then there is

a family of Stonean spaces (Qγ)γ∈Γ, with Γ a set of cardinals, such that Qγ is γ-stable for all

γ ∈ Γ and the following lattice B-isometry holds:

X ≃B

(

∑⊕

γ∈Γ
C#

(

Qγ , l
1(γ)

)

)

l∞
.

If some family (Pδ)δ∈∆ of Stonean spaces satisfies the above conditions, then Γ = ∆, and Pγ

is homeomorphic with Qγ for all γ ∈ Γ.

⊳ This is immediate from Theorem 5.10 and since Corollary 4.4 (see Remark 5.5). ⊲

Definition 5.12. The second B-dual of a B-cyclic Banach space is defined by X## :=
(X#)# := LB(X

#,Λ). A B-cyclic Banach space is said to be B-reflexive if the image of X
under the canonical embedding X → X## coincide with X##, see [3, p. 316].

Theorem 5.13. Let X be a B-reflexive injective Banach lattice with B = M(X). Then

there are a sequence of Stonean spaces (Qk)k∈N, and an increasing sequence of naturals (nk)
such that the following lattice B-isometry holds:

X ≃
(

∑⊕

k∈N
C#

(

Qk, l
1(nk)

)

)

l∞
.

If some family (Pk)k∈N of Stonean spaces satisfies the above conditions, then Qk and Pk are

homeomorphic for all k ∈ N.

⊳ Again identify X with X ⇓, where X is an AL-space in V(B). It follows from Theorem
[3, Theorem 5.8.12] that X ∗⇓ = X ⇓# and X ∗∗⇓ = X ⇓##. Therefore, X is B-reflexive if
and only if [[X is reflexive ]] = 1. Since a reflexive AL-space is finite-dimensional, we have

1 = [[(∃n ∈ N∧) dim(X ) = n]] =
∨

n∈N
[[dim(X ) = n∧]].
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This relation enables us to choose a countable partition of unity (bn) in B such that bn 6 [[X
is a n∧-dimensional AL-space]]. Pick the sequence (nk) of indices of nonzero projections in
(bn) and denote by Qk the Stonean space of a Boolean algebra Bk := [O, bnk

]. Now, by the
Transfer Principle we conclude that V(Bk) |= “ bnk

∧ X is lattice isometric to l1(n∧

k)”. The
proof is concluded with the help of Theorem 5.10 taking into consideration that for each finite
cardinal γ every complete Boolean algebra is γ-stable and γ∧ is a finite cardinal within V(B). ⊲
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ÀÒÎÌÈ×ÍÎÑÒÜ Â ÈÍÚÅÊÒÈÂÍÛÕ ÁÀÍÀÕÎÂÛÕ �ÅØÅÒÊÀÕ

Êóñðàåâ À. �.

Öåëü çàìåòêè � ðàññìîòðåòü áóëåâîçíà÷íóþ èíòåðïðåòàöèþ ïîíÿòèÿ àòîìè÷åñêîé áàíàõîâîé ðåøåò-

êè è äàòü ïîëíîå îïèñàíèå ñîîòâåòñòâóþùåãî êëàññà èíúåêòèâíûõ áàíàõîâûõ ðåøåòîê.

Êëþ÷åâûå ñëîâà: èíúåêòèâíàÿ áàíàõîâà ðåøåòêà, àòîìè÷åñêàÿ áàíàõîâà ðåøåòêà, áóëåâîçíà÷íîå

ïðåäñòàâëåíèå, êëàññè�èêàöèÿ.


