Научная статья на тему 'Approximating chromatic sum coloring of bipartite graphs in expected polynomial time'

Approximating chromatic sum coloring of bipartite graphs in expected polynomial time Текст научной статьи по специальности «Математика»

CC BY
77
49
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
SUM COLORING PROBLEM / BIPARTITE GRAPHS / EXPECTED POLYNOMIAL TIME / ПРОБЛЕМА ХРОМАТИЧЕСКОЙ РАСКРАСКИ / ДВУДОЛЬНЫЕ ГРАФЫ / ПОЛИНОМИАЛЬНОЕ В СРЕДНЕМ ВРЕМЯ

Аннотация научной статьи по математике, автор научной работы — Asratian A.S., Kuzyurin N.N.

Известно что если P≠NP то задача аппроксимации суммарной раскраски двудольных графов не может быть осуществлена в полиномиальное время с точностью 1+ε для некоторой константы ε. Мы предлагаем для сколь угодно малого ε">0" приближенный алгоритм для данной проблемы который работает за полиномиальное в среднем время.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Приближенный алгоритм для хроматической раскраски двудольных графов за полиномиальное в среднем время

It is known that if P≠NP the sum coloring problem cannot be approximated within for some constant. We propose for arbitrary small an approximation scheme for this problem that works in expected polynomial time.

Текст научной работы на тему «Approximating chromatic sum coloring of bipartite graphs in expected polynomial time»

Труды ИСП РАН, том 27, вып. 5, 2015 г..

Approximating chromatic sum coloring of bipartite graphs in expected polynomial time

1 A.S. Asratian <[email protected]>

2 N.N. Kuzyurin <[email protected]>

1 Linkopings Universitet, Department of Mathematics, Sweden, 581 83,

2 ISP RAS, Russia, 109004, Moscow, Solzhenitsyna, 25

Abstract. It is known that if P^NP the sum coloring problem cannot be approximated within 1 + £ for some constant £. We propose for arbitrary small £>0 an approximation scheme for this problem that works in expected polynomial time.

Keywords: sum coloring problem, bipartite graphs, expected polynomial time

1. Introduction

Let G = (Vt,V2, E) be a bipartite graph with n + m vertices such that | Vx \—m, \V2\=n, m < n . By a coloring we mean a mapping: ciV^V-z —> {1,2 ,...,n+m}.

A coloring is proper if c(v) f c(u) whenever (u, v) <s E .

Let S(G,C) = y^ r c(v). By a chromatic sum we mean S(G) = mmcS(G ,c)

where minimum is taken over all proper colorings of G . The problem of finding S(G) is called the SUM COLORING PROBLEM.

The notion of chromatic sum was first introduced in [6] where it was shown that the SUM COLORING PROBLEM is NP-complete on arbitrary graphs. A few b -approximation algorithms which find a coloring C with S(G, c) < b ■ S(G) were

presented. In [7] a 10/9-approximation polynomial algorithm for die SUM COLORING PROBLEM on any bipartite graph was described. This result was improved in [8] where an 27/26-approximation algorithm for the same problem was constructed. On the other side, in [7] the authors have shown that there exists £ > 0, such that there is no (1 + s) -approximation polynomial algorithm for the SUM COLORING PROBLEM on bipartite graphs, unless P = NP.

191

Trudy ISP RAN [The Proceedings of ISP RAS], vol. 27, issue 5, 2015.

In this paper we present for any positive S an (1 + s) -approximation algorithm for this problem with expected polynomial time. The probabilistic distribution is uniform over all bipartite graphs with N vertices, N = n + m, m<n . Note that the first example of approximation algorithm with expected polynomial time guaranteeing approximation ratio better than inapproximability threshold in the worst case was presented in [9]. Probabilistic analysis of algorithms for random graphs is the focus of much research now [1-5, 9].

2. Approximation scheme with expected polynomial time

Let N = n + m . We consider now a straightforward approach testing all possible colorings of G and choosing the one with the best possible color sum.

Algorithm 1. Test all possible vertex colorings of a bipartite graph and choose a proper coloring with minimum color sum.

Lemma 1. The time complexity of Algorithm 1 is 0(NN ) = 0((2n)ln ).

Let 8 be a positive number, 0 < S < 1 and

V;={v^Vx-.{\-8)^<degv<(\ + 5)^},

У’г =(vgV2 :(l-8)j<degv<(l + 8)^j,

v\ = v,\K

v'2 = v2\v.i

2.1 Algorithm VERTEX-COLOR.

Input: A bipartite graph G = (l\, V2, E) such that | Vx |= m, \ V2\ = П, m<n , and a parameter e > 0.

Output: A proper coloring c of G such that S(G) < S(G,c) < (1 + s)S(G) .

1. If s < тах{40и~0 5,и~° 2,50и~0 3} then goto 7.

2. If m < no s then goto 7.

3. Set J = min{—, — -nT03}.

50 50

4. Count the number tx =| V\ \, and t2 =| V'2 \.

5. If tx > -J~n or t2 > n0A then goto 7.

192

Труды ИСП РАН, том 27, вып. 5, 2015 г..

6. Color V2 by color 1 and color l \ by color 2 and STOP.

7. Run Algorithm 1 and STOP.

Theorem 1. For any fixed £ > 0 Algorithm VERTEX-COLOR finds a proper coloring within 1 + £ of the optimum color sum in expected polynomial time.

Proof. Note that at step 2 and step 5 of the algorithm we get S(G,c) = n + 2m using very simple coloring strategy. The main idea of the proof is to extract sufficiently large almost regular bipartite subgraph (j = (l\\ V2,E') of G such that for any vgE/ (1 — S')r < deg v < (1 + S')r, and for any vgV2 (1 — S')k < deg v < (1 + S')k . Such an almost regular subgraph can guarantee a tight lower bound on S(G) close to the upper bound S(G) <n + 2m . The main difficulty is to estimate the probability that the size of such subgraph is large enough.

We use m' and n' for denoting | V/1 and | V2 | respectively.

Lemma 2. For any 0 < 5' < — and an induced subgraph G' = (l\', V2, E') as above

ri + 2m' -10S'm' < S(G') <n' + 2m'.

Proof of Lemma 2. The upper bound is evident (we color V[ by color 2 and color V2 by color 1). To prove the lower bound we use the folowing inequalities

(1 + 8')г^ф) + (\ + 5')к^с{у)> J] (ф) + ф))>

vepy e=(«,v)Gfi'

>Ъ\Е'\>Ъг(\-д')т'.

This implies the inequality

Yf(y) + - 2C(V) -3m> \—T- - 3m'(1 - 2S')-

к

Adding to both parts of the inequality (1-rc(v) and taking into account

that c(v) > 1 for any V we obtain that for any proper coloring c of G'

S(G',c) = ^c(v)+^c(v)>3m'~6S,m, + (l—)^c(v)>

veV~ Г vsKi

veV:

193

Trudy ISP RAN [The Proceedings of ISP RAS],vol. 27, issue 5, 2015.

> 2m' + m' -6S'm' + (!- — )ri = 2m' + ri + m' - 6S'm' - —ri >

r r

2m’ + ri + m'~ 6 S'rri - m’ - 4S'm' = ri + 2m' -1 OS'm'.

Here we used the inequality m'r{\ + S') > n'k(l - S') which for any

0 < S' < — implies 2

—ri < m'^ + ^ = m'( 1 + —^ ) < m'(l + 4S'). r 1 -S' 1 -S'

The proof of Lemma 2 is complete.

Now we estimate the size of G'.

Lemma 3. There is c > 0 depending on S such that

Pr{ | V'2\>yfc} < exp{Jn logn-cn3 2}.

Pr{| V\ |> w04} < exp{w04 logn-cri 2}.

Proof. We need the following lemma.

Lemma ([5]). Let x1,...,xn be independent random variables such that X takes two values: 0 and 1, and Pr{xi = 1} = p, Рг{х{ = 0} = 1 - p.

Let X = ^ xf and EX = np . Then the following inequalities hold: for any 8 > 0

Pr{X-EX < -SEX) < exp{-(£2/2)£T}, for any 0<£<1

Pr{X -EX> SEX} < exp{-(^2 /3)EX).

Using this Lemma we have for V e V(:

Pr{d{v) < n(\-5)2) < ехр{-(^2/2)и/2},

Pr{d{v) > n(\ + S)2) < ехр{-(с^2/3)и/2}.

We give the proof for Vi. The proof for Vi is similar.

To do this we estimate the following probability:

Pr{| V'i |>k}<n (Pr{fixed kxverticesv in V'2 have d(v) < (1 - 5)n!2} ■

к

Pr {fixed k2verticesv in V' 2 have d (v) > {1 + S)n!2}),

194

Труды ИСП РАН, том 27, вып. 5, 2015 г..

where к — k1+k2. Using the Lemma and taking into account independence of the corresponding events we have

Pr{fixed kxverticesv in V2 have d(v) < (1 - 5)n/2\ < exp{-(S2/3)ktm/2 J < exp{-cmkfi,

Pr {fixed k2verticesv in V'2 have d(v) > (1 + S)m/2} < exp{-(S2/3)k2m/2} < exp{-cmk2}, where c depends on S .

Letting in the last inequalities к = n° 4 we obtain

Pr{I V'21>k}<n exp{-cm(kx +k2)}<

к

exp{& log n - cmk} < exp{«°4 log n-cn12}.

To finish the proof of Theorem 1 it is necessary to estimate the approximation ratio of the algorithm VERTEX-COLOR and its expected running time.

2.2 Approximation ratio

If the algorithm terminates at step 2 then we use the inequality

n + m< S(G) < n + 2m.

This gives that for the proper coloring c obtained at step 2

S(G, c) = n + 2m< S(G) ■ = ^(G)(l + <

n+m n+m

<S(G)(\ + n02)<S(G)(\ + s),

because s > n 0 2 (in the opposite case the algorithm always finds an optimal solution at step 7).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Because at step 7 we always find an optimal solution it is sufficient to estimate approximation ratio for step 6. To do this we use Lemma 2. If the algorithm

terminates at step 6 then tx < *Jn and t2 < n0 4. Thus we have n' = n — tx >n — yfn . m' = m - i2>m- -Jn . Because the degree of a vertex in G' can decrease by at most -\fn we can estimate S' as follows:

d,gv>(l^)^-^ = (l-^)f,

195

Trudy ISP RAN [The Proceedings of ISP RAS], vol. 27, issue 5, 2015.

which implies 8' — 8 +

2 4n

m

By Lemma 2

n + 2m -1-tx-t2< S(G') < S(G) <n + 2m.

This implies the inequality

n + 2m -108m -23~Jn < S(G) <n + 2m, and then the inequality

(n + 2m)(\-\08-Щ=) < S{G) <n + 2m.

4n

Thus, for the coloring c that the algorithm outputs at step 6 the following inequality holds

S(G, c) < S(G)( 1 -108- 4=У ■

ЫП

Now we use the following technical lemma.

1 s

Lemma. Let 0 < 8 < mini—,—}, s > AQn~0 5. Then

50 50

(1-10 8-^jLy1 <l + £.

у/ll

Proof. We have

25

(1-10£—7=)-(l + £)>l yjtt

This is equivalent to

25

e-108(l + s)—j=(\ + s)

V и

e-(\ + s)(108+^)>0.

This implies

8 25

---->10£ + -=.

\ + e

Taking into account the inequality 8 < el50 we have

1200

n>——

196

Труды ИСП РАН, том 27, вып. 5, 2015 г..

This inequality follows from the condition of the Lemma: s > AOn 0 5.

2.3 Expected running time

Step 4 is performed in quadratic (in n) time. By Lemmas 1 and 3 the expected time of step 7 is at most

0((2n)ln) exp{yfn logn -cn12} <

cexp{2n\og2n + y[n\ogn-cn12} —» 0 as n tends to infinity.

References

[1] . B. Bollobas, Random graphs, second ed., Cambridge Univ. Press, Cambridge, 2001.

[2] . B. Bollobas, The chromatic number of random graphs, Combinatorica, 1988, v. 8, c. 49-

55.

[3] . A. Frieze,C. McDiarmid, Algorithmic theory of random graphs, Random Structures and

Algorithms, Jan.-March 1997, v. 10, n. 1-2, c. 5^42.

[4] . L. Kucera, The greedy coloring is a bad probabilistic algorithm, J. of Algorithms, Dec.

1991, v. 12, n. 4, c. 674-684.

[5] . R. Motwani and P. Raghavan, Randomized algorithms, Cambridge Univ. Press, 1995.

[6] . E. Kubicka, A.J. Schwenk, An introduction to chromatic sums, Proc. of ACM Computer

Science Conference, 1989, с. 39A5.

[7] . A. Bar-Noy, G. Kortsarz, Minimum color sum of bipartite graphs, J. of Algorithms,

1998, v. 28, c. 339-365.

[8] . K. Giaro, R. Janczewski, M. Kubale, M. Malafiejski, A 27/26-approximation algorithm

for the chromatic sum coloring of bipartite graphs, Proc. APPROX 2002, LNCS v. 2462, c. 135-145.

[9] . M. Krivelevich , V.H. Vu, Approximating the independence number and the chromatic

number in expected polynomial time, J. Combin. Optimization, 2002, v. 6, c. 143-155.

197

Trudy ISP RAN [The Proceedings of ISP RAS], vol. 27, issue 5, 2015.

Приближенный алгоритм для хроматической раскраски двудольных графов за полиномиальное в среднем

время

гА.С. Асратян <[email protected]>

2Н.Н. Кузюрин <[email protected]>

1 Linkopings Universitet, Department of Mathematics, Швеция, 581 83 2 ИСП РАН, Россия, 109004, Москва, ул. Солженицына, 25

Аннотация. Известно что если P^NP то задача аппроксимации суммарной раскраски двудольных графов не может быть осуществлена в полиномиальное время с точностью 1 + £ для некоторой константы £. Мы предлагаем для сколь угодно малого £>() приближенный алгоритм для данной проблемы который работает за полиномиальное в среднем время.

Ключевые слова, проблема хроматической раскраски, двудольные графы, полиномиальное в среднем время

Литература

[1] . В. Bollobas, Random graphs, second ed., Cambridge Univ. Press, Cambridge, 2001.

[2] . B. Bollobas, The chromatic number of random graphs, Combinatorica, 1988, v. 8, c. 49-

55.

[3] . [1] A. Frieze,C. McDiarmid, Algorithmic theory of random graphs, Random Structures

and Algorithms, Jan.-March 1997, v. 10, n. 1-2, c. 5-42.

[4] . L. Kucera, The greedy coloring is a bad probabilistic algorithm, J. of Algorithms, Dec.

1991, v. 12, n. 4, c. 674-684.

[5] . R. Motwani andP. Raghavan, Randomized algorithms, Cambridge Univ. Press, 1995.

[6] . E. Kubicka, A. J. Schwenk, An introduction to chromatic sums, Proc. of ACM Computer

Science Conference, 1989, c. 39U5.

[7] . A. Bar-Noy, G. Kortsarz, Minimum color sum of bipartite graphs, J. of Algorithms,

1998, v. 28, c. 339-365.

[8] . K. Giaro, R. Janczewski, M. Kubale, M. Malafiejski, A 27/26-approximation algorithm

for the chromatic sum coloring of bipartite graphs, Proc. APPROX 2002, LNCS v. 2462, c. 135-145.

[9] . M. Krivelevich , V.H. Vu, Approximating the independence number and the chromatic

number in expected polynomial time, J. Combin. Optimization, 2002, v. 6, c. 143-155.

198

i Надоели баннеры? Вы всегда можете отключить рекламу.