Научная статья на тему 'Aspicilia stalagmitica (Megasporaceae) - a new lichen species with isidia-like thalline outgrowths'

Aspicilia stalagmitica (Megasporaceae) - a new lichen species with isidia-like thalline outgrowths Текст научной статьи по специальности «Биологические науки»

CC BY
134
32
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Turczaninowia
WOS
Scopus
AGRIS
RSCI
ESCI
Область наук
Ключевые слова
ALTAI / ASPICILIA / CHINA / ITS / MOLECULAR PHYLOGENY / NEW TAXON / XINJIANG / АЛТАЙ / АСПИЦИЛИЯ / КИТАЙ / МОЛЕКУЛЯРНАЯ ФИЛОГЕНИЯ / НОВЫЙ ТАКСОН / СИНЬЦЗЯН

Аннотация научной статьи по биологическим наукам, автор научной работы — Paukov Alexander G., Davydov Evgeny A.

Aspicilia stalagmitica Paukov et Davydov from the Altai Mts, a species with isidia-like outgrowths on areoles, is described as new to science. From other species of the genus Aspicilia stalagmitica differs by the following set of characters: short narrow marginal lobes, conidiomata in the isidia-like outgrowths, appressed to almost substipitate apothecia, long picnoconidia, and stictic acid as a main secondary metabolite. A phylogenetic analysis of Aspicilia stalagmitica (ITS) showing its relationships within Aspicilia is presented.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Aspicilia stalagmitica (Megasporaceae) - новый вид лишайника с изидиевидными выростами таллома

Aspicilia stalagmitica Paukov et Davydov лишайник из северного Китая с изидиевидными выростами на ареолах, описан как новый для науки вид. От других видов рода он отличается следующей совокупностью признаков: короткие и узкие краевые лопасти, изидиевидные выросты, содержащие конидии, сидячие апотеции, длинные пикноконидии и стиктовая кислота в качестве основного вторичного метаболита. Представлены результаты филогенетического анализа с использованием ITS последовательностей, которые показывают положение вида в пределах рода Aspicilia.

Текст научной работы на тему «Aspicilia stalagmitica (Megasporaceae) - a new lichen species with isidia-like thalline outgrowths»

Turczaninowia 23, 1: 5-12 (2020) DOI: 10.14258/turczaninowia.23.1.1 http://turczaninowia.asu.ru

I ISSN 1560-7259 (print edition)

TURCZANINOWIA

I ISSN 1560-7267 (online edition)

УДК 582.291

Aspicilia stalagmitica (Megasporaceae) - a new lichen species with isidia-like thalline outgrowths

A. G. Paukov1*, E. A. Davydov2

1 Ural Federal University, Lenina pr., 51, Ekaterinburg, RF-620000, Russian Federation. E-mail: alexander_paukov@mail.ru 2Altai State University, Lenina pr., 61, Barnaul, RF-656049, Russian Federation. E-mail: eadavydov@yandex.ru

* Corresponding author

Keywords. Altai, Aspicilia, China, ITS, molecular phylogeny, new taxon, Xinjiang.

Summary. Aspicilia stalagmitica Paukov et Davydov from the Altai Mts, a species with isidia-like outgrowths on areoles, is described as new to science. From other species of the genus Aspicilia stalagmitica differs by the following set of characters. short narrow marginal lobes, conidiomata in the isidia-like outgrowths, appressed to almost substipitate apothecia, long picnoconidia, and stictic acid as a main secondary metabolite. A phylogenetic analysis of Aspicilia stalagmitica (ITS) showing its relationships within Aspicilia is presented.

Aspicilia stalagmitica (Megasporaceae) - новый вид лишайника с изидиевидными выростами таллома

А. Г. Пауков1*, Е. А. Давыдов2

1 Уральский федеральный университет, пр. Ленина, 51, г. Екатеринбург, 620000, Россия

2 Алтайский государственный университет, пр. Ленина, 61, г. Барнаул, 656049, Россия

*Автор для переписки

Ключевые слова: Алтай, аспицилия, Китай, молекулярная филогения, новый таксон, Синьцзян, ITS.

Аннотация. Aspicilia stalagmitica Paukov et Davydov - лишайник из северного Китая с изидиевидными выростами на ареолах, описан как новый для науки вид. От других видов рода он отличается следующей совокупностью признаков: короткие и узкие краевые лопасти, изидиевидные выросты, содержащие конидии, сидячие апотеции, длинные пикноконидии и стиктовая кислота в качестве основного вторичного метаболита. Представлены результаты филогенетического анализа с использованием ITS последовательностей, которые показывают положение вида в пределах рода Aspicilia.

Introduction

Family Megasporaceae (or Aspicilia s. l.) is remarkable in its morphological diversity and comprises taxa of different life forms from those having immersed thalli to dwarf-fruticose and vagrant species (Sohrabi et al., 2013). Saxicolous

and some terricolous representatives of the fruticose life form start their ontogenesis from formation of areolate thalli followed by the development of straight or contorted, simple or branched outgrowths up to several millimeters high (Oxner, 1971). A small number of Aspicilia species develop only tiny isidia-like structures which subsequently never form

Поступило в редакцию 04.02.2020 Принято к публикации 17.02.2020

Submitted 04.02.2020 Accepted 17.02.2020

fruticose thalli (Poelt, 1961). During field work in the northern China in 2005 Evgeny Davydov collected several specimens with such morphology, which were recognized as representatives of a previously undescribed species. Here we describe this species as new to science.

Materials and Methods

Specimens and phenotype studies

The core material for this study was collected by Evgeny Davydov during the expedition to Xinjiang (China) in 2005 and deposited in herbaria LE, ALTB, UFU, and PE. Morphological observations were made using a dissecting microscope. Cross-sections of apothecia and thalli were cut by hand with a razor blade and observed after mounting in water, K, N and iodine solutions. Measurements of spores and conidia are presented as follows: (smallest value recorded) (X-SE) - X - (X+SE) (largest value recorded), where X is the (arithmetic) sample mean, and SE the sample error of mean. The measurements were made with the precision of 0.5

Table

Species of lichens used in the phylogenetic analysis in this study together with specimen information and GenBank Accession numbers. New specimen and its sequence are in bold.

Species Origin Collection number or reference ITS GenBank Accession number Reference

Aspicilia abbasiana China Ismayil et Abbas 20111154 KM609324 Ismayil et al., 2015; Kondratyuk et al., 2016

A. berntii Norway Nordin 6392 EU502747 Nordin et al., 2008

A. blastidiata Russia Paukov AGP20111009-01 KX129963 Paukov et al., 2015, 2017

A. blastidiata Russia Paukov AGP20120801-01 KX159286 Paukov et al., 2015, 2017

A. cinerea France Roux 23869 JF703118 Roux et al., 2011

A. cinerea France Roux 25015 JF710311 Roux et al., 2011

A. cuprea USA Owe-Larsson 9112 EU057902 Nordin et al., 2007

A. dudinensis Sweden Nordin 6036 EU057906 Nordin et al., 2007

A. epiglypta Sweden Nordin 6303 EU057907 Nordin et al., 2007

A. epiglypta Sweden Nordin 6305 HQ259261 Nordin et al., 2011

A. fluviatilis Sweden Nordin 6188 HQ259264 Nordin et al., 2011

A. goettweigensis Austria Vondrak 14026 KX159289 Paukov et al., 2017

A. goettweigensis Russia Paukov AGP20120513-03 KX159292 Paukov et al., 2017

A. granulosa Sweden Nordin 6174 HQ259265 Nordin et al., 2011

A. stalagmitica China Davydov 17620 MT014019 This paper

A. subdepressa France Roux 24653 JF703123 Roux et al., 2011

A. subepiglypta Korea 100857 KoLRI KY249607 Kondratyuk et al., 2016

A. subepiglypta Korea 110495 KoLRI KY249608 Kondratyuk et al., 2016

A. subradians Sweden Nordin 5984 HQ259267 Nordin et al., 2011

A. subradians Finland Nordin 6370 HQ259268 Nordin et al., 2011

A. verrucigera Sweden Tibell 22669 EU057939 Nordin et al., 2007

Circinaria esculenta Kazakhstan Ivanov s. n. (UFU L-1743) MK347507 Paukov et al., 2019

Secondary products were analyzed by applying standard thin-layer chromatography techniques (TLC, Culberson, Kristinsson, 1970). Solvent A (toluene : 1,4-dioxane : acetic acid, 180 : 45 : 5) and C (toluene : acetic acid, 170 : 30) systems were used for the TLC analysis.

Sequences and phylogenetic reconstructions

To test phylogenetic relations to other species, nuclear internal transcribed spacers and 5.8S rDNA (ITS) sequences of the putative new species and other sequences retrieved from the NCBI database (GenBank) were used for a molecular phylogenetic analysis. Our sampling comprised 14 species of Aspicilia including a putative new species, species of Oxneriaria, Lobothallia and Circinaria, as well as Ochrolechia parella (L.) A. Massal as an outgroup. This selection is based on the studies of Nordin et al. (2007, 2008, 2010), Kondratyuk et al. (2016), Haji Moniri (2017) and a five-gene analysis by Mi^dlikowska et al. (2014). The information on the samples with the GenBank accession numbers are given in Table.

Table (end)

Species Origin Collection number or reference ITS GenBank Accession number Reference

C. fruticulosa Russia Paukov 3074 (UFU L-3256) MK347508 Paukov et al., 2019

Lobothallia alphoplaca China Tong 20117616 (SDNU) JX499233 Kou et al., 2013

L. praeradiosa China Mamut s. n. (XJU) KT180160 Ismayil, Abbas not published

L. praeradiosa Russia Paukov AGP20120606-12 (UFU L-1264) MK347501 Paukov et al., 2019

Ochrolechia parella Antarctica Park PCH080112-32 KJ607905 Park et al., 2015

Oxneriaria dendroplaca Finland Nordin 6366 HQ259260 Nordin et al., 2011

O. mashiginensis Sweden Nordin 5790 EU057912 Nordin et al., 2007

O. permutata Sweden Nordin 6039 EU057921 Nordin et al., 2007

O. permutata Sweden Nordin 5980 EU057930 Nordin et al., 2008

O. rivulicola Sweden Nordin 5957 EU057922 Nordin et al., 2007

O. supertegens Norway Owe-Larsson 9002 EU057936 Nordin et al., 2007

O. supertegens Sweden Nordin 6023 EU057938 Nordin et al., 2007

O. verruculosa Norway Owe-Larsson 9007 EU057940 Nordin et al., 2007

O. verruculosa Sweden Nordin 5942 EU057942 Nordin et al., 2007

O. virginea Sweden Nordin 6017a HQ259270 Nordin et al., 2011

O. virginea Svalbard Ebbestad SvL1:1 HQ259271 Nordin et al., 2011

Methods used for DNA extraction, amplification and sequencing follow Davydov et Yakovchenko (2017). An ITS 534 bp matrix were aligned using the MAFFT algorithm (Katoh et al., 2005) as implemented on the GUIDANCE web server (Sela et al., 2015). Optimal substitution models were inferred separately for ITS1, 5.8S, and ITS2 using PartitionFinder, version 1.1.1 (Lanfear et al., 2012): the General time reversible parameter with gamma distribution site specific rates (GTR+G) for the ITS1+ITS2 partition, and the Kimura 2-parameter with proportion of invariable sites (K80+I) for the 5.8S partition. Bayesian inference with the Markov chain Monte Carlo (BMCMC) method (Larget, Shimon, 1999) was performed using MrBayes 3.2.3 (Ronquist et al., 2012). Three parallel Bayesian analyses were run using six chains and every 200th generation was sampled. Convergence of the chains was inferred by calculating the average standard deviation of split frequencies every 100,000 generations using a burn-in fraction of 0.5, and the runs terminated when the standard deviation of split frequencies dropped below 0.001. This was the case after 7.1M generations. The first 50 % of the trees were discarded as burn-in and a 50 % majority rule consensus tree calculated from the remaining trees of three runs with the sumt command implemented

in MrBayes 3.2.3. The most likely tree and 1000 rapid bootstrap replicates were calculated using RAxML 8.0.26 (Stamatakis, 2014) by raxmlGUI software version 1.3.1 (Silvestro, Michalak, 2012) applying the GTRGAMMA model of substitution to the subsets. The tree topologies were taken from RAxML. Bootstrap support values and BMCMC posterior probability were noted onto the best scoring tree (Fig. 1).

Results

An ITS sequence was successfully obtained from one specimen of the putative new species, described below as Aspicilia stalagmitica. The Bayesian 50 % majority-rule consensus tree had the same topology as the maximum likelihood tree generated by RAxML. The phylograms are combined in Fig. 1. According to the ITS sequence the new taxon belongs to Aspicilia and is the closest relative to the North-American Aspicilia cuprea Owe-Larss. et A. Nordin. These two taxa form a clade well-supported by MrBayes (0.97PP), but only weakly by RAxML (62 % BS) and rather long branches lengths. The sister clade contains the type species of the genus, Aspicilia cinerea (L.) Körb.

100/1.00 37/0.26 68 /0.51

82/0.97

98/1.00 54/0.98

78/1.00

57/0.88

55/0.87

48/0.85

43/0.80

30/0.41

4:

33/0.36 94/1.00 88/1.00

62/0.97

KX129963 Aspicilia blastidiata ~~L KX159286 Aspicilia blastidiata ■ JF703118 Aspicilia cinerea JF710311 Aspicilia cinerea KY249608 Aspicilia subepiglypta KY249607 Aspicilia subepiglypta — JF703123 Aspicilia subdepressa KX159289 Aspicilia goettweigensis KX159289 Aspicilia goettweigensis KM609324 Aspicilia abbasiana EU057906 Aspicilia dudinensis - EU057902 Aspicilia cuprea

100/1.00 56/0.58

100/1.00j-

100/1.00

100/1.00

■c

MT014019 Aspicilia stalagmitica

HQ259261 Aspicilia epiglypta EU057907 Aspicilia epiglypta - HQ259265 Aspicilia granulosa HQ259264 Aspicilia fluviatilis 100/1.001 HQ259268 Aspicilia subradians 1 HQ259267 Aspicilia subradians — EU057939 Aspicilia verrucigera

100/1.00 99/1.00

37/-

34/-

92/1.00

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

100/1.00

89/1.00

Б6/П—

EU502747 Aspicilia berntii EU057921 Oxneriaria permutata EU057930 Oxneriaria permutata HQ259270 Oxneriaria virginea HQ259271 Oxneriaria virginea EU057912 Oxneriaria mashiginensis HQ259260 Oxneriaria dendroplaca — EU057922 Oxneriaria rivulicola

4

99/1.00

100/1.00

100/1.00

I EU057940 Oxneriaria verruculosa ' EU057942 Oxneriaria verruculosa 100/1.00 г EU057936 Oxneriaria supertegens 1 EU057938 Oxneriaria supertegens

- MK347507 Circinaria esculenta

- MK347508 Circinaria fruticulosa

Ю0/1.00 I MK347501 Lobothallia praeradiosa 1 KT180160 Lobothallia praeradiosa - JX499233 Lobothallia alphoplaca

Ochrolechia parella

0.06

Fig. 1. Maximum likelihood (ML) phylogeny of selected Aspicilia ITS sequences. The reliability of each branch was tested by ML and Bayesian methods. Numbers at tree nodes indicate ML bootstrap percentages (left) and Bayesian inference with the Markov chain Monte Carlo (BMCMC) posterior probabilities (right). Thicker branches indicate when the bootstrap value of ML is > 70 % or the BMCMC posterior probability is > 0.95. Accession numbers are given to serve as operational taxonomic unit (OTU) names (see Table). Originally produced sequence is marked in bold. Ochrolechia parella was used as an outgroup. Branch lengths represent the estimated number of substitutions per site assuming the respective models of substitution. Exception is the branch with a black dot, which was shortened to reduce the overall figure size.

The species

Aspicilia stalagmitica Paukov et Davydov, sp. nov.

MycoBank No.: MB 834291

Aspicilia with a thin, indistinctly lobate, areolate, grey thallus with isidia-like outgrowths usually containing conidiomata. Lobes short and narrow or

absent, areoles angular, apothecia sessile, conidia long, 19-33 ^m. Main secondary metabolite stictic acid.

Type: "China, Xinjiang, Mongolsky Altai range, SW vicinity of Altai City, granite rocks near the road, 47°47'49''N, 88°04'49''E, elev. 900 m, on rocks. 4 VIII 2005. E. A. Davydov. № 17620" (holo -LE-L15292, iso - ALTB, UFU-L3488) (Fig. 2).

Fig. 2. Aspicilia stalagmitica (holotype): A - thallus; B - outer part of the thallus with young projections, C - thallus with apothecia; D - projections in the central part of the thallus. Scale = 1 mm.

Life habit lichenized. Thallus grey, up to 1.5 mm thick, indistinctly lobate at the periphery and areolate in the central part. Lobes relatively short and narrow, 0.5-1.5 x 0.4-0.5 mm (length x width), moderately convex, inconspicuous in some thalli. Areoles 0.5-1.7 mm, irregular in form, angular, moderately convex, with isidia-like outgrowths. The outgrowths are sphaeric, one, two, rarely more per areola, constricted at the bases, 0.25-0.5 mm, brittle, in the central parts of thalli occasionally cylindric, up to 0.75 mm high, blackish at the tops, commonly containing pycnidia with blackish spot-like or elongated ostioles. Upper cortex paraplectenchymatous, 30-50 ^m high, cells 7-10 ^m. Medulla I-, K+ yellow, with rare needlelike crystals. Photobiont layer 50-70 ^m thick, interrupted by narrow hyphal bands 5-10 ^m.

Photobiont chlorococcoid, algae 7-20 ^m diam. Prothallus absent. Vegetative propagules absent. Apothecia lecanorine, 1 per areole, developing from the outgrowths, appressed, later sessile, constricted at the base, rounded or elliptic in outline, 0.3-0.7 mm diam.; disc initially dot-like, later wide, flat, not pruinose or weakly white pruinose, blackish, surrounded by a projecting thalline margin. Margin 0.10-0.15 mm, lead-grey, darker than the thallus. Exciple of radiating hyphae, poorly recognizable under the hypothecium, widening to 25-30 ^m in the uppermost part. Hymenium hyaline, 100-112 ^m high, fleetingly bluish in I; paraphyses predominantly submoniliform, rarely moniliform with 2-3 apical cells thickened; epihymenium brownish, N+ greenish, 57-62 ^m high. Hypothecium hyaline, I+ weakly bluish, 100-120 ^m in the central part.

Asci clavate, Aspicilia-type; ascospores broadly ellipsoid, hyaline, aseptate (19.0-)21.0-21.5-22.0 (-23.0) x (12.0—)13.5—14.0—14.5(—16.0) ^m (n = 10). Pycnidia common, in isidia-like projections, with punctiform or elongated ostiole; conidia bacilliform, hyaline, curved or straight, aseptate (19.0-)24.5-25.0-25.5(33.0) ^m long (n = 56).

Chemistry. Thallus K+ yellow, C-; medulla K+ yellow, C-; stictic acid complex by TLC, norstictic acid as a minor substance in all specimens.

Etymology. The name refers to the vertical outgrowths on areoles which resemble stalagmites.

Ecology. Aspicilia stalagmitica was found in arid conditions on exposed siliceous rocks (granite and schistose) in steppe communities at elevations 880-1600 m a. s. l. The following species co-occurred with Aspicilia stalagmitica: Acarospora bohlinii H. Magn., A. irregularis H. Magn., Aspicilia cinerea (L.) Körb., Candelariella vitellina (Ehrh.) Müll. Arg., Circinaria maculata (H. Magn.) Q. Ren, C. hoffmanniana (S. Ekman et Fröberg ex R. Sant.) A. Nordin, Immersaria cupreoatra (Nyl.) Calat. et Rambold, Lecanora argopholis (Ach.) Ach., Protoparmeliopsis garovaglii (Körb.) Arup et al., Rusavskia dasanensis S. Y. Kondr. et al., and Xanthoparmelia delisei (Duby) O. Blanco et al.

Distribution. The species is known from three localities in the Xinjiang autonomous region of China.

Paratypes: China, Xinjiang, Mongolsky Altai range, "left bank of the Kran River, Altai City, S slope of Mt., on rocks, elev. 880 m. 47°49'52''N, 88°08'08''E. 31 VII 2005. E. A. Davydov. № 18943" (ALTB, UFU); "valley of Irtysh River at 10 km E settlement Kektogoy, steppe slope, on rocks, elev. 1300-1600 m. 47°13'40''N, 89°55'18''E. 7 VIII 2005. E. A. Davydov. № 17618, 17619" (ALTB, UFU).

Discussion

Aspicilia stalagmitica is a peculiar species which can be easily distinguished from other Aspicilia s. l.

by its isidia-like outgrowths, which contain conidi-omata. Along with this character the species has long pycnoconidia, up to 33 ^m, and contains the stictic acid complex. All the found specimens contain vertical outgrowths but the combination of long conidia and stictic acid may be a separate character which segregates this species from all known taxa within the genus.

According to the ITS phylogeny the closest species to Aspicilia stalagmitica is A. cuprea, which is known from the USA, California. It differs from the former by its similarity to Aspiciliella cupreoglauca (B. de Lesd.) Zakeri et al. (Zakeri et al., 2019), i. e. its brown thallus, immersed apothecia, and large spores (20-31 x 11-17 ^m) (Owe-Larsson et al., 2007). The conidium length is a character, which segregates both Aspicilia cuprea and A. stalagmiti-ca from the Aspicilia cinerea-group. Only Aspicilia dudinensis (H. Magn.) Oxner from this group has a conidium length that considerably overlaps with Aspicilia stalagmitica and A. cuprea (Nordin et al., 2008; Paukov et al., 2017), but never reaches 30 ^m. Other similar species with conidia exceeding this range belong to Oxneriaria (Oxneriaria rivulicola (H. Magn.) S. Y. Kondr. et L. Lokos, and O. super-tegens (Arnold) S.Y. Kondr. et L. Lokos), but lack secondary metabolites.

Compared to species with isidia-like projections, Aspicilia stalagmitica is most similar to Oxneriaria mashiginensis (Zahlbr.) S.Y. Kondr. et L. Lokos, which, however, differs by its darker thalli, smaller spores (14-18 x 9-11 ^m) and shorter conidia (12.5-19.0 ^m), and by containing substictic acid. Further, the outgrowths usually disintegrate into soredia and do not contain conidiomata (Nordin et al., 2008).

Acknowledgements

Evgeny Davydov thanks Dr Wen-Li Chen for organizing the expedition to China. Alexander Paukov would like to thank RFBR (project 18-04-00414) and the Ministry of Education and Science of the Russian Federation (agreement no. 02.A03.21.0006) for financial support. We are grateful to Anders Nordin (Museum of Evolution, Uppsala University) whose comments have greatly improved the manuscript.

REFERENCES

Culberson C. F., Kristinsson, H. D. 1970. A standardized method for the identification of lichen products.

J. Chromatogr. 46: 85-93.

Davydov E. A., Yakovchenko L. S. 2017. Rhizocarpon smaragdulum, a new monosporic yellow-thalline species and some additional species of the genus Rhizocarpon from the Altai Mountains (Siberia). Lichenologist 49: 457-466. DOI: 10.1017/s0024282917000469

HajiMoniri M., Gromakova A. B., Lffkös L., Kondratyuk, S. Y. 2017. New members of the Megasporaceae (Per-tusariales, lichen-forming Ascomycota): Megaspora iranica spec. nova and Oxneriaria gen. nova. Acta Bot. Hung. 59(3-4): 343-370. D0I:10.1556/034.59.2017.3-4.5

Ismayil G., Abbas A., Guo S.-Y. 2015. Aspicilia volcanica, a new saxicolous lichen from Northeast China. Myco-taxon 130(2): 543-548. D0I:10.5248/130.543

Katoh K., Kuma K., Toh H., Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucl. Acids Res. 33: 511-518. DOI: 10.1093/nar/gki198

Kondratyuk S.Y., Lffkös L., Park J.-S., Jang S.-H., Jeong M.-H. 2016. New Aspicilia species from South Korea proved by molecular phylogeny with a key to the Eastern Asian aspicilioid lichens. Stud. Bot. Hung. 47(2): 227-249. DOI:10.17110/StudBot.2016.47.2.227

Kou X.-R., Li S.-X., Ren Q. 2013. Three new species and one new record of Lobothallia from China. Mycotaxon 123: 241-249. DOI: 10.5248/123.241

Lanfear R., CalcottB., Ho S. Y. W., Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molec. Biol. Evol. 29: 1695-1701.

Larget B., Shimon D. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molec. Biol. Evol. 16: 750-759.

Miadlikowska J., Kauff F., Högnabba F., Oliver J.C., Molnär K., Fraker E., Gaya E., Hafellner J., Hofstetter V., Gueidan C., Otälora M.A.G., Hodkinson B., Kukwa M., LückingR., Björk C., Sipman H.J.M., BurgazA.R., Thell A., Passo A., Myllys L., Goward T., Fernändez-Brimem S., Hestmark G., Lendemer J., Lumbsch H.T., SchmullM., Schoch C. L., Sérusiaux E., Maddison D. R., Arnold A. E., Lutzoni F., Stenroos S. 2014. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molec. Phylogen. Evol. 79: 132-168.

Nordin A., Owe-Larsson B., Tibell L. 2011. Two new Aspicilia species from Fennoscandia and Russia. Lichenologist 43(1): 27-37.

Nordin A., Savic S., Tibell L. 2010. Phylogeny and taxonomy of Aspicilia and Megasporaceae. Mycologia 102(6): 1339-1349. DOI: 10.3852/09-266

Nordin A., Tibell L., Owe-Larsson B. 2007. A preliminary phylogeny of Aspicilia in relation to morphological and secondary product variation. In: A. Frisch, U. Lange and B. Staiger: Lichenologische Nebenstunden. Contributions to Lichen Taxonomy and Ecology in Honour of Klaus Kalb. Bibliotheca Lichenologica 96. Berlin-Stuttgart: J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung. Pp. 247-266.

Nordin A., Tibell L., Owe-Larsson B. 2008. Aspicilia berntii, a new name for a poorly known species. Lichenologist 40(2): 127-133. DOI:10.1017/S0024282908007573

Owe-Larsson B., Nordin A., Tibell L. 2007. Aspicilia. In: T. H. Nash, C. Gries, F. Bungartz "Lichen Flora of the Greater Sonoran Desert Region". Vol. 3. Tempe: Lichens Unlimited, Arizona State University. Pp. 61-108.

Oxner A. N. 1971. Aspicilia. In: Handbook of the Lichens of the USSR. Leningrad: Nauka. Pp. 146-217. [In Russian] (Окснер А. Н. Aspicilia // Определитель лишайников СССР. Л.: Наука, 1971. С. 146-217).

Park C. H., Kim K. M., Elvebakk A., Kim O. S., Jeong G., Hong S. G. 2015. Algal and fungal diversity in Antarctic lichens. J. Eukaryot. Microbiol. 62(2): 196-205. DOI: 10.1111/jeu.12159

Paukov A. G., Davydov E.A., Nordin A., Roux C., §enkarde$ler A., Sohrabi M., Vondräk J., Frolov I. V., Teptina A. Y., Shiryaeva A. S. 2019. Three new species, new combinations and a key to known species of Lobothallia (Megasporaceae). Lichenologist 51(4): 301-322. DOI: 10.1017/S0024282919000264

Paukov A., Nordin A., Tibell L., Frolov I., Vondräk J. 2017. Aspicilia goettweigensis (Megasporaceae, lichenized Ascomycetes) - a poorly known and overlooked species in Europe and Russia. Nordic J. Bot. 35(5): 595-601. DOI: 10.1111/njb.01222

Paukov A. G., Teptina A. Yu., Pushkarev E. V. 2015. Heavy metal uptake by chemically distinct lichens from Aspicilia spp. growing on ultramafic rocks. Austral. J. Bot. 63(2): 111-118. DOI:10.1071/BT14255

Poelt J. 1961. Mitteleuropaische Flechten VII. Mitteil. der Bot. Staatssammlung München 4: 171-197. Ronquist R., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J. P. 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61: 539-542.

Roux C., Nordin A., Tibell L., Sohrabi M. 2011. Quelques espèces d'Aspicilia peu connues ou nouvelles des Pyrénées-Orientales (France). Bulletin de la Société Linnéenne de Provence, num. spéc. 14: 177-227.

Sela I., Ashkenazy H., Katoh K., Pupko T. 2015. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Research, 2015 Jul 1; 43 (Web Server issue): W7-W14. DOI: 10.1093/nar/gkq443

Silvestro D., Michalak I. 2012. RaxmlGUI: A graphical front-end for RAxML. Organisms Diversity Evol. 12: 335-337.

Sohrabi M., Stenroos S., Myllys L., S0chting U., Ahti T., Hyvonen J. 2013. Phylogeny and taxonomy of the 'manna lichens'. Mycol. Progr. 12, 2: 231-269. DOI: 10.1007/s11557-012-0830-1

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. DOI: 10.1093/bioinformatics/btu033

Zakeri Z., Sipman H., Paukov A., Otte V. 2019: Neotypification of Aspiciliella cupreoglauca and lectotypifica-tion and synonymization of Aspicilia reticulata (Megasporaceae, Ascomycota). Lichenologist 51(1): 97-99. DOI: 10.1017/S0024282918000476

i Надоели баннеры? Вы всегда можете отключить рекламу.