МЕДИЦИНСКИЕ НАУКИ
Аскарьянц Вера Петровна
доцент
кафедры фармакологии, физиологии. Ташкентский Педиатрический Медицинский Институт. г. Ташкент.
Эргашов Камронбек Улугбек угли
студент.
Ташкентский Педиатрический Медицинский Институт. г. Ташкент.
АСПЕКТЫ ПРОГНОЗИРОВАНИЯ ПРОЦЕССОВ ПИЩЕВАРЕНИЯ
В статье включены данные литературного анализа по аспектам прогнозирования процессов пищеварения, которые имеют важное значение у медиков особенно в теоретической медицине, а также изучения этой проблемы остается открытым вопросом.
Ключевые слова: пища ,желудок, печень ,аспекты, ферменты.
Пищеварение — химическая (главным образом ферментативная), иногда также механическая обработка пищи — совокупность процессов, обеспечивающих расщепление пищевых веществ на компоненты, пригодные к всасыванию и участию в обмене веществ. В ходе пищеварения происходит превращение органических макромолекул пищи в более мелкие молекулы, в частности,
расщепление биополимеров пищи на мономеры. Этот процесс осуществляется с
помощью пищеварительных (гидролитических) ферментов. После вышеописанного процесса обработки пища всасывается непосредственно в цитоплазму клеток (при внеклеточном пищеварении у бактерий и грибов и при внутриклеточном пищеварении) или через стенки пищеварительного тракта в жидкие среды организма (у человека — в кровь или лимфу).
Гастроэнтеропанкреатическую эндокринную систему — отдел эндокринной системы, представленный рассеянными в
различных органах пищеварительной системы эндокринными клетками (апудоцитами) и пептидергическими нейронами,
продуцирующими пептидные гормоны. Является наиболее изученной частью диффузной эндокринной системы (синоним АПУД-система) и включает примерно половину её клеток. Гастроэнтеропанкреатическую эндокринную систему называют «самым большим и сложным эндокринным органом в организме человека» [6].
Гастрин — гормон, синтезируемый в-клетками желудка, расположенными в основном в пилорическом отделе желудка. Гастрин связывается со специфическими
гастриновыми рецепторами в желудке.
Результатом усиления аденилатциклазной активности в париетальных клетках желудка является увеличение секреции желудочного сока, в особенности соляной кислоты. Гастрин также увеличивает секрецию пепсина главными клетками желудка, что, вместе с повышением кислотности желудочного сока, обеспечивающим
оптимальный рН для действия пепсина, способствует оптимальному перевариванию пищи в желудке. Одновременно гастрин увеличивает секрецию бикарбонатов и слизи в слизистой желудка, обеспечивая тем самым защиту слизистой от воздействия соляной кислоты и пепсина. Гастрин тормозит опорожнение желудка, что обеспечивает достаточную для переваривания пищи длительность воздействия соляной кислоты и пепсина на пищевой комок. Кроме того, гастрин увеличивает продукцию простагландина Е в слизистой желудка, что приводит к местному расширению сосудов, усилению кровоснабжения и физиологическому отёку слизистой желудка и к миграции лейкоцитов в слизистую.
Секретин — пептидный гормон, состоящий из 27 аминокислотных остатков, вырабатываемый 8-клетками слизистой оболочки тонкой кишки и участвующий в регуляции секреторной деятельности поджелудочной железы. Усиливают стимуляцию продукции секретина желчные кислоты[6]. Всасываясь в кровь, секретин достигает поджелудочной железы, в которой усиливает секрецию воды и электролитов, преимущественно бикарбоната. Увеличивая объём выделяемого поджелудочной железой сока, секретин не влияет на образование железой ферментов. Эту функцию выполняет другое вещество, вырабатываемое в слизистой оболочке тонкой кишки — холецистокинин. Биологическое определение секретина основано на его способности (при внутривенном введении животным) увеличивать количество щёлочи в соке поджелудочной железы. Секретин является блокатором продукции соляной
кислоты париетальными клетками желудка.
Основой эффект, вызываемый секретином, — стимуляция продукции
эпителием желчных, панкреатических протоков и бруннеровских желёз бикарбонатов,
обеспечивая, таким образом, до 80 % секреции бикарбонатов в ответ на поступление пищи. Этот эффект опосредован через
секрецию холецистокинина и это приводит к
увеличению продукции желчи, стимулирования сокращений желчного пузыря и кишечника и увеличению секреции кишечного сока.
Холецистокинин (CCK; ранее носил название панкреозимин) — нейропептидный горм он, вырабатываемый I-клетками слизистой
оболочки двенадцатиперстной кишки и
проксимальным отделом тощей кишки. Холецистокинин выступает медиатором в
разнообразных процессах, происходящих в организме, в том числе, в пищеварении. Холецистокинин стимулирует
расслабление сфинктера Одди; увеличивает ток печёночной желчи; повышает панкреатическую секрецию; снижает давление в билиарной системе: вызывает сокращение привратника желудка, что тормозит перемещение переваренной пищи в двенадцатиперстную кишку [10][6].
Холецистокинин является блокатором
секреции соляной кислоты париетальными
клетками желудка. Ингибитором холецистокинина является соматостатин.
Глюкозозависимый инсулинотропный
полипептид является инкретином, то есть вырабатывается в кишечнике в ответ на пероральный приём пищи. Основная функция глюкозозависимого инсулинотропного
полипептида — стимуляция
секреции инсулина бета-клетками поджелудочной железы в ответ на приём пищи. Кроме того, ГИП ингибирует абсорбцию жиров, угнетает реабсорбцию натрия и воды в пищеварительном тракте, ингибирует липопротеинлипазу.
Вазоактивный интестинальный
пептид (называемый также вазоактивный
интестинальный полипептид; общепринятые аббревиатуры ВИП и VIP) — нейропептидный гор мон, состоящий из 28 аминокислотных остатков, обнаруживаемый во многих органах, включая кишечник, головной и спинной мозг, поджелудочную железу. Вазоактивный интестинальный пептид, в отличие от других пептидных гормонов из семейства секретина, является исключительно нейромедиатором.
Обладает сильным стимулирующим действием на кровоток в стенке кишки, а также на гладкую мускулатуру кишечника. Является ингибитором, угнетающим секрецию соляной
кислоты париетальными клетками слизистой
оболочки желудка. ВИП также является стимулятором продукции пепсиногена главными клетками желудка.
Мотилин — гормон, вырабатываемый хромаффинными клетками слизистой
оболочки желудочно-кишечного тракта,
преимущественно двенадцатиперстной и тощей кишок.
Соматостатин — гормон дельта-
клеток островков Лангерганса поджелудочной железы, а также один из гормонов гипоталамуса. По химическому строению является пептидным гормоном. Соматостатин подавляет
секрецию гипоталамусом соматотропин-рилизинг-гормона и секрецию передней
долей гипофиза соматотропного гормона и тиреотропного гормона. Кроме того, он подавляет также секрецию различных гормонально активных пептидов и серотонина, продуцируемых в желудке, кишечнике, печени и поджелудочной железе.
Как отмечено в литературных источниках, что пищеварительный конвейер заключается в преемственности следующих процессов в органных: пищеварение в полости рта — желудочное пищеварение — кишечное пищеварение; физических и химических: размельчение, увлажнение, набухание, растворение пищи; денатурация белков; гидролиз полимеров до стадии различных олигомеров, затем мономеров; их транспорт из пищеварительного тракта в кровь и лимфу; полостного и пристеночного пищеварения от центральной части пищевого комка в желудке к его примукозальному слою; от вершины кишечной ворсинки к ее основанию; от полостного гидролиза питательных веществ в тонкой кишке к продолжению его в зоне примукозальной слизи, затем в зоне гликокаликса и наконец на мембранах энтероцитов; гидролиза на апикальных мембранах энтероцитов и транспорта в энтероцит образовавшихся мономеров, а из него — в интерстициальную ткань и затем в кровь и лимфу; ферментативной деполимеризации питательных веществ. При этом в каждом проксимальнее расположенном отделе осуществляются процессы, повышающие эффективность их в следующем, дистальнее расположенном отделе.
Интеграция, правильная последовательность работы элементов пищеварительного конвейера во времени и пространстве обеспечиваются регуляторными процессами различного уровня.
Авторами также отмечен, что ферментативная активность свойственна каждому отделу пищеварительного тракта и максимальна при определенном значении pH среды. Например, в желудке пищеварительный процесс
осуществляется в кислой среде. Переходящее в двенадцатиперстную кишку кислое содержимое нейтрализуется, и кишечное пищеварение происходит в нейтральной и слабоосновной среде, созданной выделяющимися в кишку секретами — желчью, соками поджелудочной железы и кишечным, которые инактивируют желудочные пепсины. Кишечное пищеварение происходит в нейтральной и слабоосновной среде сначала по типу полостного, а затем пристеночного пищеварения, завершающегося всасыванием продуктов гидролиза (нутриентов).
Физиологами установлено ,что деградация пищевых веществ по типу полостного и пристеночного пищеварения осуществляется гидролитическими ферментами. Каждый из них имеет выраженную в той или иной мере субстратную специфичность. Набор ферментов в составе секретов пищеварительных желез и
исчерченной каемки тонкой кишки имеет видовую и индивидуальную особенности, адаптирован к перевариванию той пищи, которая характерна для данного вида животного, и тем питательным веществам, которые преобладают в пище.
Желудочно -кишечный тракт — часть пищеварительной системы, имеющая трубчатое строение и включающая пищевод желудок, толстую и тонкую кишку, в которых происходят механическая и химическая обработка пищи и всасывание продуктов гидролиза.
Секреция — внутриклеточный процесс образования из веществ, поступивших в клетку, специфического продукта (секрета) определенного функционального назначения и выделение его из железистой клетки. Секреты поступают через систему секреторных ходов и протоков в полость пищеварительного тракта.
Секреция пищеварительных желез обеспечивает доставку в полость
пищеварительного тракта секретов, ингредиенты которых гидролизуют питательные вещества (секреция гидролитических ферментов и их активаторов), оптимизируют условия для этого (по pH и другим параметрам — секреция электролитов) и состояние гидролизуемого субстрата (эмульгирование липидов солями желчных кислот, денатурация белков соляной кислотой), выполняют защитную роль (слизь, бактерицидные вещества, иммуноглобулины).
Секреция пищеварительных желез контролируется нервными, гуморальными и паракринными механизмами. Эффект этих влияний — возбуждение, торможение, модуляция секреции гландулоцитов — зависит от вида эфферентных нервов и их медиаторов, гормонов и других физиологически активных веществ,
гландулоцитов, мембранных рецепторов на них, механизма действия этих веществ на внутриклеточные процессы. Секреция желез находится в прямой зависимости от уровня их кровоснабжения, которое в свою очередь определяется секреторной активностью желез, образованием в них метаболитов — вазодилататоров, влиянием стимуляторов секреции как вазодилататоров. Количество секрета железы зависит от числа одновременно секретирующих в ней гландулоцитов. Каждая железа состоит из глацдулоцитов, вырабатывающих разные компоненты секрета, и имеет существенные особенности рефляции. Это обеспечивает широкое варьирование состава и свойств выделяемого железой секрета. Он изменяется также по мере продвижения по протоковой системе желез, где некоторые компоненты секрета всасываются, другие выделяются в проток его гландулоцитами. Изменения количества и качества секрета адаптированы к виду принятой пищи, составу и свойствам содержимого пищеварительного тракта.
Для пищеварительных желез основными стимулирующими секрецию нервными волокнами являются парасимпатические холинергические
аксоны постганглионарных нейронов.
Парасимпатическая денервация желез вызывает разной длительности (на несколько дней и недель) гиперсекрецию желез (особенно слюнных, в меньшей мере желудочных) — паралитическую секрецию, в основе которой лежит несколько механизмов .
Симпатические нейроны тормозят стимулированную секрецию и оказывают на железы трофические влияния, усиливая синтез компонентов секрета. Эффекты зависят от вида мембранных рецепторов — а- и р-адренорецепторов, через которые они реализуются.
Специалистами отмечено ,что в роли стимуляторов, ингибиторов и модуляторов секреции желез выступают многие гастроинтестинальные регуляторные пептиды.
В естественных условиях количество, состав и динамика секреции пищеварительных желез определяются соотношением одновременно и последовательно действующих регуляторных механизмов.
Моторная, или двигательная, функция, осуществляется на всех этапах процесса пищеварения. В пищеварительном тракте происходят произвольные и непроизвольные, макро- и микромоторные явления. Прием, механическая переработка пищи в ходе жевания, глотание, задержка в желудке и эвакуация его содержимого в кишечник, сокращения и расслабления желчного пузыря, перемешивание и передвижение кишечного содержимого (химуса), перераспределение давления в отделах тонкой кишки, перемешивание пристеночного слоя химуса, переход химуса из тонкой кишки в толстую, сокращение и расслабление сфинктеров, движения толстой кишки, необходимые для формирования кала и дефекации,— основные моторные процессы, обеспечивающие процесс пищеварения в различных отделах пищеварительного тракта.
Изменение тонуса и перистальтики выводных протоков пищеварительных желез, состояние их сфинктеров обеспечивают выведение
пищеварительных секретов. К моторике также относятся движения ворсинок и микроворсинок.
Гладкие мышцы пищеварительного тракта образованы гладкими мышечными клетками (миоциты), обладающими рядом специфических физиологических свойств. Миоциты плотно упакованы в пучки и соединены нексусами. Пучок считается функциональной единицей гладкой мышцы. Пучок иннервируется нервными терминалями, он также получает мелкую артериолу. Нейромедиаторы и физиологически активные вещества, вышедшие из крови в интерстициальную жидкость пучка, оказывают на его миоциты возбуждающие и тормозные влияния.
Гладкие мышцы пищеварительного тракта относятся к группе унитарных и обладают способностью спонтанного ритмического возбуждения и свойствами синцития. Растяжение
гладких мышц вызывает деполяризацию их мембран и мышечное сокращение. Вегетативные нервы, гормоны и парагормоны изменяют частоту и силу этих сокращений в широких пределах. На протяжении пищеварительного тракта имеется несколько водителей ритма его сокращений. Эти водители ритма особенно чувствительны к физиологически активным веществам и получают обильную иннервацию.
Сложность движений пищеварительного тракта обеспечивается наличием в нем слоев и пучков гладких мышц, идущих в разных направлениях, при расслаблении или сокращении которых уменьшается или увеличивается тонус кишки и изменяется просвет пищеварительного канала. Волна сокращений и расслабления круговых мышц продвигается вдоль пищеварительного канала, создавая его перистальтические сокращения. Согласование сокращений различных мышечных пучков осуществляется посредством периферической интрамуральной нервной системы.
В пищеварительном тракте около 35 сфинктеров (жомов) — специальных замыкательных аппаратов, состоящих из скопления преимущественно циркулярно расположенных мышечных пучков, а также мышечных пучков спирального и продольного направлений. Сокращение циркулярно расположенных мышечных пучков обеспечивает смыкание и уменьшение просвета сфинктера, сокращение спирально и продольно расположенных пучков увеличивает просвет сфинктера. Сфинктеры выполняют роль клапанов, обеспечивающих движение пищевого содержимого в каудальном направлении, одноправленное движение пищеварительных секретов, разобщение отделов пищеварительного тракта, где пищеварение происходит на характерных для них этапах.
В координации моторики пищеварительного тракта велика роль миогенных механизмов, периферической (интра- и экстрамуральной) и центральной нервной системы. Последняя имеет важное значение в пусковых влияниях на органы пищеварения, в изменении их реактивности, инте1рации моторной и секреторной функций пищеварительного тракта, его адаптации к виду принятой пищи.
Парасимпатические влияния
преимущественно повышают моторную активность пищеварительного тракта, но в составе блуждающих нервов имеются возбуждающие и тормозящие моторику нервные волокна. Симпатические влияния заключаются в основном в снижении моторной активности. Нервные, гормональные и парагормональные влияния создают сочетанные органные и межорганные внутрисистемные эффекты. Так, желчевыделение осуществляется сокращениями желчного пузыря при открытом сфинктере печеночно-поджелудочной ампулы (сфинктер Одди); желудочная эвакуация — при сокращении
антральной части желудка, но расслабленном сфинктере привратника (пилорический сфинктер).
Всасывание — процесс транспорта компонентов пищи из полости пищеварительного тракта во внутреннюю среду, кровь и лимфу организма. Всосавшиеся вещества разносятся по организму и включаются в обмен веществ тканей. В полости рта химическая обработка пищи сводится к частичному гидролизу углеводов а-амилазой слюны, при котором крахмал расщепляется на декстрины, мальтоолигосахариды и мальтозу. Кроме того, время пребывания пищи в полости рта незначительно, поэтому всасывания здесь практически не происходит. Однако известно, что некоторые фармакологические вещества всасываются быстро, и это находит применение как способ введения лекарственных веществ.
В желудке всасывается небольшое количество аминокислот и глюкозы, несколько больше - воды и растворенных в ней минеральных солей, значительно всасывание алкоголя.
Всасывание питательных веществ, воды, электролитов осуществляется в основном в тонкой кишке и сопряжено с гидролизом питательных веществ. Всасывание зависит от величины поверхности, на которой оно осуществляется. Особенно велика поверхность всасывания в тонкой кишке. У человека поверхность слизистой оболочки тонкой кишки увеличена в 300—500 раз за счет складок, ворсинок и микроворсинок. На 1 мм2 слизистой оболочки кишки приходится 30—40 ворсинок, а каждый энтероцит имеет 1700—4000 микроворсинок. На 1 мм2 поверхности кишечного эпителия приходится 50—100 млн микроворсинок.
У взрослого человека число всасывающих кишечных клеток составляет Ю10, а соматических клеток — Ю10. Из этого следует, что одна кишечная клетка обеспечивает питательными веществами около 100 000 других клеток организма человека. Это предполагает высокую активность энтероцитов в гидролизе и всасывании питательных веществ. Микроворсинки покрыты слоем гликокаликса, образующего из мукополисахаридных нитей на апикальной поверхности слой толщиной до 0,1 мкм. Нити связаны между собой кальциевыми мостиками, что обусловливает формирование особой сети. Она обладает свойствами молекулярного сита, разделяющего молекулы по их величине и заряду. Сеть имеет отрицательный заряд и гидрофильна, что придает направленный и селективный характер транспорту через нее низкомолекулярных веществ к мембране микроворсинок, препятствует транспорту через нее высокомолекулярных веществ и ксенобиотиков. Гликокаликс удерживает на поверхности эпителия кишечную слизь, которая вместе с гликокаликсом адсорбирует из полости кишки гидролитические ферменты, продолжающие полостной гидролиз питательных веществ, продукты которого переводятся на мембранные системы микроворсинок. На них завершается гидролиз
питательных веществ по типу мембранного пищеварения с помощью кишечных ферментов с образованием в основном мономеров, которые всасываются.
Всасывание различных веществ
осуществляется разными механизмами и их агрегатов происходит путем фагоцитоза и пиноцитоза. Эти механизмы относятся к эндоцитозу. С эндоцитозом связано внутриклеточное пищеварение, однако ряд веществ, попав в клетку путем эндоцитоза, транспортируется в везикуле через клетку и выделяется из нее путем экзоцитоза в межклеточное пространство. Такой транспорт веществ назван трансцитозом. Он, видимо, из-за небольшого объема не имеет существенного значения во всасывании питательных веществ, но важен в переносе иммуноглобулинов, витаминов, ферментов и т. д. из кишечника в кровь. У новорожденных трансцитоз важен в транспорте белков грудного молока.
Некоторое количество веществ может транспортироваться по межклеточным
пространствам. Такой транспорт называется персорбцией. С помощью персорбции переносятся часть воды и электролитов, а также другие вещества, в том числе белки (антитела, аллергены, ферменты и т. п.) и даже бактерии.
В. А. Басов (1842) успешно произвел операцию наложения фистулы желудка у собак. При дальнейшем усовершенствовании этой операции в желудочном свище фиксировали трубку, которую вне опыта закрывали пробкой. Открыв ее, можно было получать содержимое желудка.
В лаборатории И. П. Павлова у таких собак была выполнена операция эзофаготомии (перерезка пищевода). После заживления раны производили «мнимое кормление» собаки: она ела, но пища выпадала из отверстия пищевода, а из открытой желудочной фистулы изливался сок. Сок в чистом виде получали у собак с изолированными выкроенными в хирургических операциях из различных частей желудка желудочками. Желудочек, выкроенный по методу Павлова, в отличие от желудочка Г. Гейденгайна имеет сохраненную вагусную иннервацию и более полно отражает секрецию в большом желудке, где идет пищеварительный процесс. Применяют методы хирургической изоляции петли тонкой кишки с выведением в кожную рану одного дистального (операция Тири) или двух (операция Тири—Велла) ее концов, из которых собирают кишечный сок или куда вводят растворы для изучения их всасывания.
Широкое распространение получили операции выведения наружу и вживления в кожную рану выводных протоков слюнных и поджелудочной желез, желчного выводного протока. Разработаны методы, предотвращающие потерю
пищеварительных секретов вне экспериментов.
Фистульная методика позволяет в любое время наблюдать за функцией органа, который имеет нормальные кровоснабжение и иннервацию. Из
фистулы собирают чистые пищеварительные соки, изучают их состав и свойства натощак, после кормления животных или иной стимуляции секреции. На фистульных животных изучают моторную и секреторную функции органов пищеварения, процессы гидролиза и всасывания питательных веществ в различных отделах пищеварительного тракта на практически здоровых животных в почти естественных условиях хронических экспериментов. В исследованиях И. П. Павлова, принесших ему широкую славу и Нобелевскую премию (1904), в хронических опытах были получены новые данные, и, как сказано в Нобелевском дипломе, И. П. Павлов «пересоздал физиологию пищеварения».
Таким образом, подводя итоги литературного анализа можно сказать, что современная физиология располагает методическими приемами, позволяющими исследовать пищеварительные функции на различных уровнях их организации, механизмы регуляции этих функций в норме и при патологии, и тем самым составляет основу для дальнейшего изучения этой проблемы в медицине в целом.
Литература
1.Болдырев В. Н. Поступление в желудок натуральной смеси панкреатического и кишечного соков с желчью // Русск. врач. 1904. Т. 3, № 39. С. 1305-1310; № 40. С. 1340-1346.
2. Брокерхоф X., Дженсен Р. Липолитические ферменты (пер. с англ). М.: Мир, 1978. 396 с.
3. Горшков В. А., Жигалова Т. Н., Авалуева Е. Б. Солянокислая секреция и кислотно-протеолитическая активность желудка in vivo // Эксперим. и клинич. гастроэнтерология. 2005, № 1. С. 78-84.
4. Горшков В. А., Жигалова Т. Н., Насонова Н. В. Критерии секреторной недостаточности желудка по данным топографической ацидопротеолизаметрии // Эксперим. и клинич. гастроэнтерология. 2005, № 2. С. 76-82.
5. Гройсман С. Д. Характеристика пищеварительного процесса в желудке. Эвакуация его содержимого // Физиология пищеварения: Рук. по физиологии. Л.: Наука, 1974. С. 310-319.
6. Ивашкин В. Т., Дорофеев Г. И. О локализации желудочного пищеварения // Врач. дело. 1976. № 4. С. 117-121.
7. Кафаров В. В. Методы кибернетики и химии в химической технологии. М., 1968. 212 с.
8. Климов П. К., Барашкова Г. М. Физиология желудка. Механизмы регуляции. Л.: Наука, 1991. 256 с.
УДК 616.3 (470.62)
9. Кононов А. В. Цитопротекция слизистой оболочки желудка: молекулярно-клеточные механизмы // Рос. журн. гастро-энтерол., гепатол., колопроктол. 2006, № 3. С. 12-16.
10. Коротько Г. Ф. Желудочное пищеварение, его функциональная организация и роль в
пищеварительном конвейере. Ташкент: Медицина, 1980. 219 с.
11. Davenport H. W. Physiology of the Digestive Tract (Third ed.) Year Book Medical Publishers Incorporated. Chicago. 1971. 299 p.
12. Johnson L. R. (Ed.) Gastroitestinal physiology. Sixth Edition // St. Louis, London: Mosby. 1999. 94 p.
13. Modlin I. M. Acid related diseases. Biology and treatment. Schnetztor-Verlag GmbH B-Konstanz. 1998. 368 p.
14. Schuster M. M., Crowell M. D., Koch K. L. Gastrointestinal motility in Health and Disease (Sec. ed.) BC Decker Inc. Hamilton. London. 2002. 472 p.