Научная статья на тему 'Atomic data on inelastic collisional process for YH'

Atomic data on inelastic collisional process for YH Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
16
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
atomic data / inelastic processes / non-adiabatic transitions / yttrium / hydrogen / атомные данные / неупругие процессы / неадиабатические переходы / иттрий / водород

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Vera A. Vasileva, Svetlana A. Yakovleva

The cross sections and rate coefficients for inelastic processes in low-energy collisions of yttrium and hydrogen atoms and ions are calculated. Three ionic states of Y+ + H− are considered. Calculations of non-adiabatic nuclear dynamics in all molecular symmetries of each ionic state are performed. Inelastic processes due to non-adiabatic transitions between 65 different states of the YH quasimolecule are considered. In total, 1,796 inelastic processes are treated and their cross sections for collision energy range from 0.001 to 100 eV and rate coefficients for temperatures from 1,000 to 10,000 K are calculated and analyzed. Inelastic processes with large rate coefficients are important for treating Non-LTE effects in astrophysical modeling.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

АТОМНЫЕ ДАННЫЕ О НЕУПРУГИХ СТОЛКНОВИТЕЛЬНЫХ ПРОЦЕССАХ В СИСТЕМЕ YH

В работе рассчитаны сечения и константы скоростей неупругих процессов, происходящих при низкоэнергетических столкновениях атомов и ионов иттрия и водорода. Рассмотрены три ионных состояния . Проведены расчеты неадиабатической ядерной динамики внутри всех молекулярных симметрий, образованных каждым из ионных состояний. Исследованы неупругие процессы, происходящие за счет неадиабатических переходов между 65 различными состояниями квазимолекулы YH. Суммарно рассмотрено 1796 неупругих процессов, для которых посчитаны сечения для энергий от 0.001 до 100 эВ и константы скоростей для температур от 1000 до 10000 К. Неупругие процессы с большими значениями констант скоростей важны при астрофизическом моделировании с учетом НЛТР эффектов.

Текст научной работы на тему «Atomic data on inelastic collisional process for YH»

Physics of Complex Systems, 2023, vol. 4, no. 3 _www.physcomsys.ru

N Check for updates

UDC 539.1 EDN QEBNZO

https://www.doi.org/10.33910/2687-153X-2023-4-3-124-130

Atomic data on inelastic collisional process for YH

V. A. Vasileva1, S. A. Yakovleva™

1 Herzen State Pedagogical University of Russia, 48 Moika Emb., Saint Petersburg 191186, Russia

Theoretical physics. Physics of atoms and molecules

Authors

Vera A. Vasileva, ORCID: 0009-0009-9622-9128, e-mail: veravasilieva2000@gmail.ru Svetlana A. Yakovleva, ORCID: 0000-0002-8889-7283, e-mail: cvetaja@gmail.com

For citation: Vasileva, V. A., Yakovleva, S. A. (2023) Atomic data on inelastic collisional process for YH. Physics of Complex Systems, 4 (3), 124-130. https://www.doi.org/10.33910/2687-153X-2023-4-3-124-130 EDN QEBNZO Received 9 June 2023; reviewed 5 July 2023; accepted 5 July 2023.

Funding: This study was supported by the Russian Science Foundation (the Russian Federation), Project No. 22-23-01181. Copyright: © V. A. Vasileva, S. A. Yakovleva (2023) Published by Herzen State Pedagogical University of Russia. Open access under CC BY-NC License 4.0.

Abstract. The cross sections and rate coefficients for inelastic processes in low-energy collisions of yttrium and hydrogen atoms and ions are calculated. Three ionic states of Y+ + H- are considered. Calculations of non-adiabatic nuclear dynamics in all molecular symmetries of each ionic state are performed. Inelastic processes due to non-adiabatic transitions between 65 different states of the YH quasimolecule are considered. In total, 1,796 inelastic processes are treated and their cross sections for collision energy range from 0.001 to 100 eV and rate coefficients for temperatures from 1,000 to 10,000 K are calculated and analyzed. Inelastic processes with large rate coefficients are important for treating Non-LTE effects in astrophysical modeling.

Keywords: atomic data, inelastic processes, non-adiabatic transitions, yttrium, hydrogen

Introduction

Chemical elements that are formed in neutron-capture processes (n-processes) such as Sr, Ba, Y, La, Zr are of great interest to astrophysical studies. The information on the abundances of these elements in stars and star clusters is important in order to understand n-processes as a source of gaseous environment enrichment (Busso et al. 2001), chemical evolution of galactic disks (Chiappini, Gratton 1997; Serminato et al. 2009) and the production of star clusters (Brewer, Carney 2006).

Neutron capture involves two main processes that depend on the density of the neutron flux: a slow process (s-process) and a rapid process (r-process). The main sources of elements produced in neutron capture (primarily, yttrium and barium) are stars with small and intermediate masses in the asymptotic giant branch. They enrich the interstellar medium with these chemical elements that enter stars during their formation (Travaglio et al. 1999).

In astrophysical modeling of various gaseous environments, a model atom for each chemical element is constructed. It includes energy levels and the data on radiative and non-radiative inelastic processes due to collisions with electrons, atoms, and molecules. Collisions of different atoms and ions with hydrogen atoms and negative ions are one of the greatest uncertainties in astrophysical modeling as hydrogen is the most abundant element in the universe. For this reason, a theoretical calculation of molecular data on inelastic hydrogen collisions is important for astrophysics.

Brief theory

Inelastic processes in collisions of yttrium atoms and positive ions and hydrogen atoms and negative ions are studied within the Born-Oppenheimer formalism using asymptotic model approach (Belyaev 2013).

This approach allows to model non-adiabatic regions due to ionic-covalent interaction via constructing the electronic Hamiltonian matrix in the diabatic representation. The diagonal matrix elements are the diabatic potential energies determined by the Coulomb potential in case of the ionic term and by the asymptotic energy of the scattering channel in case of the covalent term; off-diagonal matrix elements that represent ionic-covalent interaction are calculated using a semi-empirical formula from (Olson et al. 1971).

Non-adiabatic nuclear dynamics is treated within the Landau-Zener multichannel model. Transition probabilities in one non-adiabatic region are calculated using an adiabatic potential-based formula (Belyaev, Lebedev 2011), while state-to-state transition probability p.f (J, E) for a particular collision energy E and total angular momentum quantum number J is calculated using analytical expressions that take all non-adiabatic regions into account (Yakovleva et al. 2016). Inelastic cross sections a.f (E) and rate coefficients K.f for exothermic processes (i >f are then calculated using the following equations:

4-2 „ slat Jmax

•rlfl^Efrl^^t').

J=0

Kif=

8

¡<rif{E)Eexp

kBT

dE,

where p is the reduced nuclear mass, pf'is the statistical probability of population of the initial channel i, kB is the Boltzmann constant. For endothermic processes (k < j) cross sections and rate coefficients are calculated using detailed balance equations:

PT E+AE*j ps'at E

stat

Kkj(T) = Kjk(T)^exp Pj

'AV

V kBT J

where AEk. is the energy defect between the asymptotic energies Ek and E..

YH calculations

The present study of inelastic processes in ytterbium-hydrogen collisions is performed for three sets of molecular states. As the asymptotic model approach (Belyaev 2013) allows taking into account only ionic-covalent interaction, we include only those covalent molecular states that have the same molecular symmetries. Each set contains one of the ionic molecular terms Y++H- and the covalent molecular states that have the same core electrons configuration. All the molecular states, corresponding scattering channels and asymptotic energies for these tree sets are summarized in Tables 1, 2 and 3:

Table 1: 5 covalent Y(5s2 2L) + H(1s 2S) molecular states and ionic state Y+(5s2 1S) + H-(1s2 1S) with 1E+ molecular symmetry;

Table 2: 35 covalent Y(4d5s 24L) + H(1s 2S) molecular states and ionic state Y+(4d5s 3D) + H-(1s2 1S) with 3Z+, 3n, 3A molecular symmetries;

Table 3: 22 covalent Y(4d5s 13L) + H(1s2S) molecular states and ionic state Y+(4d5s 1D) + H-(1s2 1S) with 1E+, 1n, 1A , molecular symmetries.

Table 1. The Y(2L) + H(1s 2S) and Y+(5s2 1S) + H (1s2 1S) molecular channels, the corresponding asymptotic atomic states, and the asymptotic energies with respect to the ground state

Asymptotic atomic states Molecular symmetries Asymptotic energies (eV)

1 Y(4d5s2 2D) + H(1s 2S) 1Z+ 0.03885

2 Y(5s2 5p 2P) + H(1s 2S) 1Z+ 1.37165

3 Y(5s2 6s 2S) + H(1s 2S) 1Z+ 3.92677

Table 1. Completion

4 Y(5s2 (2D)5d 2D) + H(1s 2S) 4.24606

5 Y(5s2 (S )6p 2P) + H(1s 2S) 4.61472

ionic Y+ (5s2 1S) + H- (1s2 S 5.46326

Table 2. The Y(2,4L) + H(1s 2S) and Y+(4d5s 3D) + H (1s2 1S) molecular channels, the corresponding asymptotic atomic states, and the asymptotic energies with respect to the ground state

Asymptotic atomic states Molecular symmetries Asymptotic energies (eV)

1 Y(4d5s2 2D) + H(1s 2S) 3Z+ 3n 3A 0.03885

2 Y(4d2(3i)5s 4F + H(1s 2S) - 3n 3A 1.39762

3 Y(4d2 (3P)5s 4P) + H(1s 2S) - 3n - 1.90689

4 Y(4d2 (3F)5s 2F) + H(1s 2S) - 3n 3A 1.93805

5 Y(4d5s(3D)5p 4F) + H(1s 2S) 3Z+ 3n 3A 1.94401

6 Y(4d2 (1D)5s 2D) + H(1s 2S) 3Z+ 3n 3A 1.99508

7 Y(4d5s(3D)5p 2D) + H(1s 2S) - 3n 3A 1.99599

8 Y(4d5s(3D)5p 4D) + H(1s 2S) - 3n 3A 2.08841

9 Y(4d2(1G)5s 2G) + H(1s 2S) 3Z+ 3n 3A 2.29434

10 Y(4d5s(3D)5p 4P) + H(1s 2S) 3Z+ 3n - 2.36513

11 Y(4d2 (3P)5s 2P) + H(1s 2S) - 3n - 2.39859

12 Y(4d5s(3D)5p 2F) + H(1s 2S) 3Z+ 3n 3A 2.69638

13 Y(4d2(1S)5s 2S) + H(1s 2S) 3Z+ - - 2.90930

14 Y(4d5s(3D)5p 2P) + H(1s 2S) 3Z+ 3n - 3.04487

15 Y(4d5s(1D)5p 2F) + H(1s 2S) 3Z+ 3n 3A 3.06669

16 Y(4d5s(1D)5p 2D) + H(1s 2S) - 3n 3A 3.06818

17 Y(4d5s(1D)5p 2P) + H(1s 2S) 3Z+ 3n - 3.47492

18 Y(4d5s(3D)6s 4D) + H(1s 2S) 3Z+ 3n 3A 4.15074

19 Y(4d5s(3D)6s 2D) + H(1s 2S) 3Z+ 3n 3A 4.51635

20 Y(4d5s(1D)6s 2D) + H(1s 2S) 3Z+ 3n 3A 4.58576

21 Y(4d5s(3D)5d 4D) + H(1s 2S) 3Z+ 3n 3A 4.79801

22 Y(4d5s(3D)6p 4D) + H(1s 2S) - 3n 3A 4.81911

23 Y(4d5s(3D)6p 4F) + H(1s 2S) 3Z+ 3n 3A 4.82798

24 Y(4d5s(3D)5d 4G) + H(1s 2S) 3Z+ 3n 3A 4.82840

25 Y(4d5s(3D)6p 2F) + H(1s 2S) 3Z+ 3n 3A 4.83337

26 Y(4d5s(3D)5d 4S) + H(1s 2S) 3Z+ - - 4.83556

27 Y(4d5s(3D)5d 2P) + H(1s 2S) - 3n - 4.85594

28 Y(4d5s(3D)6p 2D) + H(1s 2S) - 3n 3A 4.86874

29 Y(4d5s(3D)6p 4P) + H(1s 2S) 3Z+ 3n - 4.90231

30 Y(4d5s(3D)5d 4F) + H(1s 2S) - 3n 3A 4.92456

31 Y(4d5s(3D)5d 2F) + H(1s 2S) - 3n 3A 4.92681

32 Y(4d5s(3D)5d 4P) + H(1s 2S) - 3n - 5.01564

Table 2. Completion

33 Y(4d5s(3D)5d 2D) + H(1s 2S) - 3n 3A 5.14169

34 Y(4d5s(D)5d 2D) + H(1s 2S) 3X+ 3n 3A 5.16591

35 Y(4d5s(D)5d 2P) + H(1s 2S) - 3n - 5.29103

ionic Y+(4d5s 3D) + H-(1s2 1S) 3X+ 3n 3A 5.61116

Table 3. The Y(1,3L) + H(1s 2S) and Y+(4d5s 1D) + H (1s2 1S) molecular channels, the corresponding asymptotic atomic states, and the asymptotic energies with respect to the ground state

Asymptotic atomic states Molecular symmetries Asymptotic energies (eV)

1 Y(4d5s2 2D) + H(1s 2S) 0.03885

2 Y(4d2(3F)5s 2F) + H(1s 2S) - 1.93805

3 Y(4d2(D)5s 2D) + H(1s 2S) 1.99508

4 Y(4d5s(3D)5p 2D) + H(1s 2S) - 1.99599

5 Y(4d2(1G)5s 2G) + H(1s 2S) 2.29434

6 Y(4d2(3P)5s 2P) + H(1s 2S) - - 2.39859

7 Y(4d5s(3D)5p 2F) + H(1s 2S) - 2.69638

8 Y(4d2(1S)5s 2S) + H(1s 2S) - - 2.90930

9 Y(4d5s(3D)5p 2P) + H(1s 2S) - 3.04487

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

10 Y(4d5s(1D)5p 2F) + H(1s 2S) 3.06669

11 Y(4d5s(1D)5p 2D) + H(1s 2S) - 3.06818

12 Y(4d5s(1D)5p 2P) + H(1s 2S) - 3.47492

13 Y(4d5s(3D)6s 2D) + H(1s 2S) 4.51635

14 Y(4d5s(1D)6s 2D) + H(1s 2S) 4.58576

15 Y(4d5s(3D)6p 2F) + H(1s 2S) 4.83337

16 Y(4d5s(3D)5p 2P) + H(1s 2S) - - 4.85594

17 Y(4d5s(3D)6p 2D) + H(1s 2S) - 4.86874

18 Y(4d5s(3D)5d 2F) + H(1s 2S) - 4.92681

19 Y(4d5s(3D)5d 2D) + H(1s 2S) 5.14169

20 Y(4d5s(1D)5d 2D) + H(1s 2S) 5.16591

21 Y(4d5s(1D)5d 2P) + H(1s 2S) - - 5.29103

22 Y(4d5s(1D)5d 2F) + H(1s 2S) - 5.46192

ionic Y+(4d5s D) + H-(1s2 1S) 5.87193

The data for the atomic levels of yttrium atom and ion and their energy values are taken from NIST (Kramida et al. 2022). Asymptotic energies are averaged over the total angular momentum quantum number J. It is worth noting that only one-electron transitions are included in the present investigation as two-electron transitions generally have negligible probabilities, cross sections and rate coefficients because of the narrow non-adiabatic regions (Belyaev et al. 2016; 2019; Vlasov et al. 2018).

For all the transitions between the states in the three sets of molecular states, calculations of partial cross sections and rate coefficients are performed within each molecular symmetry separately and then summed over initial and final states of the process. Cross sections are calculated for the collision energy range from 0.01 eV to 100 eV and rate coefficients — for the temperature range from 1,000 K to 10,000 K.

Results and analysis

Graphical representation of rate coefficients for the temperature T = 6,000K for all the treated processes is shown in Figs 1, 2 and 3 for the three sets of molecular states from Tables 1, 2 and 3, respectively. The rate coefficient order of magnitude is shown with color from blue to red (see the respective legend). The initial and final states labels in graphical representations correspond to those in Tables 1, 2 and 3. White color denotes either the elastic processes that are not studied in the present work (diagonal squares) or transitions between molecular states that do not have the same symmetries.

Final state f 1 2 3 4 5 6

Fig. 1. Graphical representation of the inelastic processes rate coefficients in Y(2L) + H(1s 2S) and Y+(5s2 S) + H-(1s2 S) collisions. The labels for the initial and final states are given in Table 1.

Final state f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Fig. 2. Graphical representation of the inelastic processes rate coefficients in Y(2,4L) + H(1s 2S) and Y+(4d5s 3D) + H-(1s2 S) collisions. The labels for the initial and final states are given in Table 2.

Final state f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Fig. 3. Graphical representation of the inelastic processes rate coefficients in Y(1,3L) + H(1s 2S) and Y+(4d5s 1D) + H-(1s21S) collisions. The labels for the initial and final states are given in Table 3.

For the first group of molecular states (see Table 1) the largest rate coefficients at T = 6,000 K correspond the neutralization processes Y+(5s2 1S ) + H- — Y(5s2 nl 2L) + H (j = 6 to j = 3, 4, 5) with values:

K , = 3.59 x 10-8 cm3 s-1,

6—'3 '

K , = 5.86 x 10-8 cm3 s-1,

6— 4

K K = 1.24 x 10-8 cm3 s-1.

6— 5

In the second molecular states group (Table 2) the largest rate coefficients at T = 6,000 K correspond the neutralization processes Y+(4d5s 3D) + H- — Y(4d5s nl 2 4L) + H (j = 36 to j = 18, 19, 20) with values:

K„ „ = 4.72 x 10-8 cm3 s-1,

36— 18

K„ 10 = 3.67 x 10-8 cm3 s-1,

36— 19

K. ,n = 3.13 x 10-8 cm3 s-1.

36— 20

In case of the third group (Table 3) the largest rate coefficients at T = 6,000 K correspond the neutralization processes Y+(4d5s 1D) + H-—Y(4d5s nl 13L) + H (j = 23 to j = 13 - 18) with values:

K23—13 = 3.01 x 10-8 cm3 s-K„—= 4.12 x 10-8 cm3 s-

23—»14

K23—15 = 2.93 x 10-8 cm3 s-K„—,5 = 1.05 x 10-8 cm3 s-

23—16

K23—17 = 2.33 x 10-8 cm3 s-IC3—= 1.75 x 10-8 cm3 s-

23 18

Conclusions

The reported study of inelastic yttrium and hydrogen collisions is performed for the three sets of ionic molecular states of Y+ + H-. For each set, the study of non-adiabatic nuclear dynamics is carried out within all the molecular symmetries of a particular ionic state. Inelastic processes due to nonadiabatic transitions between 65 different states of the YH quasimolecule are considered. In total, 1,796 inelastic processes are studied, cross sections are calculated for the collision energy range from 0.001 eV to 100 eV and the rate coefficients are calculated for temperatures from 1,000 K to 10,000 K. Inelastic processes with large values of the rate coefficients may find application in non-LTE astrophysical modeling.

Conflict of Interest

The authors declare that there is no conflict of interest, either existing or potential.

Author Contributions

All the authors discussed the final work and took an equal part in writing the article.

Acknowledgements Authors gratefully acknowledge discussions with Prof. Andrey K. Belyaev.

References

Belyaev, A. K. (2013) Model approach for low-energy inelastic atomic collisions and application to Al + H and Al+ + H-.

Physical Review A, 88 (5), article 052704. https://doi.org/10.1103/PhysRevA.88.052704 (In English) Belyaev, A. K., Lebedev, O. V. (2011) Nonadiabatic nuclear dynamics of atomic collisions based on branching classical trajectories. Physical Review A, 84 (1), article 014701. https://doi.org/10.1103/PhysRevA.84.014701 (In English)

Belyaev, A. K., Vlasov, D. V., Mitrushchenkov, A., Feautrier, N. (2019) Quantum study of inelastic processes in low-energy calcium-hydrogen collisions. Monthly Notices of the Royal Astronomical Society, 490 (3), 3384-3391. https://doi.org/10.1093/mnras/stz2763 (In English) ' Belyaev, A. K., Yakovleva, S. A., Guitou, M. et al. (2016) Model estimates of inelastic calcium-hydrogen collision data for non-LTE stellar atmospheres modeling. Astronomy & Astrophysics, 587, article A114. https://doi.org/10.1051/0004-6361/201527651 (In English) Brewer, M. M., Carney, B. W. (2006) A comparison of the chemical evolutionary histories of the galactic thin disk and thick disk stellar populations. The Astronomical Journal, 131 (1), article 431. https://doi.org/10.1086/498110 (In English)

Busso, M., Gallino, R., Lambert, D. L. et al. (2001) Nucleosynthesis and mixing on the asymptotic giant branch. III. Predicted and observed s-process abundances. The Astrophysical Journal, 557 (2), article 802. https://doi.org/10.1086/322258 (In English) Chiappini, C., Gratton, A. R. (1997) The chemical evolution of the galaxy: The two-infall model. The Astrophysical

Journal, 477 (2), article 765. https://doi.org/10.1086/303726 (In English) Kramida, A., Ralchenko, Yu., Reader, J. et al. (2022). NIST Atomic Spectra Database (ver. 5.10). National Institute of Standards and Technology. [Online]. Available: https://doi.org/10.18434/T4W30F (accessed 23.04.2023). (In English)

Olson, R. E., Smith, F. T., Bauer, E. (1971) Estimation of the coupling matrix elements for one-electron transfer

systems. Applied Optics, 10 (8), 1848-1855. https://doi.org/10.1364/A0.10.001848 (In English) Serminato, A., Gallino, R., Travaglio, C. et al. (2009) Galactic chemical evolution of the s-process from AGB stars. Publications of the Astronomical Society of Australia, 26 (3), 153-160. https://doi.org/10.1071/AS08053 (In English)

Travaglio, C., Galli, D., Gallino, R. et al. (1999) Galactic chemical evolution of heavy elements: From barium

to europium. The Astrophysical Journal, 521 (2), article 691. https://doi.org/10.1086/307571 (In English) Vlasov, D. V., Rodionov, D. S., Belyaev, A. K. (2018) The hybrid diabatization method and its application to the CaH quasi-molecule. Optics and Spectroscopy, 124 (5), 611-617. https://doi.org/10.1134/S0030400X18050223 (In English)

Yakovleva, S. A., Voronov, Ya. V., Belyaev, A. K. (2016) Atomic data on inelastic processes in low-energy beryllium-hydrogen collisions. Astronomy and Astrophysics, 593, article A27. https://doi.org/10.1051/0004-6361/201628659 (In English)

i Надоели баннеры? Вы всегда можете отключить рекламу.