Псковский регионологический журнал Том 17. № 3 / 2021
ЭКОНОМИКА И УПРАВЛЕНИЕ
УДК 330.34; 330.5; 330.8 DOI: 10.37490/S221979310015388-9
E. F. Shamaeva1, K. N. Shadrov2
institute of Socio-Economic Population Problems of the Russian Academy of Sciences,
Moscow, Russia 1E-mail: shamaeva.dubna@gmail.com 2Dubna State University, Moscow, Russia 2E-mail: shadrovkn@mail.ru
ASSESSMENT OF GDP AND LIVING STANDARDS OF COUNTRIES IN THE FOCUS OF INTERDISCIPLINARY STUDY
For more than a hundred years, science has been applying physical laws to analyze social and economic systems. However, it must be admitted that in the management of social and economic systems there are no systemic connections with natural, economic and social phenomena, expressed in a consistently measurable form, which leads to incorrect estimates and gives rise to crises.
The current complex crisis situation in the world poses the task of the scientific community to develop theoretical and methodological provisions based on measured values or a meter that would be initially adequate for describing natural systems, and at the same time would be sufficiently applicable to assess socio-economic phenomena. For such assessments, it is necessary to rely on the law of nature and use the corresponding meter. Such a measure is proposed in the works of the International Scientific School of Sustainable Development named after P. G. Kuznetsova.
The socio-economic system, including the economy of the country and the world, can be represented as a generalized machine of a certain capacity. In this machine, useful energy is embodied, directly or indirectly, in all manufactured goods and services. Accordingly, some traditional macroeconomic indicators can be expressed in energy units. The article is devoted to the application of energy theory of cost to estimate Gross Domestic Product and living standards of the countries of the world in energy units, the results of calculations for the period 1992-2019 are given.
Keywords: cost, money, energy theory of value, standard of living, physical economy, exchange rate, energy-currency zone.
For citation: Shamaeva E. F., Shadrov K. N. (2021), Assessment of GDP and living standards of countries in the focus of interdisciplinary study, Pskov Journal of Regional Studies, vol. 17, no. 3, pp. 3-17. DOI: https://doi.org/10.37490/S221979310015388-9
Е. Ф. Шамаева1, К. Н. Шадров2
1Институт социально-экономических проблем народонаселения ФНИСЦ РАН,
г. Москва, Россия 1E-mail: shamaeva. dubna@gmail. com Государственный университет «Дубна», г. Москва, Россия 2E-mail: shadrovkn@mail.ru
ОЦЕНКА ВВП И УРОВНЯ ЖИЗНИ СТРАН МИРА В ФОКУСЕ МЕЖДИСЦИПЛИНАРНОГО ИЗУЧЕНИЯ
На протяжении более ста лет в науке применяют физические законы для анализа социальных и экономических систем. Однако, необходимо признать, что в управлении социальными и экономическими системами отсутствуют системные связи с природными, экономическими и социальными явлениями, выраженные в устойчиво измеримой форме, что приводит к некорректным оценкам и порождает кризисы.
Сложившаяся в мире сложная кризисная ситуация ставит перед научным сообществом задачу разработки теоретических и методологических положений на основе измеряемых величин или измерителя, который был бы изначально адекватен для описания природных систем, и при этом был бы в достаточной степени применим для оценки социально-экономических явлений. Для таких оценок необходимо опереться на закон природы и использовать соответствующий ему измеритель. Такая мера предлагается в работах Международной научной школы устойчивого развития имени П. Г. Кузнецова.
Социально-экономическую систему, включая экономику страны и мира, можно представить, как обобщённую машину определённой мощности. В этой машине полезная энергия воплощается, прямо или косвенно, во все производимые товары и услуги. Соответственно, некоторые традиционные макроэкономические показатели могут быть выражены в единицах энергии. Статья посвящена применению энергетической теории стоимости для оценки валового внутреннего продукта и уровня жизни стран мира в энергетических единицах, приводятся результаты расчётов за период 1992-2019 гг.
Ключевые слова: стоимость, деньги, энергетическая теория стоимости, физическая экономика, валютный курс, энерго-валютная зона.
Для цитирования: Shamaeva E. F., Shadrov K. N. Assessment of GDP and living standards of countries in the focus of interdisciplinary study // Pskov Journal of Regional Studies. 2021. Vol. 17. No. 3. P. 3-17. DOI: https://doi.org/10.37490/S221979310015388-9
Introduction. To date, there has been a continuous increase in the detachment of monetary circulation from the physical constraints of socio-economic life.
The instability of money as an integral measure and the reliance on dominant monetarist theories has been one of the reasons for the poor governance of countries and the world. Crisis phenomena are becoming more and more widespread every time, and their consequences are eliminated with more and more serious losses of time and resources. The current situation forces us to take a closer look at the energy theory of value, which offers a physical quantity as an integral measure of GDP, living standards and some other
traditional macroeconomic indicators. Reliance on adequate measures provides reliable information for planning and control in the management of large socio-economic systems. In more detail, the theoretical and methodological foundations of the article are described in several works listed in the list ofused references [10; 11; 15; 18; 20 etc.] A few explanations are given during the presentation of the material, as well as in the corresponding section.
The object of the research is the GDP and the standard of living of the countries of the world. The subject is the measurement of these parameters in units of energy. The aim of the work is to apply a physical approach to assess the GDP and living standards of the countries of the world.
Below is a summary of the calculations and results of the study.
1. Theoretical and methodological provisions. Back in the XIX century, S. A. Podolinsky showed that society is an open system that consumes a stream of total energy at the input, converts it and receives a stream of free energy at the output, which is embodied in the social product [16; 17] Nobel laureate F. Soddy demonstrated that the welfare of a society is determined by its physical capabilities, and not by debt-based "virtual wealth" [5; 6].
The diagram of S. A. Podolinsky is shown below.
Pic. 1. Schematic representation of energy turnover in the labor process in the socio-economic system, N — flow of full energy, G — losses, P — flow of useful energy
In the 1960s P. G. Kuznetsov proposed to consider any technological process as an energy converter, and the entire set of such converters as a "generalized machine" of the socio-economic system. For this "machine", the researcher identified the generalized efficiency factor of all links of the technological chain from the moment of energy input to its implementation. He showed that GDP can be measured both in money and in energy, from the ratio of which the energy supply of the monetary unit is derived [13-15]. His
contemporary Nicholas Georgescu-Roegen characterized the second law of thermodynamics as the most economic of all laws of nature, since in the production of goods and services, humanity dissipates highly concentrated (low-entropy) free energy into low-concentrated (high-entropy) energy [3]. Similar considerations were expressed by R. Ayres [1].
A lot of works of specialists of different profiles (physicists, ecologists, economists, etc.) are devoted to the substantiation of the relationship between GDP and the energy potential of society. Therefore, in 1975, the physicist P. L. Kapitsa pointed out that "... the main factor determining the development of people's material culture is the creation and use of energy sources". He stated that the size of GDP is proportional to the total energy consumption [12]. Similar theses were set by ecologists G. Odum and E. Odum. They stated that the cash flow and the flow of useful energy embodied in goods and services move in the economic mechanism towards each other and identifying them as two ways of measuring the gross social product [4]. Economist R. Kostantsa showed that "in many sectors of the economy there is a close relationship between energy spent and the value in dollars" [2].
In the scientific literature, the interaction of the system and entropy is described through the tendency of the system to the lowest value of potential energy and the greatest disorder1 (the second law of thermodynamics by Rudolf Clausius, the work of R. I. Prigogine).
Science's answer to this challenge, which was thrown after the discovery of the second law of thermodynamics by R. Clausius, was the work of S. A. Podolinsky, N. A. Umov, V. I. Vernadsky, E. S. Bauer.
Erwin Simonovich Bauer formulated the principle of the existence of living (in the natural scientific sense) systems, which include any socio-economic systems that have an input flow of resources (expressed in units of capacity) and two output flows (the total flow of goods and services produced, also expressed in units of power, and loss, which is a measure of entropy) (pic. 1).
The principle of stable non-equilibrium of E. S. Bauer states: "all and only living systems are never in a state of equilibrium and perform constant work against equilibrium at the expense of their free energy".
In projection onto socio-economic systems, it can be formulated: the share of the required time during the development of the system decreases, and the share of free time increases, which is the result of effective management. Two related processes can be distinguished here: active impact on the environment and the use by society of the flow of resources obtained because of this impact. These processes are united by the concept of "labor process". Spending the flow (power) P, the system over time receives a flow of resources, measured by the flow N. These resources are used by the system to produce goods. The ratio of P to N is a measure of the efficiency of using consumed resources and the life of the system (pic. 1). Thus, the development of the socio-economic system is associated with a decrease in the flow of entropy (G) and an increase in efficiency.
Comparing GDP, expressed in monetary and physical units, B. E. Bolshakov moved to assess the standard of living, the exchange rate and other economic categories in natural
1 The works of I. R. Prigogine are built on the "order — chaos" alternative. While the applied aspect of the study of living systems is associated with the alternative "free energy — connected energy / power". A. N. Kolmogorov defined order as the existence of some rule under which the entire sequence can be reconstructed using fewer numbers than a given "random variable". The absence of such a rule is disorder / chaos. In the work, the principle of stable nonequilibrium of E. S. Bauer and the law of conservation of power in the applied aspect of the study of socio-economic systems act as such a rule (works by P. G. Kuznetsov, B. E. Bolshakov, etc.).
science measures [7-9]. Also, this scientist, using statistics from countries around the world (Russia, Kazakhstan, the USA, etc.), gave examples of the calculation of GDP, living standards and real exchange rates in physical measures. The scientist laid the developed prerequisites for assessing the equivalence of international exchanges. An interesting feature of the works of B. E. Bolshakov and several followers is the use of energy for estimates over a period, i. e., power, which allows, if necessary, to easily switch back to energy units. Certain aspects of the application of energy assessments are developed and specified in the description of socio-economic systems and the construction of forecasts of their development, including the level of the world, country, region [10; 11; 21].
From the thesis on the identification of GDP and the energy potential of society, a number of monetary circulation rules are derived, including the need to comply with the standard of energy support of the monetary unit (not by analogy with the reserves of gold-foreign exchange reserves of central banks, but as a calculation parameter), control of monetary aggregates taking into account the dynamics of the energy potential of society, management of exchange rates with an orientation towards the provision of useful energy of quoted currencies. The methodology for assessing the energy supply of currencies, setting exchange rates, measuring the equivalence of international exchange rates as an alternative to the estimates proposed in the theory of purchasing power parity of currencies is being improved; estimates are made in energy and monetary units of GDP, living standards, exchange rates, equivalence of international trade. [19; 20, etc.]
2. Data used and methods of working with them. An important feature of modern socio-economic statistics is the focus on solving problems of science and practice within the framework of the dominant approaches. For this reason, for the tasks of this work, it is necessary to refer to different databases formed according to different methods, and then make a lot of intermediate recalculations to bring all the data to a uniform form. Despite the difficulties, the authors managed to collect and process complete data.
Due to the presence of losses for calculating GDP and living standards, not the flow of total energy — N, but the flow of useful energy — P should be taken into account (see Equation). In this work, the total energy is understood as the consumption of energy goods before transformation, and the useful energy is the volume of total energy, taken taking into account the conversion efficiency and losses during transmission and distribution. In all of the results below, energy refers to useful energy.
The total GDP of the country consists of domestic consumption of energy goods and the results of the exchange of energy and non-energy goods with the external environment.
1) The volume of domestic consumption of energy products.
The volume of domestic consumption of energy products PEI s calculated taking into account conversion efficiency and transmission and distribution losses. In other words, all domestic production comes to the transformation of energy by a "generalized machine" into the final product.
The equation for calculating GDP is given below
-V =_=_■'■' (1)
Xi — type of energy product (oil, gas, etc.), k. — efficiency of transformation of the i-type of energy product, ф — transmission and distribution losses (parameter value from 0 to 1, no losses is taken as 1).
In fact, in view of the available data, ф < 1 only for electricity, for other energy products ф is taken as 1.
The conversion efficiency of conventional fuels k. is taken as ranging from 0.360 to 0.404 depending on the year according to British Petroleum's Statistical Review of World Energy. The same sources are used for oil, gas and coal consumption and production; electricity generation including generation by source (oil, gas, coal, nuclear, hydro, renewables, and others); oil, gas and coal export/import balance; and oil, gas and coal prices. Transmission and distribution losses are considered according to US Energy Commission statistics2.
Note that to avoid double counting, the amount of fossil fuels used to generate electricity must be subtracted from the total energy consumption.
2) International exchanges.
Since the contribution of exchange of energy goods is already accounted for in the PEI calculation, it remains to measure the non-energy export-import as well as the trade balance. In order to solve this problem it is necessary to convert monetary units into energy units, for which the following equation is used:
E = Pn / Pr (2)
cur EI I v f
where Ecur — energy supply of a unit of currency, PEI — GDP excluding export-import, Pj — GDP excluding export-import, expressed in the currency of the country.
GDP of the countries of the world in monetary units is taken from the IMF's World Economic Outlook.3 Export-import of oil, gas, coal and electricity according to statistics from the US Energy Commission.4
For each type of energy product, the calculation of exports and imports is carried out separately at average annual prices. Coal, oil and gas prices are from British Petroleum statistics, electricity prices are from the UK Department for Business,5 Energy and Industrial Strategy database, and total exports and imports are from the World Bank database.6 Due to the lack of data and the complexity of indirect calculations, it is assumed that all world trade is carried out in US dollars.7
To improve the accuracy of calculations within the group of non-energy goods, a separate accounting of energy-intensive goods (aluminum, fertilizers, etc.) is advisable. However, this calculation was not made due to the lack of statistical data and the difficulty of indirect calculations.
The calculation of living standards is carried out in the traditional way — there is a ratio of GDP to the average annual permanent population. Since 2015, Rosstat data8, have
U. S. Energy Information Administration. URL: https://www.eia.gov (accessed 25.04.2021).
World Economic Outlook, April 2019, International Monetary Fund. URL: https://www.imf.org/en/Publi-
cations/WEO/weo-database/2020/October (accessed 25.04.2021).
U. S. Energy Information Administration. URL: https://www.eia.gov (accessed 25.04.2021).
U. K. Department for Business, Energy & Industrial Strategy. URL: https://www.gov.uk (accessed
25.04.2021).
The World Bank. URL: Available at: https://www.worldbank.org (accessed 25.04.2021).
Presumably, this gave underestimated GDP indicators for some energy-dependent countries and regions
with large volumes of foreign trade in their own currencies (Japanese yen, euro).
The size and composition of the population. Federal State Statistics Service of Russia. URL: https://www. gks.ru/folder/12781 (accessed 25.04.2021).
4
been used for the population of Russia, for the period until 2015 and for all other countries for the entire period under review — World Bank data.9
In the absence of data for a certain year, the last known values are used. The estimates obtained may differ from those described in earlier published works due to the further improvement of the methodology and the involvement of more complete data. The values of some parameters do not converge slightly with each other due to inaccuracies and insufficiency of the original statistics, as well as rounding errors.
3. Research results. The critical importance of energy for modern technogenic civilization has made the task of managing energy flows particularly urgent. The key mechanism for managing the flow of useful energy internationally is the setting of exchange rates.
Table 1 shows the exchange rates of some countries to the US dollar, considering their energy supply.
Table 1
Exchange rates of national currencies against the US dollar in terms of energy supply,
1992-2019
№ Country 1992 1997 2002 2007 2012 2017 2018 2019
1 Australia 0.58 0.50 0.43 0.41 0.46 0.42 0.43 0.43
2 Algeria 2.36 4.08 4.32 6.27 12.60 12.30 13.95 14.97
3 The UK 0.83 0.69 0.68 0.97 1.63 1.70 1.76 1.86
4 Germany 2.61 2.78 2.58 2.24 2.62 2.95 3.17 3.47
5 India 11.07 14.76 17.72 19.90 31.79 46.89 50.77 54.95
6 Indonesia 584.60 842.02 1 474.74 1 899.81 2 642.72 3 489.16 3 448.44 3 551.23
7 Iraq - - 47.87 106.73 167.37 98.16 115.24 116.08
8 Iran 82.21 269.03 597.15 1 090.14 2 406.56 3 339.42 4 230.39 6 688.50
9 Kazakhstan 0.01 4.96 6.00 10.86 21.52 33.09 37.54 43.35
10 Canada 0.52 0.42 0.40 0.37 0.41 0.38 0.40 0.42
11 Qatar 0.18 0.15 0.15 0.25 0.32 0.25 0.29 0.28
12 China 0.87 1.63 1.65 1.62 2.39 3.32 3.61 3.80
13 Colombia 238.03 394.41 495.19 500.86 529.51 683.51 782.64 867.44
14 Kuwait 0.02 0.01 0.02 0.02 0.03 0.02 0.03 0.03
15 Mexico 1.57 3.49 4.84 5.34 8.19 13.45 15.57 17.31
16 Norway 1.21 0.95 0.90 1.09 1.43 1.41 1.62 1.78
17 United Arab Emirates 0.32 0.34 0.39 0.53 0.70 0.59 0.67 0.66
18 Russia 0.0043 0.50 1.59 3.08 5.55 6.43 7.31 7.77
19 Saudi Arabia 0.25 0.24 0.23 0.29 0.45 0.38 0.43 0.46
20 Turkey 0.02 0.41 3.76 5.53 7.03 11.48 12.28 11.50
21 Ukraine 0.0001 0.29 0.50 1.10 2.00 6.08 7.45 8.63
22 France 2.96 2.34 2.04 1.91 2.10 2.31 2.29 2.48
23 South Korea 3 392.83 5 282.62 4 046.67 3 628.56 4 396.76 4 987.14 5 744.83 5 405.47
24 Japan 1 680.88 1 043.67 826.07 719.15 2 353.18 1 219.82 1 085.52 1 031.48
A measure of the non-equivalence of international trade can be introduced — this is the difference between nominal exchange rates and energy supply rates (table 2).
The World Bank. URL: https://www.worldbank.org (accessed 25.04.2021).
9
Table 2
Ratio of the official annual average exchange rate of the US dollar to the energy exchange
rate, 1992-2019
№ Country 1992 1997 2002 2007 2012 2017 2018 2019
1 Australia 2.36 2.67 4.24 2.89 2.08 3.09 3.12 3.33
2 Algeria 9.24 14.15 18.45 11.05 6.15 9.02 8.36 7.97
3 UK 0.69 0.89 0.98 0.51 0.39 0.46 0.43 0.42
4 Germany 0.60 0.62 - - - - - -
5 India 2.34 2.46 2.74 2.08 1.68 1.39 1.35 1.28
6 Indonesia 3.47 3.46 6.31 4.81 3.55 3.83 4.13 3.98
7 Iraq - - 0.01 11.75 6.97 - - 10.18
8 Iran 0.80 6.52 11.57 8.51 5.06 9.95 9.66 6.28
9 Kazakhstan - 15.20 25.54 11.28 6.93 9.85 9.18 8.83
10 Canada 2.32 3.30 3.93 2.93 2.43 3.41 3.28 3.17
11 Qatar 20.79 24.69 23.56 14.31 11.47 14.45 12.64 12.94
12 China 6.31 5.10 5.02 4.69 2.64 2.03 1.83 -
13 Colombia 3.19 2.89 5.06 4.15 3.39 4.32 3.78 3.78
14 Kuwait 12.28 20.48 20.04 11.73 9.37 13.84 11.62 11.78
15 Mexico 1.97 2.27 2.00 2.05 1.61 1.41 1.24 1.11
16 Norway 5.13 7.41 8.89 5.36 4.08 5.86 5.01 4.95
17 United Arab Emirates 11.32 10.67 9.52 6.94 5.25 6.27 5.51 5.54
18 Russia - 11.47 19.72 8.31 5.55 9.07 8.57 8.33
19 Saudi Arabia 15.04 15.64 16.65 12.79 8.38 9.97 8.68 8.19
20 Turkey 0.31 0.37 0.40 0.24 0.26 0.32 0.39 0.49
21 Ukraine - 6.44 10.60 4.61 3.99 4.38 3.65 3.00
22 France 1.79 2.49 - - - - - -
23 South Korea 0.23 0.18 0.31 0.26 0.26 0.23 0.19 0.22
24 Japan 0.08 0.12 0.15 0.16 0.03 0.09 0.10 0.11
Table 2 shows that there is significant non-equivalence in international trade due to differences in the energy supply of currencies. So, for Russia in 2019, the official ruble exchange rate was understated by 8.33 times compared to the energy supply rate, even though back in 2014 the difference was only 5.55 times.
There are about 200 countries in the world. However, few of them can independently meet their energy needs in the conditions of modern technogenic civilization. The total volume of world trade (in useful energy) in 2019 reached 33 % of world GDP (table 3).
Table 3
The volume of world trade in useful energy
№ Source Quantity, TWh Share in world GDP, %
1 Oil 12 731 20.18
2 Gas 4 968 7.88
3 Coal 3 555 5.64
4 Electricity 526 0.83
Total: 21 780 34.53
Approximately 25.7 % of world consumption of usable energy is donated. Table 4 shows the net exports of useful energy by the main donor countries.
ncKoecKUü pezuoMOxosmecmü wypnan TOM 17. № 3 / 2021
Table 4
Main Donor Countries, TWh of Useful Energy
№ Country 1992 1997 2002 2007 2012 2017 2018 2019 Accumulated total
1 Russia 1 296 1 513 1 819 2 583 2 607 3 424 3 613 3 699 63 212
2 Saudi Arabia 1 659 1 618 1 365 1 783 1 907 1 966 2 034 1 980 48 686
3 Norway 499 767 879 804 772 852 837 324 21 444
4 Canada 380 547 671 771 817 1 127 1 172 1 189 20 623
5 Australia 327 389 554 670 876 1 334 1 412 1 472 17 959
6 Indonesia 299 355 416 634 1 020 990 1 029 998 16 800
7 United Arab Emirates 444 448 380 518 565 562 568 627 13 624
8 Iran 541 507 431 525 335 479 493 441 12 834
9 Venezuela 286 503 413 421 374 403 398 401 11 522
10 Iraq 13 158 325 357 529 822 805 799 10 714
11 Qatar 75 103 195 334 674 691 689 129 10 207
12 Algeria 205 276 360 477 370 369 358 324 9 734
13 Kuwait 144 243 212 364 474 475 479 495 9 518
14 Mexico 281 364 367 360 169 48 37 23 7 390
15 Colombia 74 138 153 226 397 432 425 390 6 602
16 Kazakhstan 17 100 216 295 334 348 357 304 6 517
In other words, energy donation for 2019 means:
- 15.6 TWh useful energy, (the equivalent of almost all gas production), or
- 36.5 TWh of primary energy (by comparison, global electricity production is about 27 TWh), or
- 1.48 of US GDP, or
- 4.73 of Russia GDP.
The largest energy donors in the world over the 28 years considered are Russia (76 % of average GDP per year or 21.4 average GDP per period) and Saudi Arabia (219 % of average GDP per year or 61.2 average GDP per period). During the indicated period, only these two countries transferred to the external environment 1135 % of the US average GDP in terms of useful energy.
Useful energy from donor countries to the world socio-economic system is available for consumption by participants in international exchanges, depending on their financial, technical, and other capabilities.
Table 5 shows net imports of useful energy by main recipient countries.
Table 5
Countries — main recipients, TWh of useful energy
№ Country 1992 1997 2002 2007 2012 2017 2018 2019 Accumulated total
1 USA 1 458 2 093 2 806 3 308 1 868 1 046 618 141 60 161
2 Japan 1 542 1 806 1 775 1 929 2 055 1 989 1 924 1 894 50 203
3 China -98 29 106 672 2 121 3 194 3 540 3 820 30 548
4 South Korea 398 712 742 889 1 091 1 296 1 330 1 339 23 746
5 India 144 279 455 819 1 347 1 840 1 934 2 042 23 704
6 Germany 674 720 786 748 705 786 769 785 20 714
7 Italy 532 523 667 777 653 623 616 599 17 392
8 France 428 456 483 547 455 472 452 452 13 330
9 Spain 309 314 405 489 419 477 469 449 11 076
ncKoecKUü pesuoMOMsmecKUü ^ypnan TOM 17. № 3 / 2021
№ Country 1992 1997 2002 2007 2012 2017 2018 2019 Accumulated total
10 Turkey 119 177 203 320 371 481 443 435 7 551
11 Ukraine 421 274 307 308 149 121 114 47 6 539
12 UK 61 -86 -46 254 413 249 276 266 3 713
Note: negative values indicate energy donation.
According to Table 5 main energy recipients are Western countries (USA, Germany, Italy, France, etc.) and their closest allies (Japan, South Korea, Turkey). We can talk about the existence of an energy-currency zone (ECZ) of the West. The competition for it is significantly weaker ECZ of China and Russia — as applicants for an independent role on a global scale, as well as India and Iran — as influential regional players.
Accounting for international exchanges allows us to move on to estimating GDP and living standards. Table 6 shows the GDP of the G20 countries as well as Iran, Belarus, Kazakhstan, Ukraine and the Total World.
Table 6
GDP of some countries of the world, usable energy, TWh
№ Country 1992 1997 2002 2007 2012 2017 2018 2019
1 China 3 123 3 835 4 796 8 995 12 066 14 032 14 638 15 354
2 USA 8 011 8 921 9 515 9 985 9 451 10 151 10 606 10 581
3 India 851 1 066 1 253 1 779 2 466 3 203 3 414 3 512
4 Russia 3 302 2 437 2 557 2 902 3 114 3 163 3 308 3 300
5 Japan 1 767 2 079 2 098 2 144 2 020 2 024 2 027 2 019
7 Canada 1 041 1 151 1 231 1 378 1 441 1 521 1 583 1 571
8 Iran 374 441 586 844 997 1 234 1 307 1 372
9 South Korea 478 744 854 981 1 149 1 292 1 301 1 309
10 Germany 1 428 1 412 1 385 1 273 1 256 1 328 1 295 1 277
11 Saudi Arabia 398 445 546 775 1 105 1 249 1 241 1 268
12 Brazil 533 722 766 923 1 168 1 193 1 197 1 229
13 Indonesia 263 365 459 576 791 823 910 972
14 France 911 908 985 1 031 998 987 988 972
15 UK 916 931 974 983 904 887 892 879
16 Mexico 493 516 593 727 819 855 872 853
17 Australia 376 433 481 567 604 654 679 710
18 Italy 675 673 772 801 707 693 703 687
19 Turkey 208 278 283 412 517 677 658 675
20 South Africa 352 397 409 489 527 557 564 578
21 Ukraine 880 545 521 564 522 365 376 366
22 Argentina 197 234 220 306 346 384 379 363
23 Kazakhstan 309 163 156 237 289 313 344 344
24 Belarus 148 96 93 106 117 104 106 109
25 Total World 33 692 36 310 39 845 48 719 54 256 59 903 61 939 63 080
Table 7 shows living standards in the G20 countries, as well as Iran, Belarus, Kazakhstan, Ukraine and the Total World.
Table 7
The standard of living of some countries, useful energy, kWh/person
№ Country 1992 1997 2002 2007 2012 2017 2018 2019
1 Canada 36 686 38 483 39 248 41 888 41 519 41 618 42 705 41 784
2 Saudi Arabia 23 051 22 917 25 027 30 759 37 885 37 721 36 837 37 009
3 USA 31 231 32 720 33 083 33 147 30 112 31 220 32 419 32 237
4 Australia 21 470 23 373 24 479 27 226 26 559 26 563 27 160 27 986
5 South Korea 10 925 16 198 17 919 20 152 22 886 25 112 25 196 25 313
6 Russia 22 209 16 475 17 597 20 319 21 746 21 539 22 529 22 488
7 Kazakhstan 18 812 10 609 10 481 15 302 17 185 17 339 18 828 18 554
8 Iran 6 362 6 984 8 706 11 836 13 201 15 294 15 979 16 553
9 Japan 14 226 16 491 16 459 16 749 15 831 15 966 16 018 15 987
10 Germany 17 714 17 206 16 787 15 477 15 621 16 072 15 616 15 358
11 France 15 483 15 143 15 931 16 108 15 195 14 758 14 743 14 489
12 UK 15 905 15 969 16 408 16 027 14 190 13 432 13 420 13 155
13 Belarus 14 517 9 521 9 397 11 100 12 376 10 960 11 216 11 549
14 Italy 11 893 11 838 13 537 13 701 11 882 11 445 11 627 11 385
15 China 2 681 3 118 3 746 6 825 8 933 10 121 10 511 10 985
16 South Africa 9 106 9 240 8 856 9 949 9 974 9 767 9 769 9 874
17 Ukraine 16 869 10 766 10 809 12 135 11 454 8 149 8 432 8 236
18 Turkey 3 725 4 601 4 348 5 928 6 925 8 342 7 987 8 088
19 Argentina 5 869 6 570 5 841 7 713 8 289 8 727 8 526 8 072
20 Mexico 5 658 5 455 5 829 6 662 6 984 6 849 6 910 6 688
21 Brazil 3 455 4 317 4 268 4 855 5 863 5 738 5 716 5 822
22 Indonesia 1 399 1 802 2 112 2 480 3 183 3 110 3 398 3 590
23 India 936 1 065 1 146 1 503 1 948 2 393 2 524 2 570
24 Total World 6 178 6 182 6 351 7 299 7 656 7 975 8 156 8 220
Expressing GDP and living standards in a stable physical measure instead of unstable monetary measures gives a picture of socio-economic development more adequate to the natural scientific constraints of the real world than unstable monetary measures.
The conducted research does not contradict the concept and method of energy production cycles proposed by N. N. Kolosovsky and developed in the works of A. T. Khrushchev (1979), T. M. Kalashnikova (1970), M. D. Sharygin (1975) and others.
The energy production cycle was determined by N. N. Kolosovsky as a set of production processes that are consistently developing in the socio-economic system based on a combination of types of energy and raw materials, from the primary forms of extraction and upgrading of raw materials and energy and the rational use of all components of raw materials and energy resources.
Thus, it is possible to fix the statement: it is impossible to produce a single good, product, service without spending energy and time, that is, the flow of energy or power. On this basis, the assessment of the total flow of produced goods, products, services is carried out in units of capacity based on the methodological premises and methodological works of P. G. Kuznetsov, B. E. Bolshakov. In the works of A. E. Petrov considered the method of interindustry balances on the power invariant.
In addition, in the practice of international assessment of the countries of the world, it is customary to calculate the human development index (UN global indicator). At the same time, the methodology for calculating the index assumes the aggregation of disproportion-
ate data (life expectancy, average and expected duration of schooling, gross national income per capita). The use of disproportionate data leads to a loss of meaning, ambiguity in the interpretation of the dynamics of the development of regional socio-economic systems.
In view of this, based on the stated concept and methods, a method is proposed for calculating the aggregate quality of life in units of power per person as the product of the normalized average life expectancy by the aggregate standard of living and the quality of the environment10.
Normalized life expectancy is the average life span divided by 100 (years). Expressed in dimensionless units.
The aggregate standard of living in a country (region) is the ratio of the useful power to the population of the country. Expressed in units of power per person (kW / person).
The quality of the environment is the ratio of the power losses of the previous period to the power losses of the current period. Expressed in dimensionless units.
The equation for calculating the quality of life is given below:
QL = Tн x U x q (1)
where QL — the quality of life, TH — normalized life expectancy, U — standard of living, q — environmental quality.
The proposed methodology is a methodological attempt to take into account the standard of living, health and quality of the environment, while the standard of living is taken into account on the basis of physically measurable stable values, and taking into account the quality of the natural environment directly links humanity and its habitat.
4. Conclusions. Based on the above, theoretical conclusions can be drawn:
1. Interdisciplinary studies of socio-economic processes based on natural science principles and the "power" measure make it possible to formulate a fundamental basis for calculating the cost of goods and services.
2. Presented in applied socio-economic aspects by P. G. Kuznetsov, the law of conservation of power (Pic. 1, N = P + G), based on the discoveries of the Russian scientific school and the works of S. A. Podolinsky, V. I. Vernadsky, E. S. Bauer and others, plays an important role in interdisciplinary research, being the first law of open systems, which include all known phenomena of life, including social life.
3. Power is the ability to act in time or performance per unit of time or the performance of a system that determines the viability of a socio-economic system.
4. A number of countries, including Russia, are donors to the external environment, primarily the energy-currency zone of the US dollar.
5. Management of useful energy flows is carried out through the establishment of unequal exchange rates, which ensures its predominant consumption by Western countries and their most important partners.
6. At the same time, ECZ of Russia, China, India and Iran are being formed in the world.
7. Given data on GDP and living standards for a number of countries, measured in energy units, provide a more reliable picture of reality due to the use of sustainable physical measures instead of unsustainable financial ones.
URL: http://www.yrazvitie.ru/?p=396
10
5. Recommendations. The results obtained provide clear guidelines for the further improvement of Russia's socio-economic policy. Our recommendations are the following:
1. Introduce into state planning the priority of increasing the efficiency of the socioeconomic system as a generalized machine through the introduction of more efficient technologies, as well as establish appropriate benchmarks.
2. To reduce the unequal exchange of energy with the external environment by investing in the development of our own processing industries that produce products with a high level of redistribution, paying special attention to energy-intensive goods.
3. Stimulate the transition to foreign trade for Russian rubles, while trading in energy products is carried out exclusively in the national currency.
4. Move to purposeful maintenance, expansion and accelerated development of its energy-currency zone by building through — from a natural resource to a final product — technological chains that use mainly or completely the Russian ruble for mutual settlements.
The earliest possible implementation of the proposed measures will allow directing additional amounts of energy to the benefit of Russia and its citizens.
References
1. Ayres R. U. (1998), Eco-thermodynamics: Economics and the second law, Ecological Economics, no. 26, pp. 189-209.
2. Costanza R. (1980), Embodied Energy and Economic Valuation, Science, no. 210 (4475), pp. 1219-1224.
3. Georgescu-Roegen N. (1971), The Entropy Law and the Economic Process, Cambridge, Massachusetts, Harvard University Press, 457 p.
4. Odum H. T., Odum E. C. (1976), Energy Basis for Man and Nature, McGraw-Hill, New York etc., 297 p.
5. Soddy F. (1924), Cartesian economics: the bearing of physical sciences upon state stewardship, Hendersons, London.
6. Soddy F. (1930), Wealth, Virtual Wealth and Debt the Solution of the Economic Paradox, Omni, Seattle, WA, USA.
7. Bolshakov B. E. (2000), Fundamentals of the Theory of Development of the Social Production-Natural Environment System Using Measurable Values, PhD in Technical Sciences, Dubna, 364 p. (In Russ.).
8. Bolshakov B. E. (2014), The problem of the measure of the world reserve currency in the economy, Electronic scientific publication "Sustainable Innovative Development: Design and Management", www.rypravlenie.ru, vol. 10, no. 1 (22), art. 2. (In Russ.). URL: http://www.rypravlenie.ru/wp-content/ uploads/2014/04/02-Bolshakov.pdf (accessed 25.04.2021).
9. Bolshakov B. E. (2015), Designing the Financial System of the Future Noosphere World on the Basis of a Unified System of Multidimensional Spatial-Temporal Measures-Laws, Sustainable Innovative Development: Design and Management. Online scientific journal, no. 3. (In Russ.). URL: http://www. rypravlenie.ru/wp-content/uploads/2015/10/05-Bolshakov.pdf (accessed 25.04.2021).
10. Bolshakov B. E., Shamaeva E. F. (2016), Natural science measures of the cost and productivity of social labor in regional management of sustainable development, Questions of territorial development, no. 4 (34). (In Russ.). URL: https://cyberleninka.ru/article/n/estestvennonauchnye-mery-stoimostii-proizvoditelnosti-obschestvennogo-trudav-regionalnom-upravlenii-ustoychivym-razvitiem (accessed 25.04.2021).
11. Bolshakov B. E., Shamaeva E. F. (2017), Sustainable development: Yesterday — Today — Tomorrow. Measurement problem, Online journal of Science, vol. 9, no. 4, pp. 1-23. (In Russ.).
12. Kapitsa P. L. (1976), Energy and physics. Report at the scientific session dedicated to the 250th anniversary of the USSR Academy of Sciences, Moscow, October 8, 1975, In the collection: Bulletin of the USSR Academy of Sciences, no. 1, pp. 34-43. (In Russ.).
13. Kuznetsov P. G. (1968), Possibilities of energy analysis of the fundamentals of the organization of public production, B: Efficiency of scientific and technical creativity, Moscow, Science, pp. 133-162. (In Russ.).
14. Kuznetsov P. G. (2002), The world economy as a large, manageable system, In collection: Engineers of History. Part II. Moscow, World Fund for Planet Earth, pp. 24-37. (In Russ.).
15. Kuznetsov P. G. (2015), Science ofLife Development: a collection ofworks in 3 volumes, Moscow, RANS. (In Russ.).
16. Podolinsky S. A. (1881), Socialism and the unity of the forces of nature. Translated by La Plebe, no. 3, 4. (In Russ.).
17. Podolinsky S. A. (2005), Human labor and its relationship to the distribution of energy, Moscow, Belye Alvy, 160 p. (In Russ.).
18. Shadrov K. N., Shamaeva E. F. (2020), The basis of physical type in planning the circulation of means of payment in the industry specifics of metalworking enterprises, Forging and stamping manufacture. Metal forming machining, no. 11, pp. 28-42. (In Russ.).
19. Shadrov K. N. (2013), Purchasing power parity and currency power: a comparative analysis of approaches to assessing the competitiveness and equivalence of international trade, Sustainable innovative development: design and management. Online scientific journal, no. 3. (In Russ.). URL: http://www.rypravlenie. ru/wp-content/uploads/2013/10/03-Shadrov.pdf (accessed 25.04.2021).
20. Shadrov K. N. (2017), Energy supply of money in the digital economy, Philosophy of Economy, no. 5, pp. 397-405. (In Russ.). URL: http://philh.ru/images/nomera_jurnalov/Dubna_2017.pdf (accessed 25.04.2021).
21. Shamaeva E. F. (2012), Formalization of the tasks of monitoring and evaluating innovations in the design of regional sustainable innovative development, PhD in Technical Sciences, Dubna, 148 p. (In Russ.).
Литература
1. Ayres R. U. Eco-thermodynamics: Economics and the second law. Ecological Economics. 1998. No. 26. P. 189-209.
2. Costanza R. Embodied Energy and Economic Valuation. Science. 1980. No. 210 (4475). P. 1219-1224.
3. Georgescu-Roegen N. The Entropy Law and the Economic Process. Cambridge, Massachusetts: Harvard University Press, 1971. 457 p.
4. Odum H. T., Odum E. C. Energy Basis for Man and Nature, McGraw-Hill, New York etc., 1976. 297 p.
5. SoddyF. Cartesian economics: the bearing of physical sciences upon state stewardship, Hendersons, London, 1924.
6. Soddy F. Wealth, Virtual Wealth and Debt the Solution of the Economic Paradox; Omni: Seattle, WA, USA, 1930.
7. Большаков Б. Е. Основы теории развития системы общественное производство — природная среда с использованием измеримых величин: Дис. ... д-ра техн. наук. Дубна, 2000. 364 с.
8. Большаков Б. Е. Проблема меры мировой резервной валюты в экономике // Электронное научное издание «Устойчивое инновационное развитие: проектирование и управление» www.rypravlenie. ru. 2014. Том 10. № 1 (22). С. 2. [Электронный ресурс]: URL: http://www.rypravlenie.ru/wp-content/ uploads/2014/04/02-Bolshakov.pdf (дата обращения: 28.05.2020).
9. Большаков Б. Е. Проектирование финансовой системы будущего ноосферного мира на основе единой системы многомерных пространственно-временных мер-законов // Устойчивое инновационное развитие: проектирование и управление. Электрон. науч. журн. 2015. № 3. [Электронный ресурс]: URL: http://www.rypravlenie.ru/wp-content/uploads/2015/10/05-Bolshakov.pdf (дата обращения: 25.05.2020).
10. Большаков Б. Е., Шамаева Е. Ф. Естественнонаучные меры стоимости и производительности общественного труда в региональном управлении устойчивым развитием // Вопросы территориального развития. 2016. № 4 (34). [Электронный ресурс]: URL: https://cyberleninka.ru/article/n/ estestvennonauchnye-mery-stoimostii-proizvoditelnosti-obschestvennogo-trudav-regionalnom-upravlenii-ustoychivym-razvitiem (дата обращения: 15.03.2021).
11. Большаков Б. Е., Шамаева Е. Ф. Устойчивое развитие: вчера — сегодня — завтра. Проблема измерения // Интернет-журнал Науковедение. 2017. Т. 9. № 4, С. 1-23.
12. Капица П. Л. Энергия и физика. Доклад на научной сессии, посвященной 250-летию Академии наук СССР, Москва, 8 октября 1975 г. // Вестник АН СССР. 1976. № 1. С. 34-43.
13. Кузнецов П. Г. Возможности энергетического анализа основ организации общественного производства // Эффективность научно-технического творчества. М.: Наука, 1968. С. 133-162.
14. Кузнецов П. Г. Мировая экономика как большая система, поддающаяся управлению // Инженеры истории. Часть II. М.: Всемирный фонд планеты Земля, 2002. С. 24-37.
15. Кузнецов П. Г. Наука развития Жизни: сборник трудов в 3-х томах. М.: РАЕН, 2015. 560 с.
16. Подолинский С. А. Социализм и единство сил природы. Перевод из La Plebe № 3, 4, 1881.
17. Подолинский С. А. Труд человека и его отношение к распределению энергии. М.: Белые Альвы, 2005. 160 с.
18. Шадров К. Н., Шамаева Е. Ф. Основание физического типа при планировании обращения средств платежа в отраслевой специфике предприятий металлообработки // Кузнечно-штамповочное производство. Обработка металлов давлением. 2020. № 11. С. 28-42.
19. Шадров К Н. Паритет покупательной способности и мощность валюты: сравнительный анализ подходов к оценке конкурентоспособности и эквивалентности международной торговли // Устойчивое инновационное развитие: проектирование и управление. Электрон. науч. журн. 2013. № 3. [Электронный ресурс]: URL: http://www.rypravlenie.ru/wp-content/uploads/2013/10/03-Shadrov.pdf (дата обращения: 25.05.2020).
20. Шадров К. Н. Энергетическое обеспечение денег в цифровой экономике // Философия хозяйства. 2017. № 5. С. 397-405. [Электронный ресурс]: URL: http://philh.ru/images/nomera_jurnalov/ Dubna_2017.pdf (дата обращения: 15.03.2021).
21. Шамаева Е. Ф. Формализация задач мониторинга и оценки новаций в проектировании регионального устойчивого инновационного развития: Дис. ... канд. техн. наук. Дубна, 2012. 148 с.
Сведения об авторах
Шамаева Екатерина Федоровна — кандидат технических наук, доцент, ведущий научный сотрудник лаборатории проблем уровня и качества жизни Института социально-экономических проблем народонаселения ФНИСЦ РАН, г. Москва, Россия. E-mail: shamaeva.dubna@gmail.com ORCID: 0000-0002-1070-8550 Web of Science ResearcherID: 0-1031-2016
Шадров Константин Николаевич, аспирант государственного университета «Дубна», г. Москва, Россия. E-mail: shadrovkn@mail.ru ORCID: 0000-0002-9662-7240
About the authors
Dr Ekaterina Shamaeva, Associate Professor, Leading Researcher of the Laboratory of Level and Quality of Life Problems, Institute of Socio-Economic Population Problems of the Russian Academy of Sciences, Moscow, Russia. E-mail: shamaeva.dubna@gmail.com ORCID: 0000-0002-1070-8550 Web of Science ResearcherID: 0-1031-2016
Konstantin Shadrov, Dubna State University, expert JSC Media KST, Moscow, Russia.
E-mail: shadrovkn@mail.ru ORCID: 0000-0002-9662-7240
Поступила в редакцию 09.06.2021 г. Поступила после доработки 22.07.2021 г. Статья принята к публикации 14.10.2021 г.
Received 09.06.2021
Received in revised form 22.07.2021
Accepted 14.10.2021