XHK 159.955
DOI: 10.17853/1994-5639-2023-10-183-204
APPLICABILITY OF THE ONLINE SHORT SPATIAL ABILITY BATTERY TO UNIVERSITY STUDENTS TESTING
K. V. Bartseva
St. Petersburg State University, St. Petersburg, Russia.
E-mail: [email protected]
M. V. Likhanov
Beijing Normal University, Beijing, China. St. Petersburg State University, St. Petersburg, Russia.
E-mail: [email protected]
E. L. Soldatova1, E. S. Tsigeman2, E. A. Alenina3
St. Petersburg State University, St. Petersburg, Russia. E-mail:[email protected]; [email protected]; [email protected]
Abstract. Introduction. Multiple studies advocate an importance of spatial abilities (SA) for educational and occupational success, especially in STEM. Recently an Online Short Spatial Ability Battery (OSSAB) was developed and normed for SA testing in adolescents. The battery includes mechanical reasoning, paper folding, pattern assembly, and shape rotation tests. The battery has shown good psychometric characteristics (high reliability and validity, low redundancy, discriminative power), and is available in open access and free to use.
Aim. The present research aims: 1) to examine the applicability of the OSSAB for university student testing; 2) to describe its psychometric properties and structure; and 3) to investigate links between SA and educational performance.
Methods. A total of 772 university students (aged from 18 to 26, mean age (SD) = 19.55 (1.51), 63.1% females) participated in the study. Participants provided information about their age, gender, university major, and academic achievement, and completed a battery of tests that included the OSSAB tests.
Results. The study reports psychometric norms for using the OSSAB in university students. Students' performance in the OSSAB was similar to that shown in previous research in adolescents in terms of means and variance. The OSSAB showed adequate psychometric properties in this sample: no floor or ceiling effects; low redundancy; moderate to high internal consistency; high discriminative power across university majors; and high external validity. The results indicated that around 6% of the students showed very high levels of SA (higher than 1.5 SD above the mean), and around 8% of students showed very low levels of SA (lower than 1.5 SD below mean). In addition, the OSSAB scores were linked to educational profile choice and exam scores, with small-to-medium effect sizes.
Scientific novelty. The study provides psychometric norms for a short online open measure of spatial ability in university students.
Practical significance. The OSSAB can be used to provide individual recommendations to students (e.g. SA training), to identify spatially gifted students, and for research purposes in university contexts.
Keywords: spatial ability, spatial intelligence, assessment, computerised testing, psychometrics, university students, education.
Y. Kovas
Goldsmiths, University of London, London, Great Britain.
E-mail: [email protected]
Acknowledgements. This study is part of the project № 23-18-00142 "Nostalgia as a Source of Resilience in Isolation" supported by the Russian Science Foundation. The author's team would like to thank the anonymous reviewers for their evaluation of the article and valuable comments.
For citation: Bartseva K. V., Likhanov M. V., Soldatova E. L., Tsigeman E. S., Alenina E. A., Kovas Y. Applicability of the Online Short Spatial Ability Battery to university students testing. Obrazovanie i nauka = The Education and Science Journal. 2023; 25 (10): 183-204 . DOI: 10.17853/1994-5639-2023-10183-204
АПРОБАЦИЯ КОРОТКОЙ ОНЛАЙН-БАТАРЕИ ПРОСТРАНСТВЕННЫХ СПОСОБНОСТЕЙ (OSSAB) ДЛЯ ТЕСТИРОВАНИЯ СТУДЕНТОВ УНИВЕРСИТЕТОВ
К. В. Барцева
Санкт-Петербургский государственный университет, Санкт-Петербург, Россия.
E-mail: [email protected]
М. В. Лиханов
Пекинский нормальный университет, Пекин, Китай. Санкт-Петербургский государственный университет, Санкт-Петербург, Россия.
E-mail: [email protected]
Е. Л. Солдатова1, Э. С. Цигеман2, Е. А. Аленина3
Санкт-Петербургский государственный университет, Санкт-Петербург, Россия. E-mail:[email protected]; [email protected]; [email protected]
Ю. В. Ковас
Голдсмитс, Университет Лондона, Лондон, Великобритания.
E-mail: [email protected]
Аннотация. Введение. В многочисленных современных исследованиях показана важность пространственных способностей (ПС) для успешности обучения и эффективности профессиональной деятельности, особенно в сферах STEM (связанных с наукой, техникой, инжинирингом и математикой). ПС понимаются как предрасположенность и умение мысленно оперировать объектами: создавать, вызывать, хранить и изменять их образы в пространстве и отношениях. Диагностика ПС в образовательных контекстах позволяет выстраивать индивидуальную траекторию обучения студента в зависимости от уровня способностей. Исследования, посвященные подходам к диагностике способностей, сегодня актуальны во всем мире. Разработка новых инструментов, психометрическая адаптация инструментария к специфическим группам, особенно в образовательной сфере, - одна из ключевых задач в психологическом сопровождении студентов с целью адаптивного обучения и профессионального самоопределения. Недавно разработанная батарея пространственных способностей (OSSAB) прошла психометрическую проверку, стандартизацию и нормирование для подросткового возраста. Батарея включает тесты на механическое мышление, складывание бумаги, сборку моделей и вращение фигур. Батарея показала хорошие психометрические характеристики (высокую надежность и валидность, дискриминативность, низкую избыточность), она находится в открытом доступе и бесплатна для использования. Адаптация батареи для студенческого возраста позволяет обеспечить преемственность в обучении и устраняет дефицит в диагностическом инструментарии для старших возрастов.
Цель. Целью настоящего исследования было оценить структуру и психометрические свойства батареи при тестировании студентов вузов и сравнить их с данными, полученными для подростковой выборки, на которой была разработана батарея OSSAB, а также изучить связи между ПС и результатами обучения.
Методология, методы и методики. В исследовании приняли участие 772 студента университетов (возраст от 18 до 26 лет, средний возраст (SD) = 19,55 (1,51), 63,1 % женщин). Участники предоставили информацию о своем возрасте, поле, специальности, академической успеваемости и выполнили ряд тестов, включающих OSSAB.
Результаты. Результаты выполнения OSSAB сходны с теми, которые были показаны в предыдущих исследованиях у подростков. OSSAB продемонстрировала адекватные психометрические свойства инструмента на студенческой выборке: отсутствие эффектов пола и потолка; низкую избыточность; умеренную или высокую внутреннюю согласованность; высокую дискриминативную способность по специальностям; высокую внешнюю валидность. Результаты показали, что около 6 % студентов продемонстрировали очень высокий уровень ПС (более чем на 1,5 SD выше среднего), а около 8 % студентов - очень низкий уровень ПС (менее чем на 1,5 SD ниже среднего). Кроме того, показатели OSSAB были связаны с выбором профиля обучения и результатами экзаменов с небольшим и средним размером эффекта.
Научная новизна. В нашем исследовании представлены психометрические нормы для короткого открытого онлайн-инструмента для оценки пространственных способностей у студентов вузов.
Практическая значимость. Батарея OSSAB может быть использована при подготовке индивидуальных рекомендаций для студентов (например, о тренировках ПС), для выявления пространственно одаренных студентов, а также при проведении исследований в условиях университета.
Ключевые слова: пространственные способности, пространственный интеллект, оценка, компьютерное тестирование, психометрика, студенты университетов, образование.
Благодарности. Данное исследование является частью проекта № 23-18-00142 «Ностальгия как ресурс жизнестойкости личности в ситуации изоляции», поддержанного Российским научным фондом. Авторский коллектив выражает благодарность анонимным рецензентам за оценку статьи и ценные замечания.
Для цитирования: Барцева К. В., Лиханов М. В., Солдатова Е. Л., Цигеман Э. С., Аленина Е. А., Ковас Ю. В. Апробация короткой онлайн-батареи пространственных способностей (OSSAB) для тестирования студентов университетов // Образование и наука. 2023. Т. 25, № 10. С. 183-204 . DOI: 10.17853/1994-5639-2023-10-183-204
APLICABILIDAD DE UNA BATERÍA CORTA EN LÍNEA DE HABILIDADEDES ESPACIALES (OSSAB) PARA LA EVALUACIÓN DE ESTUDIANTES UNIVERSITARIOS
К. V. Bártseva
Universidad Estatal de San Petersburgo, San Petersburgo, Rusia.
E-mail: [email protected]
M. V. Lijánov
Universidad Normal de Pekín, Pekín, China. Universidad Estatal de San Petersburgo, San Petersburgo, Rusia.
E-mail: [email protected]
E. L. Soldátova1, E. S. Tsiguemán2, E. A. Alenina3
Universidad Estatal de San Petersburgo, San Petersburgo, Rusia. E-mail: [email protected]; [email protected]; 3alenina.evgeniia@gmail.
com
Yu. V. Kovás
Goldsmiths, Universidad de Londres, Londres, Gran Bretaña.
E-mail: [email protected]
Abstracto. Introducción. Numerosos estudios recientes han demostrado la importancia de las habilidades espaciales (SA) para el éxito educativo y el desempeño profesional, especialmente en los campos STEM (relacionados con la ciencia, la tecnología, la ingeniería y las matemáticas). Se entiende por habilidades espaciales, a la predisposición y capacidad para operar mentalmente con objetos: crear, evocar, almacenar y cambiar sus imágenes en el espacio y las relaciones. El diagnóstico de las habilidades espaciales en contextos educativos permite construir una trayectoria de aprendizaje individual del estudiante en función del nivel de sus habilidades. La investigación sobre enfoques para diagnosticar habilidades es actualmente de mucha relavancia. El desarrollo de nuevos instrumentos, la adaptación psicométrica de instrumentos a grupos específicos, especialmente en el ámbito educativo, es una de las tareas clave en el apoyo psicológico del alumnado con fines de aprendizaje adaptativo y autodeterminación profesional. La recientemente desarrollada Batería de Habilidades Espaciales (OSSAB) ha sido validada, estandarizada y normalizada psicométricamente para la edad adolescente. La batería incluye pruebas de razonamiento mecánico, plegado de papel, ensamblaje de modelos y rotación de formas. La batería ha mostrado buenas propiedades psicométricas (alta confiabilidad y validez, discriminatividad, baja redundancia), está disponible públicamente y es de uso gratuito. La adaptación de la batería a la edad de los estudiantes permite la continuidad en el aprendizaje y elimina el déficit de herramientas de diagnóstico para edades más avanzadas.
Objetivo. El propósito de este estudio ha sido evaluar la estructura y las propiedades psicométricas de la batería al evaluar a estudiantes universitarios y compararlos con los datos obtenidos de la muestra de adolescentes en la que se desarrolló la batería de habilidades espaciales (OSSAB), y examinar las relaciones entre las habilidades espaciales y los resultados educativos.
Metodología, métodos y procesos de investigación. El estudio incluyó a 772 estudiantes universitarios (rango de edad entre 18 a 26 años, edad media (DE) = 19,55 (1,51), 63,1% mujeres). Los participantes proporcionaron información sobre su edad, sexo, especialidad, rendimiento académico y completaron una batería de pruebas, incluido la OSSAB.
Resultados. Los resultados de la OSSAB son similares a los mostrados en estudios anteriores en adolescentes. La OSSAB ha demostrado propiedades psicométricas adecuadas del instrumento en una muestra de estudiantes: sin efectos suelo o techo; baja redundancia; consistencia interna de moderada a alta; alta capacidad discriminatoria por especialidad; alta validez externa. Los resultados indican que alrededor del 6% de los estudiantes demostraron un nivel muy alto de habilidad espacial (más de 1,5 SD por encima de la media), y alrededor del 8% de los estudiantes demostraron un nivel muy bajo de habilidad espacial (menos de 1,5 SD por debajo de la media). Además, las puntuaciones de la OSSAB se asociaron con la elección de la especialidad de estudio y el rendimiento en las evaluaciones con tamaños de efecto de pequeños a medianos.
Novedad científica. Nuestro estudio proporciona normas psicométricas para un instrumento en línea, breve y abierto para evaluar la capacidad espacial en los estudiantes universitarios.
Significado práctico. La batería OSSAB se puede utilizar para preparar recomendaciones individuales para estudiantes (por ejemplo, sobre formación en habilidades espaciales), para identificar a los estudiantes espacialmente dotados y también, al realizar investigaciones en un entorno universitario.
Palabras claves: habilidades espaciales, inteligencia espacial, evaluación, pruebas informáticas, psicometría, estudiantes universitarios, educación.
Agradecimientos. Esta investigación forma parte del proyecto N° 23-18-00142 "La nostalgia como recurso de resiliencia personal en situaciones de aislamiento", apoyado por la Fundación Rusa para la Ciencia. El equipo de autores desea agradecer a los revisores anónimos por su evaluación del artículo y sus valiosos comentarios.
Para citas: Bártseva K. V., Lijánov M. V., Soldátova E. L., Tsiguemán E. S., Alenina E. A., Kovás Yu. V. Aplicabilidad de una batería corta en línea de habilidades espaciales (OSSAB) para la evaluación de estudiantes universitarios. Obrazovanie i nauka = Educación y Ciencia. 2023; 25 (10): 183-204 . DOI: 10.17853/1994-5639-2023-10-183-204
Introduction
Object-oriented spatial ability (SA) is defined by K. Rimfeld as an ability to produce, recall, store, and modify spatial relations among objects [1]. SA is linked to performance in STEM-related fields, such as mathematics [2], chemistry [3], biology and medicine [4], architecture [5], and IT [6, 7]. Longitudinal studies suggest that SA predicts (beyond maths and verbal ability) a domain of future education and career; and associated levels of achievement [8, 9]. Meta-analysis by D. H. Uttal and colleagues also shows that SA can be successfully developed through training, and this may lead to improvement in other domains [10]. Another meta-analysis by Z. C. K. Hawes and colleagues, based on 29 experimental studies, showed that spatial training had a positive effect on mathematics, with small-to-medium effect size [11]. This makes SA an important target for educational testing and development.
However, in educational practice, the testing is impeded by the lack of accessible instruments, especially in higher education. This paper aims to validate an existing Online Short Spatial Ability Battery (OSSAB) for administration in university student samples. Adaptation of OSSAB battery for university students corresponds to the three challenges of university education. First, there is a shortage of qualified engineer personnel, which is emphasised by current educational policies [12]. As spatial ability is linked with success in technical and engineering careers, its development can contribute to addressing this issue. Second, in line with a growing trend for personalised education [13], accounting for individual cognitive skills may help to build individual educational trajectories through elective courses and extra-curricular activities, based on one's strengths and weaknesses. Third, there is an identified lack of valid, reliable, psychometrically tested instruments for practitioners in Russia [14] that can be used in university students to support individualised learning. Availability of accessible normed instruments can help students to be active co-developers of their own learning experience. The following review analyses the exiting literature in relation to spatial ability testing and how it can support individualised learning.
Literature Review
A growing body of research advocates an importance of SA testing in educational settings (e.g. results from the Project TALENT [15]). J. M. Lakin and J. Wai showed
that approximately 7% of US schoolchildren are spatially gifted and that many of these students, as well as their parents and teachers, do not know of this spatial strength [16]. For these students, and especially if they do not show high verbal or maths ability, this lack of support might lead to lower academic motivation and behavioural problems. As suggested by H. Kell and D. Lubinski, once spatially gifted students being identified, they can benefit from receiving more challenging activities (e.g. participating in science competitions); and courses rich in hands-on content (e.g. robotics or modelling) and experimental laboratory work [17].
SA assessment can also benefit those with low levels of SA: according to D. H. Uttal and colleagues, SA can be improved through training using video games, special courses and spatial tasks training, with average effect size of 0.47 (Hedge's g) [10]. This is consistent with literature that suggests that SA is a more malleable component of general intelligence (see e.g. J. B. Carroll [18] and E. Krapohl et al. [19]) compared to verbal ability, memory and speed (see the second-order metaanalysis by G. Sala et al. [20]). This finding is important for educators as SA training may bring greater and faster gains, especially since SA improvement may transfer to other domains, in particular to academic performance in STEM [21].
For example, longitudinal research by S. Sorby and colleagues showed that students with low SA, who attended an SA training course, demonstrated higher STEM final grades (GPA), especially grades for engineering problem solving, analysis and calculus; and higher graduation rates compared with their peers who also had low spatial skills but did not take the course [22, 23].
In a university context, measuring students' SA may aid in efforts to reduce the dropout rates in higher education [24], especially in STEM areas where drop out can be as high as 30%1. Retention rates of STEM students improved when SA was assessed in the first year and spatial training was provided to students who showed low results, as shown by S. Sorby and colleagues [25]. Such training could be implemented in educational programmes in many ways (see review by C. Zhu and colleagues [26]), including specifically developed visualisation courses [27], computerised gaming applications [28], or new classes with spatialised context: e.g. 3D modelling and design as suggested by F. Dilling and A. Vogler [29], anatomy course as in M. A. T. M. Vorstenbosch et al. [30]; GIS course as in B. Kolvoord et al. [31], or robotics as in C. Julia and J. 0. Antoli [29]. To provide such support to students, good and reliable measures of SA are needed.
Multiple instruments have been suggested to assess various aspects of SA. Already in 1980s, J. Eliot reviewed approximately 500 existing spatial tests and concluded that classification of the tests was challenging, as the SA factorial structure was not clear [33, 34]. Today, 40 years later, there is still no consensus on the number and nature of SA factors. K. Rimfeld and colleagues have shown a significant overlap (i.e. single factor of SA) in small-scale spatial tasks (when a viewer
1 Consortium for Student Retention Data Exchange (CSRDE) [Internet]. Chicago: University of Illinois; 20202021 [cited 2023 Oct 16]. Available from: https://oir.uic.edu/wp-content/uploads/sites/213/2022/01/CSRDE-Retention-Report-2020-2021.pdf
has to mentally represent and transform two- and three-dimensional images, seen from a single vantage point - e.g. mental rotation, perspective changing, mechanical reasoning) [1]. In addition, there was also significant overlap between this factor and large-scale SA tasks (when the viewer's perspective can change with respect to the larger environment, but the spatial relationships among individual objects are fixed - e.g. wayfinding, navigation, orienting in space), as shown by M. Malanchini and colleagues, M. V. Likhanov and colleagues [35, 36]. This data suggests that a small number of object-oriented SA tests can reasonably capture small-scale SA.
Although many batteries of spatial ability have been created (e.g. Pathfinder [37], Sea Hero Quest [38], Cantab [39], or Cognifit [40], etc.), very few have been validated and normed for different samples, and made freely available. Recently, A. V. Budakova and colleagues developed a battery consisting of 4 measures -Online Short Spatial Ability Battery (OSSAB) - that could be used to test small-scale SA reliably [41] and is freely available1. The battery includes four tests tapping into different aspects of SA: shape rotation (mental rotation of two-dimensional pictures); paper folding (mentally recreating a series of manipulations with a piece of paper), mechanical reasoning (questions about understanding and applying basic physical laws related to movement), and pattern assembly (combining several figures to build a whole). Two recent studies also used these 4 tests in university student samples as part of larger SA battery, showing good psychometric properties and robust correlations with other SA tests (on a Russian sample by E. Esipenko et al. [42], on Russian and Chinese samples by M. V. Likhanov et al. [43]). Later, M. V. Likhanov and colleagues developed psychometric norms for the use of the OSSAB with Russian schoolchildren and provided recommendations for adolescents with different levels of SA [44].
The aims of the current study are: 1) to extend this work and examine the applicability of the Online Short Spatial Ability Battery (OSSAB) for university student testing; 2) to describe its psychometric properties and structure; and 3) to examine links between SA and educational performance.
Methods
Participants and Procedure
In the study, 772 Russian university students participated (age ranging from 18 to 26, mean age = 19.55, SD = 1.51, 63.1% females). The sample consisted of students from departments of technical studies (N = 290; 109 females); natural sciences (N = 117; 83 females); arts and humanities (N = 365; 295 females).
No reward was given for participation; data collection was anonymous. The students were fully informed about the testing procedure. All participants gave their written consent, and were informed that they could refuse to participate at any moment without explaining the reasons. The study was approved by the Ethics committee of the Interdisciplinary Research at Tomsk State University.
1 https://github.com/fmhoeger/OSSAB
Measures
All participants completed a demographics questionnaire that included information on their age, gender, and educational profile with three options: technical studies; natural sciences; arts & humanities. Also, the participants reported their results of the Unified State Exam (USE) in Russian Language and Mathematics (two obligatory subjects) that is taken at the end of secondary education (11th grade) and graded anonymously. The USE final score varies from 0 to 100 for each school subject. This measure was chosen as a measure of academic achievement as the grading criteria of USE is nationally standardised. In contrast, university grades cannot be directly compared because they vary depending on universities and majors.
SA of the participants were assessed with the 4 tests of the OSSAB battery (see Table 1 and description in [41]). We also created an OSSAB total score as per procedure suggested by A. V. Budakova and colleagues, by averaging proportions of correct responses for the 4 tests.
Table 1
Examples of 4 OSSAB tests
Mechanical Reasoning
Shape Rotation
To imagine how movement will change spatial arrangement of objects
To mentally rotate example figure and compare it with 5 options
А. Б. C. Can rotate in any direction.
г Ж y- Ù\ ;
Paper Folding
Pattern Assembly
To imagine a piece of paper being folded, punc- To combine several figures into one, as indicated
tured and then unfolded
by letters on the sides
Statistical Analysis
All statistical analyses were performed using IBM SPSS Statistics (v. 26.0.0.0) and Jamovi (v 2.4.6). Before the analyses, all data were standardised and screened for missing values, univariate, and multivariate outliers. The threshold of Z = 3.29 was used as recommended in A. P. Field to exclude outliers, and Mahalanobis distance was used to find multivariate outliers [45]. In total, less than 5% of outliers were excluded.
Results
Descriptive Analysis
The distribution of the OSSAB total score was close to normal (see Figure 1); skewness and kurtosis varied within the acceptable range (from -2 to +2). The mean for the OSSAB total score was 52.99 (SD = 17.29) - very similar to that previously reported for adolescents (Mean = 51.02; SD = 20.02) [44].
Fig. 1. Distribution of the total score of the OSSAB
Note: Mean score = 52.99, SD = 17.99, N = 772
The descriptive statistics for the OSSAB subtests (Shape Rotation, Mechanical Reasoning, Paper Folding, and Pattern Assembly) are presented in Table 2.
Table 2
Descriptive statistics and Pearson's correlations among the four subtests of the
OSSAB
Mean (SD> Split-half + Cronbach's Alpha 1 2 3 4
1. Shape Rotation 52.25 (26.86) 0.79 0.84 -
2. Mechanical Reasoning 61.08 (16.94) 0.58 0.62 0.42 *** -
3. Paper Folding 54.87 (28.03) 0.85 0.87 0.47 *** 0.44 *** -
4. Pattern Assembly 43.19 (20.27) 0.70 0.74 0.40 *** 0.36 *** 0.38 *** -
Note: * p < .05, ** p < .01, *** p < .001; + Spearman-Brown Coefficient
Psychometric Properties of the OSSAB
Following A. V. Budakova and colleagues [41], we utilised six criteria to evaluate applicability of the OSSAB battery to university students: differentiating power, high reliability, high external validity, specificity, low redundancy, absence of floor and ceiling effects.
Cronbach's alpha and Split-Half Reliability Methods, presented in Table 2, showed adequate level of reliability for all tests: Cronbach's alpha above 0.7; as suggested by M. Tavakol & R. Dennick [46], with slightly lower reliability for Mechanical Reasoning (Cronbach's alpha 0.62). The 4 SA tests positively correlated with each other, with moderate effect size (r varying from 0.36 to 0.47), suggesting that scales do not duplicate each other and fit low redundancy criteria [41].
We further explored whether the 4 OSSAB tests can distinguish among students with different majors: Technical Studies; Natural; Arts and Humanities majors. The results of the MANOVA showed a weak but significant main effect of major: F (8,
1534) = 10.26, p < 0.001, n2 = 0.05 (see Table 3).
Table 3
Results of MANOVA (effect of educational profile on the four OSSAB tests)
Pillai's Trace F Hypothesis df Error df Partial Eta Squared
Intercept 0.93 2352.38 4.00 766.00 0.93***
Educational Profile 0.10 10.26 8.00 1534.00 0.05***
Note: * p < .05, ** p < .01, **' p < .001
Follow-up ANOVAs showed similar effects for individual tests, with n2 ranging from 0.02 to 0.09 (Table 4).
Table 4
Results of follow-up ANOVAs (effect of educational profile on the four OSSAB
tests)
Mean (SD) n2 1 p
F (2, 769)
Tech (N = 290) Nat (N = 117) Hum (N = 365)
Pattern Assem- 0.02***
bly 7.02 (3.02) 6.44 (3.29) 6.06 (2.91) 8.339
Mechanical 0.09***
Reasoning 10.74 (2.63) 9.81 (2.63) 8.99 (2.55) 36.940
Paper Folding 9.36 (4.10) 8.47 (4.18) 7.28 (4.09) 20.857 0.05***
Shape Rotation 8.51 (4.00) 8.25 (4.23) 7.17 (3.89) 9.972 0.03***
Note: * p < .05, ** p < .01, *** p < .001
Discriminant analysis was used to follow-up MANOVA, as recommended in A. P. Field [45]. The results of this analysis showed two discriminant functions: the first function explained 97.7% of the variance, canonical R2 = 0.10; the second explained only 2.3%, canonical R2 = 0.003. The functions at group centroid demonstrated that function 1 (positively loaded by all four tests, with largest correlation with mental rotation - r} = 0.94) discriminated Technical studies + Natural Sciences from Humanities and Arts. Second function (positively loaded by shape rotation and paper folding, negatively loaded by the other two tests) showed slight differences between Natural Sciences from STEM and Arts. In combination, these functions significantly differentiated among the three educational profiles: Wilks' Lambda = 0.90, /2(8) = 82.03, p > 0.001.
To check the external validity of the 4 tests, we examined correlations of the OSSAB with participants' grades for the Unified State Exam in Russian Language and Mathematics. The results showed adequate external validity for the OSSAB, with moderate positive correlations for the 4 OSSAB tests with Mathematics USE; and weak correlations with Russian USE (see Table 5). The means (SDs) for the OSSAB, USE in Russian language and Mathematics are presented in Figure 2. A pattern of group differences mirrors the correlational patterns: for SA and mathematics, Technical studies showed best performance, followed by Natural Sciences and Humanities; for Language exam, no group differences were observed.
Table 5
Correlations between the Unified State Exam Scores and the OSSAB
Exam Mathematics Exam Russian Language
N 697 695
M (SD) 59.37 (17.44) 77.15 (12.01)
Paper Folding 0.36 *** 0.12 **
Mechanical reasoning 0.29 *** 0.00
Pattern Assembly 0.25 *** 0.17 ***
Shape Rotation 0.38 *** 0.20 ***
Total OSSAB score 0.44 *** 0.17 ***
Correlations between two exam scores
0.40 *
Note: * p < .05, ** p < .01, *** p < .001
Fig. 2. Means of the OSSAB total score, USE Russian Language and USE Mathematics Results by Educational profile
Note: Error Bars 95% CI Образование и наука. Научный журнал
Psychometric Norms
In order to establish norms for the OSSAB in a student sample, we calculated the quartiles and boundaries of 8 levels of SA (following previous research in intelligence [47] and spatial ability [44]). The results are presented in Tables 6 and 7.
Table 6
Percentiles of the OSSAB total score distribution
Percentile 0% (Min.) 25% 50% (Median) 75% 95% 100% (Max.)
OSSAB score 9.84 40.98 52.46 67.21 80.33 90.16
Table 7
Norms for the OSSAB total score
Number
Proportion of
Boundary Level Lower bound Upper bound of the partici-
the sample
pants
> 2 SD Extraordinary 87.58
giftedness
100
10
1.3
1,5 to 2 SD Very high level 78.93 87.58 33 4.3
1 to 1.5 SD High level 70.29 78.93 102 13.2
-1 SD to 1 SD Average 35.7 70.29 495 64.1
-1.5 to -1 SD Low level 27.06 35.7 70 9.1
-2 to -1.5 SD Very low level 18.41 27.06 46 6.0
< -2 SD Extremely low level 0.0 18.41 16 2.1
Note: Mean = 52.54, SD = 17.29
Finally, we examined how students from Natural Sciences, Technical Studies and Humanities & Arts are distributed across the established levels. There were differences across the three groups in proportion of students falling into different levels categories.
For example, only about 3% of Technical students demonstrated very low SA scores, compared to about 9% in Natural and about 12% in Humanities. For more details, see Figure 3.
< -2 SD
Extremely low level
-2 to -1.5 SD Very low level
-1.5 to -1 SD Low level
1 to 1.5 SD High level 1,5 to 2 SD
Very high level
> 2 SD
Extraordinary giftedness
-1 to 1 SD
Average
Fig. 3. OSSAB levels for Technical Studies, Natural Sciences and Humanities
students
Discussion
The current study explored the applicability of the OSSAB to university students. The results of the student testing are in line with previously reported results from adolescents described by A. V. Budakova and colleagues [41]. Psychometric analysis demonstrated low redundancy, moderate split-half reliability, and absence of floor and ceiling effects of the four SA subtests. As for external validity, the correlations between OSSAB subtests and mathematics grades were positive and moderate, in line with the meta-analysis by K. Atit and colleagues that reported a correlation of 0.36 between spatial and mathematical skills [2]. In contrast, the correlations with exam scores in Russian language were weaker. As expected the correlations between two exams was moderate (r = 0.40, p < 0.001), reflecting multiple overlapping factors reported in previous studies by Y. Kovas et al. [48] and I. A. Voronin et al. [49], including overlapping genetic and environmental contributions, motivation and general cognitive ability. The observed stronger correlations between SA and math compared to correlations between SA and language can be considered as evidence of the OSSAB external validity.
The current study showed that OSSAB tests have sufficient internal validity that is compatible to other instruments, tapping into spatial ability (e.g. Bricks or other tests from King's challenge battery [49, 50]). The results of the current study also demonstrated that the OSSAB can differentiate students with majors in technical studies, natural sciences, arts and humanities, with small-to-medium effect size. Comparable effects of expertise were reported in previous studies: for example, n2p = 0.16 by E. S. Tsigeman and colleagues [52] or n2p = 0.07 by S. Y. Yoon & E. L. Mann [53].
The current study reports psychometric norms for the OSSAB in university students. Around 6% of the students demonstrated very high SA, scoring more than 1.5 SD above the mean. These results are in line with the previous studies reporting that 4 to 7 percent of adolescent schoolchildren could be considered spatially gifted (see publications by J. M. Lakin & J. Wai for the US sample [16] and M. V. Likhanov and colleagues for the Russian sample [44]). Around 8 percent of the students scored lower than 1.5 SD below the mean, smaller proportion compared to the adolescent sample (15.32%). This lower proportion can be explained by implicit and explicit selection associated with educational choices and university entry criteria. Further research is needed to assess generalisability of the results beyond the current sample, including in different countries as proportion of school graduates varies across countries. In Russia, according to A. Bessudnov and colleagues, approximately 50% of all schoolchildren in compulsory education (9th grade) go to universities [54, 55]. In addition, higher scores in students can be attributed to slight age differences between the current sample and previously reported adolescent samples, as SA was shown to grow with age in longitudinal studies (e.g. M. V. Likhanov et al. [56] and M. Rodic et al. [50]). Relatedly, university students on average have had longer engagement with SA-developing activities, such as playing video games (B. Bediou et al. [57]), practicing sports (D. Voyer & P. Jansen [58]), and reading maps (C. Davies & D. Uttal [59]).
The results of the study could be used to provide individual recommendations to students based on their OSSAB scores. For example, H. J. Kell et al. [9], R. M. Webb and colleagues [60] suggested that students who score in the high - extraordinary giftedness range may consider pursuing STEM courses and degrees. Students, who demonstrate low SA scores, can benefit from SA training. Several recent studies have shown positive effects of SA training that can improve overall academic performance, as shown by N. Judd & T. Klingberg on a sample of children [61], and by N. Veurnik & S. Sorby on a sample of university students [23]. Moreover, SA training may specifically target factors implicated in gender differences in SA (see meta-analyses by Y. Maeda & S. Y. Yoon [62], A. Nazareth et al. [63]; large-scale cross-cultural studies by H. J. Spiers et al. [38], I. Silverman et al. [64]; and studies from selected populations by E. S. Tsigeman et al. [52]. For example, in the study by M. Stieff and colleagues spatial training, targeting strategies of spatial problem solving [65], reduced gender differences and overall gender gap in STEM [66].
Conclusion
The current study addresses the need for validated normed reliable tools for measuring cognitive abilities and spatial abilities, in particular. The literature reviewed in the current study suggests that spatial ability is a promising target for educational interventions, as it is malleable and linked to success in different academic domains. The study selected OSSAB - a validated short online SA battery, which is open, free and can be used for research and practical purposes in educational contexts. Our research showed that OSSAB, initially developed for adolescents, can be used for SA assessment in university students. We reported psychometric norms that can be used to provide recommendations to students with different levels of SA. Future research is needed to investigate SA in samples with different expertise and field of study. This knowledge will help to evaluate whether OSSAB can be used predictively for career guidance.
References
1. Rimfeld K., Shakeshaft N., Malanchini M., Rodic M., Selzam S., Schofield K., et al. Phenotypic and genetic evidence for a unifactorial structure of spatial abilities. Proceedings of the National Academy of Sciences. 2017; 114: 201607883. DOI: 10.1073/pnas.1607883114
2. Atit K., Power J. R., Pigott T., Lee J., Geer E. A., Uttal D. H., et al. Examining the relations between spatial skills and mathematical performance: A meta-analysis. PsychonomicBulletin & Review. 2022; 29: 699-720. DOI: 10.3758/s13423-021-02012-w
3. Harle M., Towns M. A review of spatial ability literature, its connection to chemistry, and implications for instruction. Journal of Chemical Education. 2011; 88 (3): 351-360. DOI: 10.1021/ed900003n
4. Hegarty M., Keehner M., Cohen C., Montello D. R., Lippa Y. The role of spatial cognition in medicine: Applications for selecting and training professionals. In: Allen G. L. (Ed.). Applied spatial cognition: From research to cognitive technology. US: Lawrence Erlbaum Associates Publishers; 2007. p. 285-315.
5. Berkowitz M., Gerber A., Thurn C. M., Emo B., Hoelscher C., Stern E. Spatial abilities for architecture: Cross sectional and longitudinal assessment with novel and existing spatial ability tests. Frontiers in Psychology. 2021; 11. DOI: 10.3389/fpsyg.2020.609363
6. Jones S., Burnett G. Spatial ability and learning to program. Human Technology: An Interdisciplinary Journal on Humans in ICTEnvironments. 2008; 4 (1): 47-61. DOI: 10.17011/ht/urn.200804151352
7. Bockmon R., Cooper S., Gratch J., Zhang J., Dorodchi M. Can students' spatial skills predict their programming abilities? In: Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education. New York, NY, USA: Association for Computing Machinery; 2020. p. 446-451. DOI: 10.1145/3341525.3387380
8. Shea D., Lubinski D., Benbow C. Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology. 2001; 93: 604-614. DOI: 10.1037/0022-0663.93.3.604
9. Kell H. J., Lubinski D., Benbow C. P., Steiger J. H. Creativity and technical innovation: Spatial ability's unique role. Psychological Science. 2013; 24 (9): 1831-1836. DOI: 10.1177/0956797613478615
10. Uttal D. H., Meadow N. G., Tipton E., Hand L. L., Alden A. R., Warren C., et al. The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin. 2013; 139 (2): 352-402. DOI: 10.1037/a0028446
11. Hawes Z. C. K., Gilligan-Lee K. A., Mix K. S. Effects of spatial training on mathematics performance: A meta-analysis. Developmental Psychology. 2022; 58 (1): 112. DOI: 10.1037/dev0001281
12. Andryukhina L. M., Guzanov B. N., Anakhov S. V. Engineering thinking: Vectors of development in the context of transformation of scientific picture of the world. Obrazovanie i nauka = The Education and Science Journal. 2023; 25 (8): 12-48. DOI: 10.17853/1994-5639-2023-8-12-48 (In Russ.)
13. Shemshack A., Spector J. M. A systematic literature review of personalized learning terms. Smart Learning Environments. 2020; 7 (1): 33. DOI: 10.1186/s40561-020-00140-9
14. Baturin N. A. Modern psychodiagnostics in Russia: Overcoming the crisis and solving new problems. Psihologija. Psihofiziologija = Psychology. Psychophysiology [Internet]. 2010 [cited 2023 Oct 16]; 40 (216): 4-12. Available from: https://cyberleninka.ru/article/n/sovremennaya-psihodiagnosti-ka-rossii-preodolenie-krizisa-i-reshenie-novyh-problem (In Russ.)
15. Wai J., Lubinski D., Benbow C. P. Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology. 2009; 101 (4): 817-835. DOI: 10.1037/a0016127
16. Lakin J. M., Wai J. Spatially gifted, academically inconvenienced: Spatially talented students experience less academic engagement and more behavioural issues than other talented students. British Journal of Educational Psychology. 2020; 90 (4): 1015-1038. DOI: 10.1111/bjep.12343
17. Kell H., Lubinski D. Spatial ability: A neglected talent in educational and occupational settings. RoeperReview. 2013; 35: 219-230. DOI: 10.1080/02783193.2013.829896
18. Carroll J. B. Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press; 1993. 832 p.
19. Krapohl E., Rimfeld K., Shakeshaft N. G., Trzaskowski M., McMillan A., Pingault J.-B., et al. The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. Proceedings of the National Academy of Sciences. 2014; 111 (42): 15273-15278. DOI: 10.1073/ pnas.1408777111
20. Sala G., Aksayli N. D., Tatlidil K. S., Tatsumi T., Gondo Y., Gobet F. Near and far transfer in cognitive training: A second-order meta-analysis. Collabra: Psychology. 2019; 5 (1): 18. DOI: 10.1525/ collabra.203
21. Gilligan K. A., Thomas M. S. C., Farran E. K. First demonstration of effective spatial training for near transfer to spatial performance and far transfer to a range of mathematics skills at 8 years. Developmental Science. 2020; 23 (4): e12909. DOI: 10.1111/desc.12909
22. Sorby S., Veurink N., Streiner S. Does spatial skills instruction improve STEM outcomes? The answer is 'yes.' Learning and Individual Differences. 2018; 67: 209-222. DOI: 10.1016/j.lindif.2018.09.001
23. Veurink N., Sorby S. Longitudinal study of the impact of requiring training for students with initially weak spatial skills. European Journal of Engineering Education. 2019; 44 (1-2): 153-163. DOI: 10.1080/03043797.2017.1390547
24. Kondratjeva O., Gorbunova E. V., Hawley J. D. Academic momentum and undergraduate student attrition: Comparative analysis in US and Russian universities. Comparative Education Review. 2017; 61 (3): 607-633. DOI: 10.1086/692608
25. Sorby S., Casey B., Veurink N., Dulaney A. The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences. 2013; 26: 20-29. DOI: 10.1016/j.lindif.2013.03.010
26. Zhu C., Leung C. O.-Y., Lagoudaki E., Velho M., Segura-Caballero N., Jolles D., et al. Fostering spatial ability development in and for authentic STEM learning. Frontiers in Education. 2023; 8. DOI: 10.3389/feduc.2023.1138607
27. Sorby S. A. Developing spatial thinking. 1st edition. Clifton Park, NY: Delmar Cengage Learning; 2011. 224 p.
28. Sala G., Tatlidil K. S., Gobet F. Video game training does not enhance cognitive ability: A comprehensive meta-analytic investigation. Psychological Bulletin. 2018; 144 (2): 111-139. DOI: 10.1037/ bul0000139 PMID: 29239631
29. Dilling F., Vogler A. Fostering spatial ability through computer-aided design: A case study. Digital Experiences in Mathematics Education. 2021; 7 (2): 323-336. DOI: 10.1007/s40751-021-00084-w
30. Vorstenbosch M. A. T. M., Klaassen T. P. F. M., Donders A. R. T. (Rogier), Kooloos J. G. M., Bolhuis S. M., Laan R. F. J. M. Learning anatomy enhances spatial ability. Anatomical Sciences Education. 2013; 6 (4): 257-262. DOI: 10.1002/ase.1346
31. Kolvoord B., Keranen K., Rittenhouse S. The geospatial semester: Concurrent enrollment in geospatial technologies. Journal of Geography. 2019; 118 (1): 3-10. DOI: 10.1080/00221341.2018.1483961
32. Julia C., Antoli J. O. Enhancing spatial ability and mechanical reasoning through a STEM course. International Journal of Technology and Design Education. 2018; 28 (4): 957-983. DOI: 10.1007/s10798-017-9428-x
33. Eliot J. Classification of figural spatial tests. Perceptual and Motor Skills. 1980; 51 (3): 847-851. DOI: 10.2466/pms.1980.51.3.847
34. Eliot J. A classification of object and environmental spatial tests. Perceptual and Motor Skills. 1984; 59 (1): 171-174. DOI: 10.2466/pms.1984.59.1.171
35. Malanchini M., Rimfeld K., Shakeshaft N. G., McMillan A., Schofield K. L., Rodic M., et al. Evidence for a unitary structure of spatial cognition beyond general intelligence. npj Science of Learning. 2020; 5 (1): 1-13. DOI: 10.1038/s41539-020-0067-8
36. Likhanov M., Maslennikova E., Costantini G., Budakova A., Esipenko E., Ismatullina V., et al. This is the way: Network perspective on targets for spatial ability development programmes. British Journal of Educational Psychology. 2022; 92 (4): 1597-1620.
37. Malanchini M., Rimfeld K., Gidziela A., Cheesman R., Allegrini A. G., Shakeshaft N., et al. Pathfinder: A gamified measure to integrate general cognitive ability into the biological, medical, and behavioural sciences. Molecular Psychiatry. 2021; 26 (12): 7823-7837. DOI: 10.1038/s41380-021-01300-0
38. Spiers H. J., Coutrot A., Hornberger M. Explaining world-wide variation in navigation ability from millions of people: Citizen science project Sea Hero Quest. Topics in Cognitive Science. 2023; 15 (1): 120-138. DOI: 10.1111/tops.12590
39. Homepage - Cambridge Cognition [Internet]. n.d. [cited 2023 Sep 21]. Available from: https:// cambridgecognition.com/
40. CogniFit [Internet]. Kak uznat', zdorov li moj mozg? = How do I know if my brain is healthy? [Internet]. n.d. [cited 2023 Sep 21]. Available from: https://www.cognifit.com/us/ru/cognitive-assessment/ cognitive-test (In Russ.)
41. Budakova A. V., Likhanov M. V., Toivainen T., Zhurbitskiy A. V., Sitnikova E. O., Bezrukova E. M., et al. Measuring spatial ability for talent identification, educational assessment, and support: Evidence from adolescents with high achievement in science, arts, and sports. Psychology in Russia: State of the Art. 2021; 14 (2): 59-85. DOI: 10.11621/pir.2021.0205
42. Esipenko E., Maslennikova E. P., Budakova A., Sharafieva K., Victoria I., Feklicheva I., et al. Comparing spatial ability of male and female students completing humanities vs. technical degrees. Psychology in Russia: State of the Art. 2018; 11: 37-49. DOI: 10.11621/pir.2018.0403
43. Likhanov M. V., Ismatullina V. I., Fenin A. Y., Wei W., Rimfeld K., Maslennikova E. P., et al. The factorial structure of spatial abilities in Russian and Chinese students. Psychology in Russia: State of the Art. 2018; 11 (4): 96-114. DOI: 10.11621/PIR.2018.0407
44. Likhanov M., Tsigeman E., Kovas Y. Online Short Spatial Ability Battery (OSSAB): Psychometric norms for high school students. Sibirskij psihologicheskij zhurnal = Siberian Journal of Psychology. 2021; 78: 117-129. DOI: 10.17223/17267080/78/7
45. Field A. P. Discovering statistics using SPSS: And sex, drugs and rock "n" roll. 3rd ed. Los Angeles: SAGE Publications; 2009. 821 p.
46. Tavakol M., Dennick R. Making sense of Cronbach's alpha. International Journal of Medical Education. 2011; 2: 53-55. DOI: 10.5116/ijme.4dfb.8dfd
47. Resing W. C. M., Blok J. B. De classificatie van intelligentiescores: Voorstel voor een eenduidig systeem. Psycholoog. 2002; 37 (5): 244-249. (In Dutch)
48. Kovas Y., Haworth C. M. A., Dale P. S., Plomin R. The genetic and environmental origins of learning abilities and disabilities in the early school years. Monographs of the Society for Research in Child Development. 2007; 72 (3): vii, 1-144. DOI: 10.1111/j.1540-5834.2007.00439.x
49. Voronin I. A., Ovcharova O. N., Bezrukova E. M., Kovas Y. V. Cognitive and non-cognitive predictors of the Unifed State Exam performance of students from schools with regular and advanced mathematical curricula. Psychology in Russia: State ofthe Art. 2018; 11 (4): 177-199. DOI: 10.11621/pir.2018.0412
50. Rodic M., Tikhomirova T., Kolienko T., Malykh S., Bogdanova O., Zueva D. Y., et al. Spatial complexity of character-based writing systems and arithmetic in primary school: A longitudinal study. Frontiers in Psychology. 2015; 6. DOI: 10.3389/fpsyg.2015.00333
51. Toivainen T., Pannini G., Papageorgiou K. A., Malanchini M., Rimfeld K., Shakeshaft N., et al. Prenatal testosterone does not explain sex differences in spatial ability. Scientific Reports. 2018; 8 (1): 13653. DOI: 10.1038/s41598-018-31704-y
52. Tsigeman E. S., Likhanov M. V., Budakova A. V., Akmalov A., Sabitov I., Alenina E., et al. Persistent gender differences in spatial ability, even in STEM experts. Heliyon. 2023; 9 (4): e15247. DOI: 10.1016/j.heliyon.2023.e15247
53. Yoon S. Y., Mann E. L. Exploring the spatial ability of undergraduate students: Association with gender, STEM majors, and gifted program membership. Gifted Child Quarterly. 2017; 61 (4): 313-327. DOI: 10.1177/0016986217722614
54. Bessudnov A., Kurakin D., Malik V. The myth about universal higher education: Russia in the international context. Voprosy obrazovanija = Educational Studies Moscow. 2017; 3: 83-109. DOI: 10.17323/1814-9545-2017-3-83-109
55. Bessudnov A., Malik V. Socio-economic and gender inequalities in educational trajectories upon completion of lower secondary education in Russia Voprosy obrazovanija = Educational Studies Moscow. 2016; 1: 135-167. DOI: 10.17323/1814-9545-2016-1-135-167
56. Likhanov M., Bogdanova O., Alenina E., Kolienko T., Kovas Y. No evidence of a positive effect of learning Chinese language as an L2 on spatial ability. Scientific Reports. 2023; 13 (1): 1262. DOI: 10.1038/ s41598-022-26738-2
57. Bediou B., Adams D. M., Mayer R. E., Tipton E., Green C. S., Bavelier D. Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychological Bulletin. 2018; 144 (1): 77-110. DOI: 10.1037/bul0000130
58. Voyer D., Jansen P. Motor expertise and performance in spatial tasks: A meta-analysis. Human Movement Science. 2017; 54: 110-124. DOI: 10.1016/j.humov.2017.04.004
59. Davies C., Uttal D. Map use and the development of spatial cognition. In: Plumert J., Spencer J. (Eds.). The emerging spatial mind. New York: Oxford University Press; 2007. p. 219-247. DOI: 10.1093/ acprof:oso/9780195189223.003.0010
60. Webb R. M., Lubinski D., Benbow C. P. Spatial ability: A neglected dimension in talent searches for intellectually precocious youth. Journal of Educational Psychology. 2007; 99 (2): 397-420. DOI: 10.1037/0022-0663.99.2.397
61. Judd N., Klingberg T. Training spatial cognition enhances mathematical learning in a randomized study of 17,000 children. Nature Human Behaviour. 2021; 5: 1548-1554. DOI: 10.1038/s41562-021-01118-4
62. Maeda Y., Yoon S. Y. A meta-analysis on gender differences in mental rotation ability measured by the Purdue Spatial Visualization Tests: Visualization of Rotations (PSVT:R). Educational Psychology Review. 2013; 25 (1): 69-94. DOI: 10.1007/s10648-012-9215-x
63. Nazareth A., Huang X., Voyer D., Newcombe N. A meta-analysis of sex differences in human navigation skills. Psychonomic Bulletin and Review. 2019; 26 (5): 1503-1528. DOI: 10.3758/s13423-019-01633-6
64. Silverman I., Choi J., Peters M. The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries. Archives of Sexual Behavior. 2007; 36 (2): 261-268. DOI: 10.1007/s10508-006-9168-6
65. Hegarty M. Ability and sex differences in spatial thinking: What does the mental rotation test really measure? Psychonomic Bulletin and Review. 2018; 25 (3): 1212-1219. DOI: 10.3758/s13423-017-1347-z
66. Stieff M., Dixon B., Ryu M., Clover Kumi B., Hegarty M. Strategy training eliminates sex differences in spatial problem solving in a STEM domain. Journal of Educational Psychology. 2014; 106: 390. DOI: 10.1037/a0034823
Information about the authors:
Ksenia V. Bartseva - Postgraduate Student, Junior Researcher, Department of Psychology, Saint Petersburg State University; ORCID 0000-0003-4854-726X; Saint Petersburg, Russia. E-mail: bartseva. [email protected]
Maxim V. Likhanov - Cand. Sci. (Philology), State Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University; ORCID 0000-0001-6003-741X; Beijing, China. E-mail: maximus. [email protected]
Elena L. Soldatova - Dr. Sci. (Psychology), Professor, Saint Petersburg State University; ORCID 0000-0002-3902-0557; Saint Petersburg, Russia. E-mail: [email protected]
Elina S. Tsigeman - Postgraduate Student, Junior Researcher, Saint Petersburg State University; ORCID 0000-0002-7966-5982; Saint Petersburg, Russia. E-mail: [email protected]
Evgeniia A. Alenina - Postgraduate Student, Junior Researcher, Saint Petersburg State University; ORCID 0000-0003-4328-5934; Saint Petersburg, Russia. E-mail: [email protected]
Yulia Kovas - PhD (Genetics and Psychology), Professor, Goldsmiths, University of London; ORCID 0000-0001-9633-6374; London, Great Britain. E-mail: [email protected]
Contribution of the authors:
K. V. Bartseva - conceptualisation of the study, conduction of data analysis, writing the article.
M. V. Likhanov - development of the original battery, preparation of stimulus material, conceptualisation of the study, writing the article.
E. L. Soldatova - conceptualisation of the study, discussion of the results, article writing.
E. S. Tsigeman - development of the original battery, data collection, discussion of results, article writing.
E. A. Alenina - data collection, discussion of results, writing the article.
Y. Kovas - development of the original battery, conceptualisation of the research, supervision of all stages of the research.
Conflict of interest statement. The authors declare that there is no conflict of interest.
Received 12.07.2023; revised 21.10.2023; accepted for publication 01.11.2023.
The authors have read and approved the final manuscript.
Информация об авторах:
Барцева Ксения Викторовна - аспирант, младший научный сотрудник факультета психологии Санкт-Петербургского государственного университета; ORCID 0000-0003-4854-726X; Санкт-Петербург, Россия. E-mail: [email protected]
Лиханов Максим Владимирович - кандидат филологических наук Государственной ключевой лаборатории когнитивной нейронауки и обучения Пекинского нормального университета; ORCID 0000-0001-6003-741X; Пекин, Китай. E-mail: [email protected]
Солдатова Елена Леонидовна - доктор психологических наук, профессор Санкт-Петербургского государственного университета; ORCID 0000-0002-3902-0557; Санкт-Петербург, Россия. E-mail: [email protected]
Цигеман Элина Сергеевна - аспирант, младший научный сотрудник Санкт-Петербургского государственного университета; ORCID 0000-0002-7966-5982; Санкт-Петербург, Россия. E-mail: [email protected]
Аленина Евгения Алексеевна - аспирант, младший научный сотрудник Санкт-Петербургского государственного университета; ORCID 0000-0003-4328-5934; Санкт-Петербург, Россия. E-mail: [email protected]
Ковас Юлия Владимировна - доктор генетики и психологии, профессор, профессор Голд-смитс Университета Лондона; ORCID 0000-0001-9633-6374; Лондон, Великобритания. E-mail: [email protected]
Вклад соавторов:
К. В. Барцева - концептуализация исследования, проведение анализа данных, написание статьи.
М. В. Лиханов - разработка оригинальной батареи, подготовка стимульного материала, концептуализация исследования, написание статьи.
Е. Л. Солдатова - концептуализация исследования, обсуждение результатов, написание статьи.
Э. С. Цигеман - разработка оригинальной батареи, сбор данных, обсуждение результатов, написание статьи.
Е. А. Аленина - сбор данных, обсуждение результатов, написание статьи. Ю. В. Ковас - разработка оригинальной батареи, концептуализация исследования, руководство всеми этапами исследования.
Информация о конфликте интересов. Авторы заявляют об отсутствии конфликта интересов.
Статья поступила в редакцию 12.07.2023; поступила после рецензирования 21.10.2023; принята к публикации 01.11.2023.
Авторы прочитали и одобрили окончательный вариант рукописи.
Información sobre los autores:
Xenia Víktorovna Bártseva: Estudiante de aspirantura, investigadora junior de la Facultad de Psicología de la Universidad Estatal de San Petersburgo; ORCID 0000-0003-4854-726X; San Petersburgo, Rusia. Correo electrónico: [email protected]
Maxim Vladímirovich Lijánov: Candidato a Ciencias de la Filología, Laboratorio Estatal Clave de Neurociencia Cognitiva y Aprendizaje, Universidad Normal de Beijing; ORCID 0000-0001-6003-741X; Beijing, China. Correo electrónico: [email protected]
Elena Leonídovna Soldátova: Doctora en Ciencias de la Psicología, Profesora de la Universidad Estatal de San Petersburgo; ORCID 0000-0002-3902-0557; San Petersburgo, Rusia. Correo electrónico: [email protected]
Elina Serguéevna Tsiguemán: Estudiante de aspirantura, investigadora junior de la Universidad Estatal de San Petersburgo; ORCID 0000-0002-7966-5982; San Petersburgo, Rusia. Correo electrónico: [email protected]
Eugenia Alexéevna Alenina: Estudiante de aspirantura, investigadora junior de la Universidad Estatal de San Petersburgo; ORCID 0000-0003-4328-5934; San Petersburgo, Rusia. Correo electrónico: [email protected]
Yulia Vladímirovna Kovás: Doctora en Ciencias de la Genética y Psicología, Profesora, Profesora Goldsmiths, Universidad de Londres; ORCID 0000-0001-9633-6374; Londres, Gran Bretaña. Correo electrónico: [email protected]
Contribución de coautoría:
K. V. Bártseva: conceptualización del estudio, realización del análisis de datos, redacción del artículo.
M. V. Lijánov: desarrollo de la batería original, elaboración del material de estímulo, conceptualización del estudio, redacción del artículo.
E. L. Soldátova: conceptualización del estudio, discusión de los resultados, redacción del artículo.
E. S. Tsiguemán: desarrollo de la batería original, recolección de datos, discusión de los resultados, redacción del artículo.
E. A. Alenina: recolección de datos, discusión de los resultados, redacción del artículo.
Yu. V. Kovás: desarrollo de la batería original, conceptualización del estudio, coordinación de todas las etapas del estudio.
Información sobre conflicto de intereses. Los autores declaran no tener conflictos de intereses.
El artículo fue recibido por los editores el 12/07/2023; recepción efectuada después de la revisión el 21/10/2023; aceptado para su publicación el 01/11/2023.
Los autores leyeron y aprobaron la versión final del manuscrito.