Научная статья на тему 'ASSESSMENT ON THE STRUCTURAL IMPACT OF THE SLABS WITH JOISTS USED IN THE REINFORCED CONCRETE STRUCTURES IN BURUNDI'

ASSESSMENT ON THE STRUCTURAL IMPACT OF THE SLABS WITH JOISTS USED IN THE REINFORCED CONCRETE STRUCTURES IN BURUNDI Текст научной статьи по специальности «Строительство и архитектура»

CC BY
39
5
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Вестник МГСУ
ВАК
RSCI
Ключевые слова
SLABS WITH JOISTS / CONCRETE / UNLOADING EFFECT / NATURAL PERIODS OF THE STRUCTURE / REINFORCED CONCRETE BUILDINGS / FLEXIBILITY OF A BUILDING / DEFORMABILITY OF A REINFORCED CONCRETE BUILDING

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Mikerego Emmanuel, Akimana Trésor, Gatore Jean Pierre

Introduction. This paper addresses the effect of reinforced concrete slabs with joists on the behavior of reinforced concrete buildings. Materials and methods. Firstly, models of 3-storey, 6-storey, 9-storey and 12-storey buildings were used to determine internal longitudinal forces in the most heavily loaded column on the ground floor and to identify the unloading action of slabs with joists. Secondly, natural periods of the structures were identified by solving the modal equation of vibration in reinforced concrete building models to identify the effect of the unloading action on the flexibility of a reinforced concrete building. Tables and diagrams were used to analyze and interpret the results. Results. For the ratio of 4.72 between the weight of one square meter of a reinforced concrete slab and the weight of joists used in one square meter of the slab, the unloading effect varies from 15.18 to 16.78 % and from 15.74 to 16.10 % in the columns, respectively, for the ultimate limit state and the serviceability limit state of a reinforced concrete building. The unloading action, induced by the slabs with joists, reduces the flexibility of a reinforced concrete building. Flexibility reductions are illustrated by reductions of the values of the natural periods from 6.74 to 6.98 % for the 3-storey building, from 5.77 to 6.74 % for the 6-storey building, from 5.36 to 6.56 % for the 9-storey building and from 4.26 to 7.84 % for the 12-storey building. Conclusions. The use of slabs with joists reduces the mass by 15 % and has an unloading effect on a reinforced concrete structure; it also boosts the building flexibility by 6 % and deteriorates the deformability due to the non-linear behaviour of concrete.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ASSESSMENT ON THE STRUCTURAL IMPACT OF THE SLABS WITH JOISTS USED IN THE REINFORCED CONCRETE STRUCTURES IN BURUNDI»

ПРОЕКТИРОВАНИЕ И КОНСТРУИРОВАНИЕ СТРОИТЕЛЬНЫХ СИСТЕМ. СТРОИТЕЛЬНАЯ МЕХАНИКА. ОСНОВАНИЯ И ФУНДАМЕНТЫ, ПОДЗЕМНЫЕ СООРУЖЕНИЯ

RESEARCH PAPER I НАУЧНАЯ СТАТЬЯ УДК 69.07

DOI: 10.22227I1997-0935.2023.3.358-366

Assessment on the structural impact of the slabs with joists used in the reinforced concrete structures in Burundi

Emmanuel Mikerego1, Trésor Akimana2, Jean Pierre Gatore2

1 University of Burundi; Bujumbura, Burundi; 2 High Normal School (ENS); Bujumbura, Burundi

ABSTRACT

Introduction. This paper addresses the effect of reinforced concrete slabs with joists on the behavior of reinforced concrete buildings.

Materials and methods. Firstly, models of 3-storey, 6-storey, 9-storey and 12-storey buildings were used to determine internal longitudinal forces in the most heavily loaded column on the ground floor and to identify the unloading action of slabs with joists. Secondly, natural periods of the structures were identified by solving the modal equation of vibration in reinforced concrete building models to identify the effect of the unloading action on the flexibility of a reinforced concrete building.

Tables and diagrams were used to analyze and interpret the results.

N N

PÎ PÎ Results. For the ratio of 4.72 between the weight of one square meter of a reinforced concrete slab and the weight of joists used in one square meter of the slab, the unloading effect varies from 15.18 to 16.78 % and from 15.74 to 16.10 % in the col> in umns, respectively, for the ultimate limit state and the serviceability limit state of a reinforced concrete building. The unload-E — ing action, induced by the slabs with joists, reduces the flexibility of a reinforced concrete building. Flexibility reductions are (0 oó illustrated by reductions of the values of the natural periods from 6.74 to 6.98 % for the 3-storey building, from 5.77 to 6.74 % for the 6-storey building, from 5.36 to 6.56 % for the 9-storey building and from 4.26 to 7.84 % for the 12-storey building. Conclusions. The use ofslabs with joists reduces the mass by15% and has an unloading effect on a reinforced concrete S § structure; it also boosts the building flexibility by 6 % and deteriorates the deformability due to the non-linear behaviour

P ô of concrete. >

^ KEYWORDS: slabs with joists, concrete, unloading effect, natural periods of the structure, reinforced concrete buildings,

j= |5 flexibility of a building, deformability of a reinforced concrete building

O 1

-g FOR CITATION: Mikerego E., Akimana T., Gatore J.P. Assessment on the structural impact of the slabs with joists used

o ££ in the reinforced concrete structures in Burundi. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023;

co < 18(3):358-366. DOI: 10.22227/1997-0935.2023.3.358-366 (rus.). § ^

co ® Corresponding author: Emmanuel Mikerego, mikeregoemmanuel@hotmail.com.

2 ^

Оценка влияния плит перекрытия

|<3 со встроенными пустотелыми кирпичами, используемыми

8 ° в железобетонных зданиях в Бурунди

к

со ~> Эммануэль Микерего1, Трезор Акимана2, Жан Пьер Гаторе2

2 £ 1 Университет Бурунди; г. Бужумбура, Бурунди;

$ о 2 Высшая педагогическая школа; г. Бужумбура, Бурунди

О Э АННОТАЦИЯ

5 О Введение. Показано влияние железобетонных плит перекрытия со встроенными пустотелыми кирпичами на работу

железобетонных зданий.

X Материалы и методы. На первом этапе на основе 3-этажной, 6-этажной, 9-этажной и 12-этажной моделей же-

н £ лезобетонных конктрукций определялись продольные внутренние силы в наиболее нагруженной колонне первого

¡^ ¡^ этажа с целью выявления разгрузочного воздействия от плит перекрытий со встроенными пустотелыми кирпичами.

И > На втором этапе собственные периоды колебания устанавливались путем решения модального уравнения коле-

бания моделей исследуемых железобетонных зданий для выявления влияния плит перекрытий со встроенными

© E. Mikerego, T. Akimana, J.P. Gatore, 2023 Распространяется на основании Creative Commons Attribution Non-Commercial (CC BY-NC)

пустотелыми кирпичами на гибкость железобетонных зданий. Таблицы и диаграммы использовались для анализа и интерпретации полученных результатов исследования.

Результаты. При отношении, равном 4,72 массы квадратного метра железобетонной плиты к массе пустотелых кирпичей, используемых в квадратном метре плиты перекрытия, установлено разгужающее воздействие от применения плит перекрытий со встроенными пустотельными кирпичами. Плиты перекрытий со встроенными пустотелыми кирпичами приводят к снижению в пределах 15,18-16,78 % и 15,74-16,10 % продольных сил в более нагруженной колонне первого этажа, соответственно при первом и втором расчетных предельных состояниях. Установленное разгружающее воздействие влечет увеличение гибкости железобетонных зданий, что подтверждается периодами собственных колебаний исследованных моделей зданий. Собственные периоды колебания уменьшаются в пределах 6,74-6,98 % для 3-этажного здания, от 5,77-6,74 % для 6-этажного здания, 5,36-6,56 % для 9-этажного здания и 4,26-7,84 % для 12-этажного здания.

Выводы. Использование железобетонных плит перекрытия со встроенными пустотелыми кирпичами приводит к облегчению и разгружению железобетонного здания с одной стороны, а с другой — к увеличению его гибкости, что вызывает ухудшение его деформативности из-за нелинейного поведения бетона.

КЛЮЧЕВЫЕ СЛОВА: плиты перекрытия со встроенными пустотелыми кирпичами, бетон, разгружающий эффект, собственные периоды колебания здания, железобетонные здания, гибкость здания, деформативность железобетонного здания

ДЛЯ ЦИТИРОВАНИЯ: Микерего Э. , Акимана Т., Гаторе Ж.П. Assessment on the structural impact of the slabs with joists used in the reinforced concrete structures in Burundi // Вестник МГСУ. 2023. Т. 18. Вып. 3. С. 358-366. DOI: 10.22227/1997-0935.2023.3.358-366

Автор, ответственный за переписку: Эммануэль Микерего, mikeregoemmanuel@hotmail.com.

INTRODUCTION

The use of slabs with joists in reinforced concrete buildings is becoming increasingly popular in Burundi. In these slabs, some of the concrete volume of slabs is replaced by locally produced joists. This practice raises the issue of the effect of such slabs on the static and dynamic behavior of reinforced concrete structures.

Generally, slabs used to make reinforced concrete structures are conventional slabs, flat slabs, hollow core slabs and composite slabs. Foreign researchers assume that different types of slabs, used in reinforced concrete structures, affect the engineering and economic parameters of the buildings in question [1-4]. The evaluation of effects of different slab types encompasses the effect of slab types on the static and dynamic behaviour of reinforced concrete buildings [5-7]. Studies address the effect of different slab types on the building behaviour, especially on the seismic behaviour of reinforced concrete buildings [8-11]. Comparative studies, including numerical simulation studies, also confirm the effect of different slab types on the seismic response of reinforced concrete buildings [12-16]. Research literature highlights that the structural performance of reinforced concrete buildings depends on different slab types used in these structures [17-20].

Even though research works show that slab types have an effect on the static and dynamic behaviour of reinforced concrete buildings, there are few studies on

the effect of slabs with joists on the structural behaviour of reinforced concrete structures. Some studies address the design of slab with joists, but they fail to analyze their effect on the structural behaviour [21] of reinforced concrete buildings. Therefore, the problem of the use of slabs with joists is still relevant. Therefore, the authors analyze variations of normal forces in columns to identify the unloading action induced by the presence of slabs with joists. Besides, variations of natural vibrations are identified to find the effect of the slabs with joists on the flexibility and stability of reinforced concrete buildings.

MATERIALS AND METHODS

In Burundi, the use of slabs with joists is an increasingly widespread practice. The geometrical and physical characteristics of the most widely used joists are provided in the Table 1.

In the slabs with joists, some concrete is replaced with joists, placed under the concrete (Fig. 1).

In this study, four models (Fig. 2) were considered to investigate the effect of slabs with joists on the longitudinal forces in the columns and on natural periods of reinforced concrete structures.

Geometrical characteristics of structural elements of the studied models were determined using pre-dimensioning (Table 2).

Table 1. Geometrical characteristics and weight of widely used joists in reinforced concrete building in Burundi

Used joists in the slab Length, cm Wide, cm Height, cm Weight, kg Quantity in the slab, joists/m2 Weights ratio by 1 m2 of the slab

30 30 13 10 9 Г Weight concrete V 4 72 1 Weighty J ■

< П

iH kK

0 CO n CO

1 О y 1

J to

u-

^ I

n 0

О 3 o

zs (

О i о n

CO CO

0)

l\J CO

о о 66

r §6 c я

h о

c n

О )

® 0

00 В

■ T

s У с о

1 к

WW M 2

о о 10 10 U W

W (0 N N

o o

N N

ci «

* (V

U 3

> in

C M

HQ 00 . r

« Q j

<D <u

o £

---' "t^

o

o <£

S c

3 « ™ . I

w

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

co E —

^ w E §

CL° c

Ln o

s H

o E c5 o

a> ^

Fig. 2. Case of 3-storey (a), 6-storey (b), 9-storey (c) and 12-storey (d) building models used to evaluate the effect of slabs with joists on reinforced concrete buildings

Table 2. Geometrical characteristics of structural elements of the studied building models

Structural element Model (a) with 3 storey, cm Model (b) with 6 storey, cm Model (c) with 9 storey, cm Model (d) with 12 storey, cm

Compression table 4 4 4 4

Slab without joists 17 17 17 17

Height of joists 13 13 13 13

Main beams 30 x 50 30 x 50 30 x 50 30 x 50

Columns 30 x 30 45 x 45 55 x 55 60 x 60

CO CO

2 3

N

ïl

O (0

The main component of compression rigidity EA and flexural rigidity EI of structural elements of the studied models were determined on the basis of the cross-sections and the longitudinal deformation modulus E of standard concrete with compressive strength fc2S equal to 25 MPa (1):

E = 11,000f = 32,164 MPa. (1)

Longitudinal forces N in the most heavily loaded column on the ground floor were used as the static parameter studied in accordance with the design limit state considered according to Eurocode 1 (EN 1991-1-1(2002)). In case of the ultimate limit state, the vertical load N, acting on a given column, was constituted by dead loads G and exploitation load Q for residential buildings acting in the loading area on the above n levels (2):

C.358-366

N =I(y * • G + Yq • Q )

(2)

where G is the global dead load from constructive elements loading columns on a given floor: G = 8.27 kN/m2 and G = 6.54 kN/m2 for slabs without joists and for slabs with joists, respectively; Q is the exploitation load for residential buildings Q = 1.5 kN/m2; y yQ are security coefficients for the ultimate state limit: y = 1.35; Yq = L5°. g

For the serviceability limit state, the vertical load Nser, acting on a given column, was constituted by dead loads G and exploitation load Q for residential buildings 1.5 kN/m2, acting in the loading area on the above n levels (3):

Nser =£(y* • g + YQ • q)

(3)

m = G + PQ,

(4)

\[K ]- ro2 [M jUtf} = 0,

(5)

k = 12EI/h3,

(6)

T = 2rc/œ.

(7)

were presented in tables. Below is Table 3, showing internal forces in the most loaded column of the ground floor and Tables 4 showing natural periods of the structures. The diagrams (Fig. 3-5) allow conducting the analysis and interpret its results.

Table 3. Longitudinal forces in the most loaded column of the ground floor for ultimate limit and serviceability limit states

with y Ye as security coefficients in the serviceability limit state: Yg = 1, YQ = 1.

To determine the dynamic parameters, inertial masses m were determined for a given floor using (4):

Building model, Longitudinal forces N at ultimate limit state, kN Longitudinal forces N at serviceability limit state, kN

storey Slab without joists Slab with joists Slab without joists Slab with joists

3 1665.83 1412.87 1210.90 1023.57

6 3250.80 2744.87 2364.00 1989.24

9 4811.71 4052.82 3505.23 2943.09

12 6381.69 5369.84 4653.18 3903.66

where G are dead loads of constructive elements; Q is the exploitation load on a given floor for residential buildings; p is part of the exploitation load taken in analysis p = 0.25.

Natural pulsations of vibration ra of the studied building models are obtained each time by solving the modal equation or the characteristic equation (4) using Mathcad 14 (5):

Table 4. Natural periods values in the 3, 6, 9 and 12 storey model of a reinforced concrete building with slabs with or without joists

where [£] is the structure stiffness matrix; œ are the own pulsations of the structure, [M] is the structural mass matrix; { U} are the displacement matrices for floors.

The elementary stiffness k for embedded columns was calculated using expression (6):

where E is the longitudinal deformation modulus of concrete; I is the bending inertia of the cross-section of the column; h is the height of the column.

Natural periods of vibration T were obtained for each case of the model of the reinforced concrete building using (7):

To make the analysis and interpret the results, diagrams of longitudinal forces in the most heavily loaded column of the ground floor and periods of natural vibrations were drawn using the tables that contain the research findings.

RESULTS OF THE RESEARCH

In this study, models of 3, 6, 9 and 12-storey reinforced concrete buildings were analysed. The results

Building model, storey Natural periods, s Slab without joists Slab with joists

3 T1 0.76 0.71

T2 0.27 0.26

T3 0.19 0.18

6 T1 0.64 0.60

T2 0.22 0.20

T3 0.14 0.13

T4 0.10 0.10

T5 0.09 0.08

T6 0.08 0.08

9 T1 0.64 0.60

T2 0.22 0.20

T3 0.13 0.12

T4 0.10 0.09

T5 0.08 0.07

T6 0.07 0.06

T7 0.06 0.06

T8 0.06 0.05

T9 0.05 0.05

12 T1 1.10 1.03

T2 0.27 0.25

T3 0.14 0.14

T4 0.13 0.12

T5 0.10 0.09

T6 0.08 0.07

T7 0.06 0.06

T8 0.06 0.05

T9 0.06 0.05

T10 0.05 0.05

T11 0.05 0.05

T12 0.05 0.04

s

s t

i

3

G) (A C

CO CO

J

o

CD CD ^J i

O CD CO

cn

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

O o

CO CO

z 2 CO

0 J^

1

cn

CD O O

O

CD CD

l c

3

e

u> s c <D W

2 O 10 u

DO

J □ y

o

X W

M

o 10 u

n

n

The findings (Table 3) show that the presence of joists leads to a reduction in longitudinal forces N transmitted in the columns. The reduction in longitudinal forces in the range of 15.18 to 15.85 % in the most loaded ground floor column is identified for the ultimate limit state of the studied building models. The diagram (Fig. 3, a, b) shows how slabs with joists generate an unloading action in the columns of a reinforced concrete structure.

Similarly, there is a reduction in longitudinal forces N in the range of 15.74 to 16.10 % in the most loaded column on the ground floor for the case of the serviceability limit state of all studied building models (Fig. 4, a, b).

The unloading action, triggered by the presence of slabs with joists, leads to a reduction in natural periods values of all studied building models. Consequently, it can be said that reinforced concrete structures, that

have slabs with joists, become more flexible. Slabs with joists add flexibility to reinforced concrete structures.

Dynamic characteristics (Table 4) show that natural periods values are reduced in the range of 6.74 to 6.98 % for the 3-storey building model (Fig. 5, a).

Additional flexibility of structures, induced by the presence of slabs with joists, is manifested by a reduction in natural periods of vibration in the range from 5.77 to 6.74 % for the 6-storey building model (Fig. 5, b) Also, additional flexibility of a reinforced concrete building, having slabs with joists, is identified by a reduction in natural periods values in the range from 5.36 to 6.56 % in a 9-storey building model (Fig. 5, c).

For the 12-storey building model, additional flexibility, generated by the unloading effect of the presence of slabs with joists, is illustrated by a reduction in natural periods values in the range from 4.26 to 7.84 % (Fig. 5, d).

W (0 N N

o o

N N

ci CO

* 0

U 3

> in

E M

HQ 00 . r

« Q j

<D <u

o S

Fig. 3. Longitudinal forces in the case of the ultimate state limit (a) in the most loaded column and the function describing the variation of longitudinal forces (b)

Fig. 4. Longitudinal forces in the case of the service state limit (a) in the most loaded column and the function describing the effect of slabs with joists on longitudinal forces (b) in columns

C.358-366

d

Fig. 5. Natural periods values and their variation in a building model: a — 3-storey; b — 6-storey; c — 9-storey; d — 12-storey

10 10 o o 10 10 u w

CONCLUSION AND DISCUSSION

The use of slabs with joists in a reinforced concrete structure has an effect on its static and dynamic behaviours. Statically, the unloading effect of (15 %) is identified in structures, having slabs with joists. A reduction in natural periods values in a reinforced concrete structure, having slabs with joists, leads to the additional flexibility of (6 %). The additional flexibility aggravates the deformability of the reinforced concrete structure due to the non-elastic behaviour of concrete. Therefore,

slabs with joists make the structure less heavy and have a negative effect on the deformability of a reinforced concrete structure. Consequently, non-structural filling elements will be more subjected to damages in reinforced concrete structures that have slabs with joists. Therefore, structural solutions are needed to ensure the physical integrity and continued serviceability of non-structural fillings in reinforced concrete buildings that have slabs with joists, that are built on compressible soils and or in seismic zones.

REFERENCES

1. Pawar A.V., Patil A.C., Ghutukade K.B., Sherkar S.S., Gidd M.M. Techno-economic study of different type of slab. International Research Journal of Engineering and Technology (IRJET). 2018; 05(03):1577-1582.

2. Tung G., Azizi A.B., Tanfener T. Effects of slab types on the seismic behavior and construction cost of RC Buildings. Journal of Polytechnic. 2021.

„ „ DOI: 10.2339/politeknik.971343

3. Gursoy §., Uludag O. Investigation of the effects on earthquake behavior and rough construction

{0 iO

x „ costs of the slab type in reinforced concrete buildings.

A Advances in Concrete Construction. 2020; 10(4):333-§ " 343. DOI: 10.12989/acc.2020.10.4.333

4. Bhaduria S.S., Chhugani N. Comparative ? ® analysis and design of flat and grid slab system with 2 3 conventional slab system. International Research Jour-I- JJ nal of Engineering and Technology (IRJET). 2017; — ^ 04(08):2314-2329.

J^ J3 5. Keles Y., Kasap H., Yaman Z. Evaluating O ^ the effects of different slab types on static and dynam-§ o ic characteristics of structures. Challenge Journal of < Structural Mechanics. 2021; 7(2):71. DOI: 10.20528/ o § cjsmec.2021.02.003

™ 0 6. Ozturk T., Ozturk Z. The effects of the type of $ § slab on structural system in the multi-storey reinforced ^ concrete buildings. Proceedings of the 14th World Con-^ O ference on Earthquake Engineering. 2008.

o 7. E§ki H., University-Cerrahpa§a i., Sayin B., eg g Gune§ B. The effect on structural behavior of differ-rj g ent slab types for RC buildings. Journal of Structural ? Z Engineering &AppliedMechanics. 2020; 3(1):41-48. Z f DOI: 10.31462/jseam.2020.01041048 ^ J 8. Gupta U., Ratnaparkhe S., Gome P. Seismic >t behaviour of buildings having flat slabs with drops. In-if W ternational Journal of Emerging Technology and Ad® g vanced Engineering. 2012; 2(10). s £ 9. Bakale M., Viswanathan T.S. Seismic behavior

X c

¡3 +5 of multi-story structure with different types of slabs. In-

Ijq >§ ternational Journal of Civil Engineering and Technology. 2017; 8(4):507-517.

10. Uzun D., Guler K. Seismic behavior of a high rise RC building with different types of slabs. 16th European Conference on Earthquake Engineering. 2018.

11. Prakasam M.L., Raju V.S.R. Effect of soil structure interaction on seismic behavior of multi-storey [G+5] building with different types of slabs. International Research Journal of Engineering and Technology (IRJET). 2018; 05(05):3497-3502.

12. Sawwalakhe A.K., Pachpor P.D. Comparative study of conventional slab, flat slab and grid slab using ETABS. IOP Conference Series : Materials Science and Engineering. 2021; 1197(1):012020. DOI: 10.1088/1757-899X/1197/1/012020

13. Malviya S., Tiwar V.K. Comparative study of seismic behaviour of multi — storey buildings with flat slab, waffle slab, ribbed slab &slab with secondary beam. Journal of Xi'an University of Architecture & Technology. 2021; 13(3):77-90.

14. Borkar S., Dabhekar K., Khedikar I., Jaju S. Analysis of flat slab structures in comparison with conventional slab structures. IOP Conference Series : Earth and Environmental Science. 2021; 822(1):012049. DOI: 10.1088/1755-1315/822/1/012049

15. Pethe M.D., Khedikar A. Comparative study of conventional slab, flat slab and waffle slab by using finite element method. International Journal for Research in Applied Science and Engineering Technology. 2022; 10(6):15-25. DOI: 10.22214/ijraset.2022.43714

16. Bedre Y.G., Shaikh S. Comparative study of flat slab and conventional slab structure based on seismic behaviour: A review. Gradiva Review Journal. 2022; 8(6):242-245.

17. Pradhana R.A., Pratama M.M.A., Santoso E., Karjanto A. Structural performance of multi-storey building using flat slab and conventional slab to seismic loads (Case study: Faculty building of Sport Science in Universitas Negeri Malang, Indonesia). IOP Conference Series : Materials Science and Engineering. 2019; 669(1):012053. DOI: 10.1088/1757-899X/669/1/012053

18. Khalaf M., El-Shihy A., Shehab H., Mustafa S. Structural behavior analysis of two-ways (Waffle) com-

posite slabs. International Journal of Engineering and Innovative Technology (IJEIT). 2013; 2(12):47-54.

19. Starosta N.A. Justification of the application of lightweight monolithic reinforced concrete floors. Young Scientist. 2019; 6(244):22-28. (rus.).

20. Mahmoud S., Alqarni A., Saliba J., Ibrahim A.H., Magdy genidy, Diab H. Influence of floor sys-

tem on seismic behavior of RC buildings to forward directivity and fling-step in the near-fault region. Structures. 2021; 30:803-817. DOI: 10.1016/j.istruc.2021.01.052

21. Shuraim A.B., Al-Negheimish A.I. Design considerations for joist floors with wide-shallow beams. ACI Structural Journal. 2011; 108(2). DOI: 10.14359/51664254

Received September 6, 2022.

Adopted in revised form on February 9, 2023.

Approved for publication on March 9, 2023.

Bionotes: Emmanuel Mikerego — Candidate of Technical Sciences, Associate Professor of the Faculty of Engineering Sciences; University of Burundi; B.P 2700, Bujumbura, Burundi; ORCID: 0000-0002-5743-6476; mikerego-emmanuel@ hotmail.com;

Trésor Akimana — student; High Normal School (ENS); Bujumbura, Burundi; akimanatresora@gmail.com; Jean Pierre Gatore — master assistant; High Normal School (ENS); Bujumbura, Burundi; gatorejeanpierre@ yahoo.fr.

Contribution of the authors:

Emmanuel Mikerego — conceptualization, methodology, data processing, writing of the article, scientific editing of the text. Trésor Akimana — conceptualization, methodology, data gathering and processing. Jean Pierre Gatore — conceptualization, methodology, data processing. The authors declare no conflict of interest.

СПИСОК ИСТОЧНИКОВ

1. Pawar A. V., Patil A.C., Ghutukade K.B., Sherkar S.S., Gidd M.M. Techno-economic study of different type of slab // International Research Journal of Engineering and Technology (IRJET). 2018. Vol. 05. Issue 03. Pp. 1577-1582.

2. Tung G., Azizi A.B., Tanfener T. Effects of slab types on the seismic behavior and construction cost of RC buildings // Journal of Polytechnic. 2021. DOI: 10.2339/politeknik.971343

3. Gursoy §., Uludag O. Investigation of the effects on earthquake behavior and rough construction costs of the slab type in reinforced concrete buildings // Advances in Concrete Construction. 2020. Vol. 10. Issue 4. Pp. 333-343. DOI: 10.12989/acc.2020.10.4.333

4. Bhaduria S.S., Chhugani N. Comparative analysis and design of flat and grid slab system with conventional slab system // International Research Journal of Engineering and Technology (IRJET). 2017. Vol. 04. Issue 08. Pp. 2314-2329.

5. Keles Y., Kasap H., Yaman Z. Evaluating the effects of different slab types on static and dynamic characteristics of structures // Challenge Journal of Structural Mechanics. 2021. Vol. 7. Issue 2. P. 71. DOI: 10.20528/ cjsmec.2021.02.003

6. Ozturk T., Ozturk Z. The effects of the type of slab on structural system in the multi-storey reinforced concrete buildings // Proceedings of the 14th World Conference on Earthquake Engineering. 2008.

7. E§ki H., University-Cerrahpa§a 1., Sayin B., Gune§ B. The effect on structural behavior of different slab types for RC buildings // Journal of Structural Engineering & Applied Mechanics. 2020. Vol. 3. Issue 1. Pp. 41-48. DOI: 10.31462/jseam.2020.01041048

8. Gupta U., Ratnaparkhe S., Gome P. Seismic Behaviour of Buildings Having Flat Slabs with Drops // International Journal of Emerging Technology and Advanced Engineering. 2012. Vol. 2. Issue 10.

9. Bakale M., Viswanathan T.S. Seismic Behavior of Multi-Story Structure with Different Types of Slabs // International Journal of Civil Engineering and Technology. 2017. Vol. 8. Issue 4. Pp. 507-517.

10. Uzun D., Guler K. Seismic behavior of a high rise RC building with different types of slabs // 16th European Conference on Earthquake Engineering. 2018.

11. Prakasam M.L., Raju V.S.R. Effect of Soil Structure Interaction on Seismic Behavior of MultiStorey [G+5] Building with Different Types of Slabs // International Research Journal of Engineering and Technology (IRJET). 2018. Vol. 05. Issue 05. Pp. 34973502.

12. Sawwalakhe A.K., Pachpor P.D. Comparative Study of Conventional Slab, Flat Slab and Grid Slab Using ETABS // IOP Conference Series : Materials Science and Engineering. 2021. Vol. 1197. Issue 1. P. 012020. DOI: 10.1088/1757-899X/1197/1/012020

13. Malviya S., Tiwar V.K. Comparative Study of Seismic Behaviour of Multi-Storey Buildings with Flat

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

< П i н

k к

G Г

S 2

0 со § СО

1 О y 1

J CD

u-

^ I

n 0

О 3 o

=s (

О i о §

§ 2 n g

О 6

Г œ t ( an

О )

f!

00 В

■ г

s □

s У с о f f WW

M 2

О О

10 10

u w

Slab, Waffle Slab, Ribbed Slab &Slab with Secondary Beam // Journal of Xi'an University of Architecture & Technology. 2021. Vol. 13. Issue 3. Pp. 77-90.

14. Borkar S., Dabhekar K., Khedikar I., Jaju S. Analysis of flat slab structures in comparison with conventional slab structures // IOP Conference Series : Earth and Environmental Science. 2021. Vol. 822. Issue 1. P. 012049. DOI: 10.1088/1755-1315/822/1/012049

15. Pethe M.D., Khedikar A. Comparative study of conventional slab, flat slab and waffle slab by using finite element method // International Journal for Research in Applied Science and Engineering Technology. 2022. Vol. 10. Issue 6. Pp. 15-25. DOI: 10.22214/ijra-set.2022.43714

16. Bedre Y.G., Shaikh S. Comparative study of flat slab and conventional slab structure based on seismic behaviour: A review // Gradiva Review Journal. 2022. Vol. 8. Issue 6. Pp. 242-245.

17. Pradhana R.A., Pratama M.M.A., Santoso E., Karjanto A. Structural performance of multi-storey building using flat slab and conventional slab to seismic loads (Case study: Faculty building of Sport Sci-

ence in Universitas Negeri Malang, Indonesia) // IOP Conference Series : Materials Science and Engineering. 2019. Vol. 669. Issue 1. P. 012053. DOI: 10.1088/1757-899X/669/1/012053

18. KhalafM., El-Shihy A., Shehab H., Mustafa S. Structural behavior analysis of two-ways (Waffle) composite slabs // International Journal of Engineering and Innovative Technology (IJEIT). 2013. Vol. 2. Issue 12. Pp. 47-54.

19. Староста Н.А. Обоснование применения облегченных монолитных железобетонных перекрытий // Молодой ученый. 2019. № 6 (244). С. 22-28.

20. Mahmoud S., Alqarni A., Saliba J., Ibrahim A.H., Magdy genidy, Diab H. Influence of floor system on seismic behavior of RC buildings to forward directivity and fling-step in the near-fault region // Structures. 2021. Vol. 30. Pp.803-817. DOI: 10.1016/j. istruc.2021.01.052

21. Shuraim A.B., Al-Negheimish A.I. Design considerations for joist floors with wide-shallow beams // ACI Structural Journal. 2011. Vol. 108. Issue 2. DOI: 10.14359/51664254

Поступила в редакцию 6 сентября 2022 г. СЧ Я Принята в доработанном виде 9 февраля 2023 г. о О Одобрена для публикации 9 марта 2023 г.

СО со

* 0) Об авторах: Эммануэль Микерего — кандидат технических наук, доцент факультета инженерных наук;

> м Университет Бурунди; а.я. 2700, г. Бужумбура, Бурунди; ORCID: 0000-0002-5743-6476; mikeregoemmanuel@

от

ОТ

£ S

il

О (П

hotmail.com;

Трезор Акимана — студент; Высшая педагогическая школа; г. Бужумбура, Бурунди; akimanatresora@

с и

Ш во

. г

Ш gmail.com;

Жан Пьер Гаторе — магистр-ассистент; Высшая педагогическая школа; г. Бужумбура, Бурунди;

О ™

I- 5 gatorejeanpierre@yahoo.fr. • ^

Л |5 Вклад авторов:

<•5 13

Микерего Э. — концептуализация, методология, обработка данных, написание статьи, научное редактиро-

о -£= вание текста.

о у

(М § Авторы заявляют об отсутствии конфликта интересов.

ОТ 'I

Акимана Т. — концептуализация, методология, сбор и обработка данных. Гаторе Ж.П. — концептуализация, методология, обработка данных.

i Надоели баннеры? Вы всегда можете отключить рекламу.