Chelyabinsk Physical and Mathematical Journal. 2023. Vol. 8, iss. 1. P. 72-82.
DOI: 10.47475/2500-0101-2023-18106
ASYMPTOTIC EXPANSIONS OF RESONANCES FOR WAVEGUIDES COUPLED THROUGH CONVERGING WINDOWS
E.S. Trifanova", A.S. Bagmutovb, V.G. Katasonovc, I.Y. Popovd
ITMO University, St. Petersburg, Russia
"[email protected], [email protected], [email protected], [email protected]
Two-dimensional waveguides coupled through small windows are considered. First terms of the asymptotic expansion of resonances are obtained and studied for the case when the distance between the windows decreases. Method of matching of the asymptotic expansions of solutions of boundary value problems is used.
Keywords: resonance, asymptotics, coupled waveguides, scattering, low-dimensional system.
1. Introduction
The problem of resonances for scattering system is intensively studied due to its importance for physical applications (see, e.g., [1-6]. There are several approaches to resonances: Lax — Phillips scattering theory [7], complex scaling [8; 9], perturbation theory [10; 11], functional model [12], asymptotic method [13-15], operator extensions theory model [16-19]. Last decade a new wave of interest to resonance problem for waveguide with perforated boundary and to homogenization is stimulated by nanotechnology progress (see, e.g., [20-24]). For these purposes, it is, particularly, interesting to clarify the resonance behaviour in the case when the distance between the coupling windows vanishes. An additional interest to the question is given by its relation to the choice of regularization when fitting the operator extension theory model [25]. In the present paper, we investigate the problem in the framework of the asymptotic approach.
We consider a system of two plane waveguides , Q- connected by two apertures (Fig. 1). The wave function satisfies the Helmholtz equation with the Neumann boundary conditions:
, 2 du
An + k2 u = 0, —
dn
= 0.
dQ
The lower boundary of the continuous spectrum is zero. The presence of coupling windows leads to appearance of resonances (quasi-eigenvalues) close to the second (third, etc.) threshold value.
Systems of coupled waveguides have been studied for a long time. Estimations and asymptotics for bound states close to the lower bound of the continuous spectrum were obtained in [26; 27]. In the present paper, we use the technique similar to that in [28-31]. The method is based on matching of the asymptotic expansions of the solutions of boundary value problems [32]. Particularly, asymptotic estimates of the resonance (quasi eigenvalue) close to the second threshold n2/d+ (d+ is the width of the widest waveguide)
The work was supported by Russian Science Foundation (grant number 22-11-00046
Fig. 1. Geometry of the system
of the continuous spectrum of the Neumann Laplacian for two-dimensional strips coupled through a small window were obtained in [29].
In the present article, we obtain the first terms of the asymptotic expansion of the resonance close to the second threshold assuming that the distance between the openings decreases along with their diameters.
2. The problem description
Let d+ and d- be the waveguide widths, d+ > d-. Let a be small parameter and the radius of the apertures are ai = au1, a2 = au2. Choose the coordinate system as shown in Fig. 1. We assume that the distance e between the centers (x1,0) and (x2,0) of the apertures decreases when a ^ 0 and the character of e decreasing is related to the decreasing of a:
e = Ix1 - x21 = ma6, 0 <5< 1. (2)
One can note that 5 =1 corresponds to simple similarity in position and size of the apertures.
For resonance value close to the second threshold n2/d+, we construct the following asymptotic expansion in the form of series in powers of ln-1 a
f n2
Y a = \l dp - = T1 ln 1 a + T2 ln 2 a + ... Our goal is to find the first coefficients t1 and t2 of this asymptotic expansion (3).
(3)
3. Construction of asymptotic expansion
To find a formal asymptotic solution to the problem (1), we need the expression for the Green function in a single waveguide with the Neumann boundary conditions:
G± (Xi ,X2 ) =
1 nnyi nny2
cos —;— cos —-— exp
n=0
d± Y± (¿no + 1) d
■±
L±
(- Y±d±|xi - X2^, (4)
where X1 = (x1,y1) and X2 = (x2,y2) are the Cartesian coordinates, 5n0 is Kronecker symbol and
Y± = J —- k2 Yn y d± k -
The asymptotic expansions of the Green function (4) in the neighborhood of singularity (0, 0) (x ^ x1 = 0) have the form:
G+ ((x, 0); (x1,0); ka) - = - - ln |x| + g+(x),
V ' d+ Vn /d + — ka n
(x, 0); (x1,0); k^---ln |x| + g-(x),
where functions g±(x\) have no singularities in the waveguide.
We also need another asymptotic behavior of the Green function near the next opening for distance e (2) between the windows tending to zero:
G+((x, 0); (x 2, 0); ka) ~ — - - ln a + h+(x — x2),
V / Ya n
—
G- ^(x, 0); (x2, 0); ka) ~--ln a + h-(x — x2),
where functions h±(x) have no singularities in the waveguide. The main result of the present paper is as follows.
Theorem 1. There are two resonances k^ close to the second threshold n2/d+ which have the following asymptotic expansions in the form of series in powers of ln-1 a :
Ya = \ l dp - ka = T1 ln 1 a + T2 ln 2 a +
2
where
n
T1
(1 + S)d+'
= (g+(0)+ g- (0)+ln 2 --ln m n2 ( 2 1
t2 = ----tt^ ln —+ - ln m
2 d+(1 - Ô)2 \ U n
U1 = U2 = U.
The goal of the paper is proving of the theorem. We will use matching of asymptotic expansions of the corresponding solutions (quasi-eigenfunctions). To construct the asymptotic expansion for quasi-eigenfunction ^a(X), we perform a partition of the domain. For this purpose, we introduce four disks. Their centers are the windows centers and their radii are r(a) and 2r(a) where r(a) is chosen in such a way that
au1 < r(a) < 2r(a) < e/2 = — ad. Then, we construct the asymptotic expansion for quasi-eigenfunction ^a(X) in the form
^ ) = \±Ya(a 1G±(X, (x1, 0), ka) + a2G±(X, (x2, 0), ka)) , X e \ S^; (?) [v0'2(x/a) + v\'2(x/a) ln-1 a + ..., X e S2>'2(a).
In accordance with the matching method for the leading terms, we need to find such "bonding" functions, satisfying the Neumann boundary conditions, that the terms of the corresponding orders in the asymptotic expansions of the solution coincide in the domains
\ s^) n s%a), \ s^) n
Functions v0 '2 and v1 '2 should satisfy the Laplace equation with the Neumann boundary conditions. Further, to determine the form of these functions, we compare the coefficients for the corresponding powers of a in the expansion (7).
The expansion (7) in the neighborhood of the first window (x 1 = 0) takes the form
Ya ai(d+Ta - 1 ln a - 1 ln |x/a| + g+(x)) +
d+Ya - f ln a + h+(x))
v0 (x/a) + v^x/a) ln-1 a + ...,
a ( - 1 ln a - 1 ln |x/a| + g- (x)) +
Ya
+a2^ — f ln a + h (x)j
X g H+ \ S;(a);
X G S2;(a) ;
X G H- \ S;(a).
Using (6), we equate the coefficients with a0 in (8):
1 TiN il T1 in
----ai + ----a2 = — ai +--a2,
d+ n J \a+ n J n n
and obtain two equations corresponding to x ^ x1 and x ^ x2
> — ^)ai + (d+ — ^ ( a2 = 0, — ai + (d+ — a2 = 0.
System (9) should have nonzero solution, then
Ti
(1 + ¿)d+'
We choose the constant functions as v
i,2
:iq)
vi(x/a) = — (ai + ia2); v0(x/a) = — (iai + a2 )
Ti
For finding t2, we equate the coefficients with ln a in (8):
(—Tn ln |x| + Tig+(0) — (2) ai + (Tih+ (0) — Ç2) a2 =
= — T1 On |a| + ai + ^
— (—ln |x| + T!g-(0) — T2) ai — (Tih-(0) + Ç2) a2
= Tn On |x| + ai + ^
or
(rig+(0) + n ln (±) - T2) + (rih+(0) - ) «2 = Cl, - (Tig-(0) + n ln (±) - T2) ai - (Tih-(0) + Ç2) «2 = Ci.
It is known that there exist suitable functions V1
i,2
Tl«l,2 V i,2
i,2 v1,
X^ (x/a) + Ci,2, x > 0; ^X¿,2(x/a) + Ci,2, x < 0,
where
and
X0i,2(C) = Xo (^ - x1,2) , Xo(Z) = ln (z + Vë-T) ,
X0i,2(C) = ln |zI + ln 2 - ln |^i,2| + o(1), z ^
Then asymptotics for vj'2(x/a) should be as follows
i 2 Ti
vi (x/a) = ai,2 (ln |x/a| + ln(2/^i ,2)) + Ci,2. n
Then one comes to a system of linear equations
g+(0) + g-(0) + 2l^¿j] ti - ^ + [(h+ (0) + h- (0)) Ti - ^] «2 = 0, [(h+(0) + h-(0)) Ti - ^] «1 +
g+(0) + g-(0) + 2ln(±)) ti - ^
ai +
a2 = 0.
11)
Let us introduce the notation
Ai = g+(0) + g-(0) + 2ln(2/^i), A2 = g+(0) + g-(0) + 2ln(2/^)
B = h+ (0) + h- (0), p = —.
n
Then system (11) takes the form
i [AiTi - ß] ai + [Bti - öß] «2 = 0, { [Bti - öß] ai + [A2Ti - ß] «2 = 0.
System (12) has a nonzero solution if
'12)
AiTi - ß Bti - öß Bti - öß A2Ti - ß
0.
For apertures of equal width, one has u1 = u2, A1 = A2 = A. Hence, two values are possible for P:
p+ A + B A — B P+ = -, , f Ti, P = --rti,
and
T+ =
1 + ö
n A + B 2 1 + ö
■Ti, t2
1 - ö
n A - B 2 1- ö
■Ti.
Substituting (10), one obtains
t
+
n2 A + B 2d+ (1 + ¿)2 ,
n
2 A B
2d+ (1 - ¿)2'
Using h±(0) = g±(0) — n lnm, one, finally, comes to the following expressions
t+ =
n
d+(1 + ¿)2
n
21
g+(0) + g- (0) +ln---ln m
21 ln —|— ln m
2 d+(1 — 5)2 V ^ n
where = = w.
Thus, the proof of the theorem is complete.
4. Discussion
Fig. 2. The dependence of the resonance ka on a for different 6 (a) and w2/w1 (b)
(b)
Fig. 2 (a) represents the behavior of resonance fca when two equal apertures are decreasing and distance e between them is decreasing as e = ma6 for different 5. One
can see that is real and the speed of convergence 8 of the apertures does not affect the shape of the resonance curve.
Fig. 2 (b) shows the resonance curve for the case 8 = 0.5 for different values of the ratio of the apertures sizes o^/o^. If the apertures are not equal the both values of fca have nonzero imaginary part.
In Fig. 3, the resonance curves for varied for different values of 8 and fixed a
are shown.
3.130 He(U
Fig. 3. The dependence of the resonance ka on w2/w1 for different 6
The calculations for plotting the graphs (Figs. 2 and 3) are performed numerically and are based on the analytical arguments given in the Appendix.
5. Appendix
Here we propose a way to calculate the remainder g+(0) of the series for the Green function (5). Namely, (5) gives us:
g+(x) = G+ ((x, 0); (0,0); h) — - = + - ln |x|
e
—d+fci|x| -
2d+fci + n
^ exp ( — Wn2 — (hd+/n)2|x| )
E-V . o „ , -¿ — ln |x|
n=2
\J n2 — (hd+/n)2
Let s = kd+/n (s is close to 1), t = n|x|. Then
g+(0) = + 1 ln n + 1 lim
2d+k% n n
E
n=2
^ exp ( - t\/n? - s2
yjn2 - s2
ln t
To find this limit, one uses the Taylor series for lnt, 0 <t< 2. Then
œ exp ( - t\jn2 - s2 ) œ
y pv , J- - ln t = t - 1 + y
Vn2 - ^
n=2
n2 s
n=2
exp ( - tVn2 - s2) (1 - t)
Vn2 - s2
n2 s
n
t -1 + y
n=2
n
exp
(- tVn2 - s2) - (1 - t)n
+
+y
n=2
n
\J1 - s2/n2
1
exp
- tVn2 - °2
n2 s
Obviously, the last series in (13) converges uniformly for t e [0,1), I > 0.
Let us consider the first series in (13) and prove its uniform convergence. Let
^n(x) = exp ^ - xVn2 - s2) - (1 - x)n.
:i3)
We are interested in the upper estimate of the function ^n(x):
max >^n = ^n(xo).
x
If |x0(n)| ^ C > 0 for all n, then max ^n(x) ^ *^n(C) and the series n<£n(t)
converges uniformly (the first series in (13)).
If x0(n) has a subsequence converging to zero (£n ^ 0), then
1 - ^e-«-7" = (1 - £n)n-1 ^ n2
1 — ^ (1 — Cn)e-A = 1, A = inVn^—V2 + n ln(l — Cn), ^
n2
A ^ 0 ^ n ln(1 — Cn) + nCn ^ 0 ^
—1 nC + R2(Cn)n ^ 0,
where R2(Cn) is the remainder of the Taylor series for ln(1 — £n). Since R2(£n) < 0, then Cn = o{1/y/n) and using d^n/dx(£n) = 0, one obtains
Vn(Cn) = (1 - Cn)
n1
1
\J1 - s2/n2
- 1 + Cn
= o
then ^=2 n^n(t) converges uniformly.
n
1
1
1
2
Due to the uniform convergence, the limit (5) gives one
lim
£
n=2
exp ^ — ¿Vn2 — s2j
V n2 —
- ln t
-1 +
n=2
n
a/1 — s2/n2
1
i+£
n=2
nVn2 — s2 (n + V n2 — S2 )
To calculate this series numerically with an arbitrary predetermined error, we could estimate the remainder:
£
n=m+1
1
du
nVn2 — s2(n + Vn2 — s2) " J uVu2 — s2(u + a/u2 — s2
Vu2 — s2 (u + V u2 — s2 )
ln 2 — ln + — s2/m2
Finally,
g+(0)
1 1, 1 v: + - ln n + - >
n=2
n ^v^n2 — s2(n + Vn2 — s2)
where s = kd+/n.
References
1. AslanyanA., ParnovskiL., VassilievD. Complex resonances in acoustic waveguides. The Quarterly Journal of Mechanics and Applied Mathematics, 2000, vol. 53, no. 3, pp. 429447.
2. DuclosP., ExnerP., MellerB. Open quantum dots: Resonances from perturbed symmetry and bound states in strong magnetic fields. Reports on Mathematical Physics, 2001, vol. 47, no. 2, pp. 253-267.
3. Edward J. On the resonances of the Laplacian on waveguides. Journal of Mathematical Analysis and Applications, 2002, vol. 272, no. 1, pp. 89-116.
4. Christiansen T. Some upper bounds on the number of resonances for manifolds with infinite cylindrical ends. Annales Henri Poincare, 2002, vol. 3, pp. 895-920.
5. ExnerP., KovarikH. Quantum Waveguides. Berlin, Springer, 2015.
6. Osipov P.P., Nasyrov R.R. Resonance curve in rectangular closed channel. Lobachevskii Journal of Mathematics, 2020, vol. 41, pp. 1283—1288.
7. LaxP.D., Phillips R.S. Scattering Theory. New York, Academic Press, 1967.
8. SjostrandJ., ZworskiM. Complex scaling and the distribution of scattering poles. Journal of the American Mathematical Society, 1991, vol. 4, pp. 729-769.
9. Bonnet-Ben Dhia A.-S., ChesnelL., PagneuxV. Trapped modes and reflectionless modes as eigenfunctions of the same spectral problem. Proceedings of the Royal Society. A, 2018, vol. 474, 20180050.
10. AgmonS. A perturbation theory of resonances. Communications on Pure and Applied Mathematics, 1998, vol. 51, pp. 1255-1309.
11. RouleuxM. Resonances for a semi-classical Schrodinger operator near a non trapping energy level. Publication of RIMS Kyoto University, 1998, vol. 34, pp. 487-523.
12. Khrushchev S.V., Nikol'skii N.K., Pavlov B.S. Unconditional bases of exponentials and of reproducing kernels. In: Complex Analysis and Spectral Theory, Berlin, New York, Springer-Verlag, 1981. Pp. 214-335.
1
1
2
s
1
1
13. Gadyl'shinR.R. Existence and asymptotics of poles with small imaginary part for the Helmholtz resonator. Russian Mathematical Surveys, 1997, vol. 52, no. 1, pp. 1-72.
14. Frolov S.V., Popov I.Yu. Resonances for laterally coupled quantum waveguides. Journal of Mathematical Physics, 2000, vol. 41, no. 7, pp. 4391-4405.
15. Vorobiev A.M., Bagmutov A.S., Popov A.I. On formal asymptotic expansion of resonance for quantum waveguide with perforated semitransparent barrier. Nanosystems: Physics, Chemistry, Mathematics, 2019, vol. 10, no. 4, pp. 415-419.
16. Popov I.Y. Extension theory and localization of resonances for domains of trap type. Mathematics of the USSR - Sbornik, 1990, vol. 71, no. 1, pp. 209-234.
17. Popov I.Y. The resonator with narrow slit and the model based on the operator extensions theory. Journal of Mathematical Physics, 1992, vol. 33, no. 11, pp. 3794-3801.
18. Popov I.Y., Popova S.L. The extension theory and resonances for a quantum waveguide. Physics Letters A, 1993, vol. 173, pp. 484-488.
19. Popov I.Y., Popova S.L. Zero-width slit model and resonances in mesoscopic systems. Europhysics Letters, 1993, vol. 24, no. 5, pp. 373-377.
20. Gadyl'shinR.R. Analogues of the Helmholtz resonator in homogenization theory. Sbornik: Mathematics, 2002, vol. 193, no. 11, pp. 1611-1638.
21. BorisovD.I., Pankrashkin K.V. Gap opening and split band edges in waveguides coupled by a periodic system of small windows. Mathematical Notes, 2013, vol. 93, no. 5, pp. 660-675.
22. BorisovD.I. On the band spectrum of a Schrodinger operator in a periodic system of domains coupled by small windows. Russian Journal of Mathematical Physics, 2015, vol. 22, no. 2, pp. 153-160.
23. BorisovD., CardoneG., Durante T. Homogenization and norm resolvent convergence for elliptic operators in a strip perforated along a curve. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 2016, vol. 146, no. 6, pp. 1115-1158.
24. NazarovS.A., Orive-Illera R., Perez-Martinez M.E. Asymptotic structure of the spectrum in a Dirichlet-strip with double periodic perforations. Networks and Heterogeneous Media, 2019, vol. 14, no. 4, pp. 733-757.
25. FassariS., Popov I.Y., RinaldiF. On the behaviour of the two-dimensional Hamiltonian —A + A[^(x+x0) + 5(x — x0)] as the distance between the two centres vanishes. Physica Scripta, 2020, vol. 95, 075209.
26. ExnerP., VugalterS. Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window. Annales de l'Institut Henri Poincare, 1996, vol. 65, pp. 109-123.
27. Popov I.Yu. Asymptotics of bound states and bands for waveguides coupled through small windows. Applied Mathematics Letters, 2001, vol. 14, pp. 109-113.
28. Popov I.Yu. Asymptotics of resonances and bound states for laterally coupled curved quantum waveguides. Physics Letters A, 2000, vol. 269, pp. 148-153.
29. Popov I.Yu., Tesovskaya E.S. Electron in a multilayered magnetic structure: resonance asymptotics. Theoretical and Mathematical Physics, 2006, vol. 146, no. 3, pp. 361-372.
30. Gortinskaya L.V., Popov I.Yu., Tesovskaya E.S., UzdinV.M. Electronic transport in the multilayers with very thin magnetic layers. Physica E, 2007, vol. 36, pp. 12-16.
31. TrifanovaE.S. Resonance phenomena in curved quantum waveguides coupled via windows. Technical Physics Letters, 2009, vol. 35, pp. 180-182.
32. Il'in A.M. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Providence, American Mathematical Society, 1992.
Article received 11.07.2022.
Corrections received 12.01.2023.
Челябинский физико-математический журнал. 2023. Т. 8, вып. 1. С. 72-82.
УДК 517.955.8:517.956.2 DOI: 10.47475/2500-0101-2023-18106
АСИМПТОТИЧЕСКИЕ РАЗЛОЖЕНИЯ РЕЗОНАНСОВ ДЛЯ ВОЛНОВОДОВ, СВЯЗАННЫХ ЧЕРЕЗ СБЛИЖАЮЩИЕСЯ ОТВЕРСТИЯ
Е. С. Трифанова", А. С. Багмутов6, В. Г. Катасоновс, И. Ю. Попов^
Университет ИТМО, Санкт-Петербург, Россия
"[email protected], [email protected], [email protected], [email protected]
Рассмотрены двумерные волноводы, связанные через малые отверстия. Получены и исследованы первые члены асимптотических разложений резонансов для случая, когда расстояние между отверстиями уменьшается. Используется метод согласования асимптотических разложений решений краевых задач.
Ключевые слова: резонанс, асимптотика, связанные волноводы, 'рассеяние, низкоразмерная система.
Поступила в редакцию 11.07.2022. После переработки 12.01.2023.
Сведения об авторах
Трифанова Екатерина Станиславовна, кандидат физико-математических наук, доцент образовательного центра математики, Университет ИТМО, Санкт-Петербург, Россия; e-mail: [email protected].
Багмутов Александр Сергеевич, аспирант образовательного центра математики, Университет ИТМО, Санкт-Петербург, Россия; e-mail: [email protected]. Катасонов Владислав Геннадиевич, студент образовательного центра математики, Университет ИТМО, Санкт-Петербург, Россия; e-mail: [email protected]. Попов Игорь Юрьевич, доктор физико-математических наук, профессор образовательного центра математики, Университет ИТМО, Санкт-Петербург, Россия; e-mail: [email protected].
Работа выполнена при поддержке гранта РНФ (проект 22-11-00046).