Научная статья на тему 'Antimicrobial activity of 50 plant extracts'

Antimicrobial activity of 50 plant extracts Текст научной статьи по специальности «Биологические науки»

CC BY
6028
1287
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Biosystems Diversity
ESCI
Область наук
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Antimicrobial activity of 50 plant extracts»

Biosysteras Diversity ; , , • ^ J»* ■ ' Biosystems

B ^ ■ fi H Diversity

ISSN 2519-8513 (Print) ISSN 2520-2529 (Online) Biosyst. Divers., 2019, 27(2), 163-169 doi: 10.15421/011922

Antimicrobial activity of 50 plant extracts

V. V. Zazharskyi*, P. O. Davydenko*, O. M. Kulishenko*, I. V. Borovik*, V. V. Brygadyrenko*' **

*Dnipro State Agrarian and Economic University, Dnipro, Ukraine **Oles Honchar Dnipro National University, Dnipro, Ukraine

Article info

Received 27.03.2019 Received in revised form

30.04.2019 Accepted 03.05.2019

Dnipro State Agrarian and Economic University, SergiyEjremov st., 25, Dnipro, 49000, Ukraine. Tel.: +38-056-713-51-74. E-mail: zazhars-kiyv@gmail.com

Oles Honchar Dnipro National University, Gagarin av., 72, Dnipro, 49010, Ukraine. Tel.: +38-050-93-90-788. E-mail: brigad@ua.jm

Zazharskyi, V. V., Davydenko, P. O., Kulishenko, O. M., Borovik, I. V., & Brygadyrenko, V. V. (2019). Antimicrobial activity of 50 plant extracts. Biosystems Diversity, 27(2), 163-169. doi:10.15421/011922

Antibacterial activity of plants is a subject of interest in the search for new antibiotics and fungicidal preparations. This article analyzes the effectiveness of the action of extracts of plants on microorganisms: six species of bacteria (Salmonella typhimurium, Listeria monocytogenes, Escherichia coli, Klebsiella pneumoniae, Corynebacterium xerosis, Proteus vulgaris) and one fungus (Candida albicans). For the assay, we used herbal material of 50 species (seeds, grass, shoots, leaves, compound fruit, peel) obtained at different periods of the growing season. We studied Levisticum officinale, Petroselinum crispum, Nerium oleander, Vinca minor, Eleutherococcus senticosus, E. sieboldianus, Yucca filamentosa, Artemisia annua, Echinacea purpurea, Matricaria recutita, Tanacetum vulgare, Betula pendula, Corylus avellana, Buxus sempervirens, Humulus lupulus, Crassula ovata, Bryophyllum daigremontianum, Juniperus communis, Platycladus orientalis, Cycas revoluta, Calluna vulgaris, Rhododendron ferrugineum, Ceratonia siliqua, Trigonella foenum-graecum, Ribes nigrum, Phellinus tuberculosus, Lavandula angusti-folia, Melissa officinalis, Monarda fistulosa, Origanum vulgare, Salvia sclarea, Laurus nobilis, Punica granatum, Hibiscus rosa-sinensis, Menispermum dauricum, Ficus benjamina, Morus alba, Paeonia suffruticosa, Picea abies, Adonis vernalis, Amelan-chier ovalis, Prunus armeniaca, Crataegus monogyna, Citrus sinensis, Salix babylonica, Bergenia crassifolia, Schisandra chi-nensis, Taxus baccata and Xanthoriaparietina. The alcohol tincture was filtered with sterile multi-layer gauze disc filters. Before the discs were put on the surface of agar with inoculation of the corresponding culture, they were dried in a sterile laminar box under ultraviolet rays. Antibacterial activity of various tinctures was determined by the disk diffusion method in agar with the measurement of the diameter of the growth suppression zone of the culture using a template ruler. Maximum inhibiting effect was achieved for Punica granatum on K. pneumonia, L. monocytogenes, S. typhimurium, P. vulgaris, C. xerosis and E. coli, Lavandula angustifolia - on P. vulgaris, K. pneumonia and S. typhimurium, Echinacea purpurea - on C. albicans, E. coli, P. vulgaris, K. pneumonia, Bergenia crassifolia - on P. vulgaris, K. pneumonia and S. typhimurium.

Keywords: Salmonella typhimurium; Listeria monocytogenes; Escherichia coli; Klebsiella pneumoniae; Corynebacterium xerosis; Proteus vulgaris; Candida albicans.

Introduction

One of the problems in modern veterinary medicine and medicine is antibiotic resistance of Salmonella typhimurium, Listeria monocytogenes, Escherichia coli, Klebsiella pneumoniae, Corynebacterium xerosis, Proteus vulgaris and Candida albicans, which significantly complicates preventive measures and treatment of these infections and reduces the therapeutic efficiency of existing antibacterial and anti-parasitic preparations (Mendez et al., 2012; Boyko & Brygadyrenko, 2016; Ali et al., 2017; Semeniuc et al., 2017). According to the data of Wasyl et al. (2013), during monitoring of antimicrobial resistance of E. coli (n = 3430), isolated from slaughtered broilers, carrier hens, turkeys, swine and cattle in Poland, microbiological resistance to 14 tested antimicrobial substances was determined: highest resistance was exhibited by the bacteria to tetracycline (43.3%), ampicillin (42.3%) and ciprofloxacin (39.0%). The highest distribution of resistance was observed in isolates from broiler chickens and turkeys, at the same time it was rare in cattle. Regression analysis revealed changes in distribution of microbiological resistance and changes in the parameters of MIC, minimum inhibiting concentration (Wasyl et al., 2013).

Ozaki et al. (2011) determined presence of strains of E. coli resistant to antimicrobial preparations, which can be observed even at absence of using any antibiotics. Also these authors have suggested a hypothesis that horizontal transmission of genes caused appearance of different phenotypes of resistance on the studied farms. During use of antibacterial preparations for treatment of mink and finding antimi-

crobial resistence among the most important bacterial pathogens in mink, it was determined (Pedersen et al., 2009) that out of 164 hemolytic staphylococci, 49 hemolytic streptococci, 39 Pseudomonas aeruginosa, 13 Pasteurella multocida and 1093 isolates of E. coli from Danish mink, the highest frequency of resistance was characteristic for tetracyclines (54.7%), penicillin (21.7%), lincosamides (20.4%) and macrolides (19.1%). Highest frequency of resistance among isolates of E. coli was recorded for ampicillin, streptomycin, sulfanilamides and tetracyclines, whereas resistance to other antimicrobial preparations was rare. All P. aeruginosa were sensitive to gentamicin and colistin, sensitive or low-sensitive to enrofloxacin, whereas most isolates were resistant to all other antimicrobial preparations. All the P. multocida and hemolytic streptococci were sensitive to penicillin (Pedersen et al., 2009).

Choi et al. (2011) found bactericidal activity of ethanol extract of Punica granatum L. against 16 strains of microorganisms of the Salmonella genus. Antibacterial activity in vivo of the extract was studied in the model of infection of mice with S. typhimurium. First of all, the mice were infected with S. typhimurium, and later with PGPE. Extract from P. granatum caused death and reduced the number of viable S. typhimurium isolated from feces. Though clinical features and histological changes were rarely observed in mice treated with the extract, control animals which did not receive it were observed to have signs of lethargy, histological damage to the liver and spleen. Results of this study indicate that PGPE has potential for effective treatment of salmonellosis (Choi et al., 2011). Dahham et al. (2010) determined a high level ofbacte-ricidal activity of ethanol extract of P. granatum against S. aureus, As-

pergillus niger and much lower - against E. coli, K. pneumoniae, S. ty-phimurium, whereas Millezi et al. (2012) determined high bactericidal activity of ethanol extracts from Thymus vulgaris L., Cymbopogon citratus (DC.) Stapf., Laurus nobilis L. against S. aureus, E. coli, L. monocytogenes, S. enteritidis and P. aeruginosa.

Evaluation of microbiological activity against food pathogens using different extracts from granulated fruit peels was performed by Al-Zoreky (2009) using methods both in vitro (diffusion of agar) and in situ (food). 80% methanol extract of the peels (WME) was a strong inhibitor of L. monocytogenes, S. aureus, E. coli and Yersinia enterocolitica. Minimum inhibitory concentration (MIC) of WME against S. enteritidis was highest (4 mg/mL). Phytochemical analysis revealed presence of activity of inhibitors in the skin, including phenol and flavonoids. Activity of WME of pomegranate fruit peels was related to its high content (262.5 mg/g) of total amount of phenols (Al-Zoreky, 2009). Studies by Natarajan et al. (2008) determined bactericidal activity of extracts from Humulus lupulus L. in combination with other antiseptic substances against gram-negative microbiota, particularly E. coli, while Mikuläso-va & Vaverkova (2009) also determined bactericidal activity of essential oils of Tanacetum vulgare L. and Salvia officinalis L. against E. coli and yeast-like fungi C. albicans.

Hayouni et al. (2011) observed bactericidal activity of ethanol extract from P. granatum against P. aeruginosa, S. aureus, E. coli, K. pneu-moniae, Salmonella anatum, S. typhimurium, Streptococcus pneumo-niae and fungi C. albicans, C. glabrata, Trichophyton rubrum and Aspergillus niger. This study for the first time reports about potential of the skin of P. granatum for healing wounds of guinea pigs. Ointment significantly increased reduction of wound and period of epithelization, evaluation of mechanical (speed of compression, strength during stretching), biochemical (increase in content of collagen, synthesis of DNA and proteins) and histopathological characteristics. Extracts from pomegranate displayed no toxic effects against S. aureus, Aspergillus niger and significantly lower parameters against E. coli, K. pneumoniae, S. typhimu-rium (Hayouni et al., 2011). Extract of the skin of pomegranade improves oxidative stability and quality of preserving cheese and can be used as a natural preservative of cheese products (Mahajan et al., 2015).

The objective of this article was evaluation of in vitro of the antibacterial effect of plant tinctures against reference strains of S. typhimu-rium, L. monocytogenes, E. coli, K. pneumoniae, Corynebacterium xerosis, Proteus vulgaris, and C. albicans.

Materials and methods

A total of 50 species of plant material (seeds, grass, shoots, leaves, compound fruits, thallus, fruit bodies, skin) of different periods of growthe were grown in Dnepropetrovsk Botanical Garden and the recr-eationnal zone of the city ofDnipro (Table 1).

The collected material was sorted and dried on a ML-309 thermistor pod (Poland) at temperature of 60 °C during 5-6 days. Further, the obtained material was put into an experimental flour mill LZMK and ground to size of particles of 0.5-1.0 mm. The obtained plant material was sorted into disposable polyethylene bags with zippers and marked with stickers. Using ESJ-200-4 laboratory electric analytic scales (USA), 1 g of corresponding material was weighed and put into sterile flasks of 10 cm3 capacity and 5 cm3 was filled with 96% ethanol. Alcohol tincture in 1 : 5 proportion were kept in a cold place over three weeks. After this period, the tinctures were filtered through a glass laboratory funnel with sterile multi-layer cheesecloth filtrates in sterile flasks with 50 sterile disks of filter paper of 6 mm diameter in each one, which were kept in the corresponding variants of the tinctures over 10 days. Before putting disks on the surface of agar with inoculation of corresponding culture, they were dried in a sterile laminar box (BMB-II-Laminar-C-1, 2 CYTOS (Germany) under ultraviolet rays for 30 min.

Antibacterial activity of different plant tinctures was determined using the method of disk-diffusion in agar. From the daily culture of reference cryogenic strains of Salmonella typhimurium 144, Listeria monocytogenes ATCC 19112, Escherichia coli (F 50) ATCC 25922, Klebsiella pneumoniae K-56 No 3534/51, Corynebacterium xerosis 1911, Proteus

vulgaris HX 19222, Candida albicans ATCC 885-653, a weighed amount of bacteria was prepared according to the standard of turbidity of bacterial suspension of 0.5 units of density according to McFarland 1.5 x 108 CFU (colony-forming units), which was determined using Densitometer II. The obtained suspension was inoculated to Muller-Hinton agar (Hmedia) with following cultivation in TSO-80/1 thermostat (Russia) for 24 hours at 37 °C temperature. On the top of the inoculations, disks saturated with corresponding plant tinctures were put, y six disks for each one. As a positive control, in the center, a disk with antibiotic was placed (1 disk contained 6 ^g of benzylpenicillin of sodium salt). Discs with 15.0 ^g amphotericinin were also used as a second control against C. albicans.

Table 1

Part of the plants used and most important data on their antibacterial activity

Family Species Used part of the plant

Apiaceae Levisticum officinale W. D. J. Koch H

Petroselinum crispum (Mill.) Fuss H

Apocynaceae Nerium oleander L. AP

Vinca minor L. H

Araliaceae Eleutherococcus sieboldianus (Makino) AP

Koidz.

E. senticosus (Rupr. and Maxim.) Maxim. AP

Asparagaceae Yucca filamentosa L. LF

Asteraceae Artemisia annua L. H

Echinacea purpurea (L.) Moench H

Matricaria recutita L. H

Tanacetum vulgare L. H

Betulaceae Betulapendula Roth AP

Corylus avellana L. AP

Buxaceae Buxus sempervirens L. AP

Cannabaceae Humulus lupulus L. FR

Crassulaceae Crassula ovata (Miller) Druce LF

Bryophyllum daigremontianum LF

(Raym.-Hamet and H. Perrier) A. Berger

Cupressaceae Juniperus communis L. LF

Platycladus orientalis (L.) Franco AP

Cycadaceae Cycas revoluta Thunb. LF

Ericaceae Calluna vulgaris (L.) Hull AP

Rhododendron ferrugineum L. AP

Fabaceae Ceratonia siliqua L. AP

Trigonella foenum-graecum L. SE

Grossulariaceae Ribes nigrum L. AP

Hymenochaetaceae Phellinus tuberculosus (Baumg.) FB

Lamiaceae Lavandula angustifolia Mill. H

Melissa officinalis L. H

Monarda fistulosa L. H

Origanum vulgare L. H

Salvia sclarea L. H

Lauraceae Laurus nobilis L. LF

Lythraceae Punica granatum L. FR

Malvaceae Hibiscus rosa-sinensis L. LF

Menispermaceae Menispermum dauricum DC. LF

Moraceae Ficus benjamina L. LF

Morus alba L. AP

Paeoniaceae Paeonia suffruticosa Andrews AP

Pinaceae Picea abies (L.) H. Karst AP

Ranunculaceae Adonis vernalis L. H

Rosaceae Amelanchier ovalis Medik. AP

Prunus armeniaca L. SE

Crataegus monogyna Jacq. AP

Rutaceae Citrus sinensis (L.) Osbeck FR

Salicaceae Salix babylonica L. AP

Saxifragaceae Bergenia crassifolia (L.) Fritsch LF

Schisandraceae Schisandra chinensis (Turcz.) Baill. AP

Taxaceae Taxus baccata L. AP

Teloschistaceae Xanthoria parietina (L.) Th. Fr. T

Note: AP - shoots, FB - fruit body, FR - compound fruit, H - grass, LF - leaves, SE - seeds, T - thallus, R - raw.

After 24 h, we measured the diameter of the zone of inhibition of growth (ZIG) of the culture using a template ruler for measuring sizes of the zone of suppression of growth of the microorganisms (Antibiotic

Zone Scale-C, model PW297, India). Results

In the study on antibacterial effect of plant tinctures on S. typhimuri-um reference strain we observed (Table 2) that Punica granatum (ZIG -14.3 mm), Laurus nobilis (13.3), Lavandula angustifolia (10.4) and Bergenia crassifolia (8.8) showed the largest zones of inhibition of growth. ZIG of over 4 mm were also produced by Ficus benjamina (7.6), Melissa officinalis (7.4), Platycladus orientalis (7.4), Artemisia annua (7.3), Citrus sinensis (6.5), Tanacetum vulgare (6.4), Nerium oleander (6.2), Origanum vulgare (5.6), Adonis vernalis (5.3), Betula pendula (4.3), Crassula ovata (4.1) and Hibiscus rosa-sinensis (4.1).

Table 2

Antibacterial effect of herbal infusions of family Enterobacteriaceae: Salmonella typhimurium, Escherichia coli, Klebsiella pneumoniae and P

Therefore 16 of 49 samples (32.7%) of the studied plant material inhibited growth of colonies ofS. typhimurium.

We found a quite high effect on E. coli strain, caused by ethanol tinctures of Punica granatum (ZIG - 17.2 mm) and Crassula ovata (12.3). The effect of tinctures from Petroselinum crispum (4.3), Echinacea purpurea (4.2) and Vinca minor (4.1), according to the size of ZIG, equaled the effect of the control antibiotic. Although alcohol tinctures of Morus alba (4.1) and Salvia sclarea (4.3) had less effect than benzylpe-nicillin sodium salt, they also caused ZIG of over 4 mm against E. coli. Thus, only 7 of 49 samples (14.3%) of the studied plant material inhibited growth of colonies ofE. coli.

± SD, n = 12)

Family Species test nur min control test control JV. jJ! IfC-U, test ' ! [< /(tic: control test control

Apiaceae Levisticum officinale W. D. J. Koch 3.4 ± 0.87 23.3 ± 0.56 2.1 ± 0.47 2.3 ± 0.33 0 ± 0 2.7 ± 1.10 0 ± 0 1.8 ± 0.19

Apiaceae Petroselinum crispum (Mill.) Fuss 0 ± 0 18.6 ± 1.67 4.3 ± 0.94 4.3 ± 1.23 7.7 ± 1.29* 4.3 ± 0.88 0 ± 0 2.5 ± 0.54

Apocynaceae Nerium oleander L. 6.2 ± 0.76 12.4 ± 0.67 0 ± 0 7.4 ± 1.09 1.3 ± 0.19 7.6 ± 1.74 0 ± 0 0.8 ± 0.28

Apocynaceae Vinca minor L. 1.3 ± 0.69 23.2 ± 0.78 4.1 ± 0.37 4.2 ± 0.88 1.5 ± 0.45 4.2 ± 1.45 0 ± 0 0.9 ± 0.23

Araliaceae Eleutherococcus senticosus (Rupr. and Maxim.) Maxim. 2.3 ± 0.89 6.3 ± 1.23 2.1 ± 0.77 7.1 ± 1.07 10.5 ± 1.37* 7.1 ± 0.94 0 ± 0 0.9 ± 0.15

Araliaceae E. sieboldianus (Makino) Koidz. 3.6 ± 0.45 7.4 ± 1.12 3.2 ± 0.48 7.2 ± 1.22 0 ± 0 7.4 ± 1.23 0 ± 0 0.8 ± 0.32

Asparagaceae Yucca filamentosa L. 0 ± 0 7.4 ± 1.82 0 ± 0 5.9 ± 1.21 0 ± 0 5.2 ± 1.77 0 ± 0 1.7 ± 0.13

Asteraceae Artemisia annua L. 7.3 ± 0.56 19.1 ± 0.76 0 ± 0 4.4 ± 1.07 12.6 ± 2.78* 4.6 ± 0.78 3.2 ± 0.19 0.7 ± 0.15

Asteraceae Echinacea purpurea (L.) Moench 0 ± 0 17.3 ± 0.47 4.2 ± 0.77 4.2 ± 1.68 8.5 ± 1.47* 4.2 ± 0.94 5.3 ± 0.34 2.4 ± 0.56

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Asteraceae Matricaria recutita L. 0 ± 0 19.3 ± 2.36 0 ± 0 5.1 ± 1.09 1.3 ± 0.32 5.4 ± 1.63 0 ± 0 2.7 ± 0.35

Asteraceae Tanacetum vulgare L. 6.4 ± 0.67 27.3 ± 0.54 0 ± 0 4.9 ± 1.33 10.7 ± 2.10* 4.3 ± 0.93 0 ± 0 0.9 ± 0.52

Betulaceae Betula pendula Roth 4.3 ± 0.57 2.2 ± 0.79 1.1 ± 0.73 5.4 ± 1.14 1.2 ± 0.29 5.5 ± 1.33 0 ± 0 1.3 ± 0.18

Betulaceae Corylus avellana L. 1.4 ± 0.54 7.5 ± 2.65 0 ± 0 10.6 ± 1.87 0 ± 0 10.8 ± 1.64 0 ± 0 2.5 ± 0.33

Buxaceae Buxus sempervirens L. 1.2 ± 0.35 12.5 ± 2.76 1.1 ± 0.27 4.1 ± 1.27 5.3 ± 0.99 4.6 ± 1.31 4.1 ± 0.56 2.9 ± 0.45

Cannabaceae Humulus lupulus L. 1.2 ± 0.72 17.4 ± 2.21 3.2 ± 0.97 6.1 ± 1.76 1.1 ± 0.18 6.4 ± 1.93 10.5 ± 3.17* 2.4 ± 1.16

Crassulaceae Crassula ovata (Miller) Druce 4.1 ± 0.47 17.4 ± 1.79 12.3 ± 1.12* 5.2 ± 1.84 0 ± 0 5.5 ± 1.67 0 ± 0 2.6 ± 0.19

Crassulaceae Bryophyllum daigremontianum (Raym.-Hamet & H. Perrier) A. Berger 3.2 ± 0.67 7.2 ± 2.24 3.1 ± 0.97 5.6 ± 0.97 0 ± 0 5.4 ± 1.74 0 ± 0 2.9 ± 0.17

Cupressaceae Juniperus communis L. 1.2 ± 0.87 18.1 ± 3.79 2.1 ± 0.27 10.2 ± 2.19 0 ± 0 10.2 ± 1.78 2.5 ± 0.66 2.7 ± 0.88

Cupressaceae Platycladus orientalis (L.) Franco 7.4 ± 0.61 6.3 ± 1.77 0 ± 0 6.3 ± 2.14 0 ± 0 6.7 ± 1.73 2.2 ± 0.43 2.6 ± 0.31

Cycadaceae Cycas revoluta Thunb. 0 ± 0 18.2 ± 4.79 0 ± 0 7.4 ± 1.37 4.2 ± 0.89 7.9 ± 1.76 0 ± 0 0.8 ± 0.18

Ericaceae Calluna vulgaris (L.) Hull 0 ± 0 12.5 ± 1.88 2.1 ± 0.87 6.2 ± 1.10 0 ± 0 6.2 ± 1.64 0 ± 0 2.6 ± 0.14

Ericaceae Rhododendron ferrugineum L. 2.4 ± 0.69 6.2 ± 0.75 0 ± 0 5.6 ± 1.02 2.1 ± 0.44 5.8 ± 1.56 0 ± 0 1.3 ± 0.16

Fabaceae Ceratonia siliqua L. 0 ± 0 2.3 ± 0.13 3.2 ± 0.74 5.8 ± 1.17 1.1 ± 0.36 5.7 ± 1.21 0 ± 0 0 ± 0

Fabaceae Trigonella foenum-graecum L. 0 ± 0 7.5 ± 0.34 1.0 ± 0.57 5.7 ± 1.13 0 ± 0 5.4 ± 1.72 0 ± 0 1.5 ± 0.11

Grossulariaceae Ribes nigrum L. 3.1 ± 0.73 7.2 ± 0.68 0 ± 0 2.7 ± 0.58 5.6 ± 1.24* 2.6 ± 0.78 0 ± 0 1.6 ± 0.22

Hymenochaetaceae Phellinus tuberculosis (Baumg.) 0 ± 0 23.4 ± 0.59 0 ± 0 10.4 ± 1.66 0 ± 0 10.3 ± 1.76 0 ± 0 2.9 ± 0.63

Lamiaceae Lavandula angustifolia Mill. 10.4 ± 1.53 19.2 ± 3.79 1.0 ± 0.17 6.3 ± 1.34 10.4 ± 1.33* 6.3 ± 0.87 4.3 ± 0.32 2.8 ± 0.21

Lamiaceae Melissa officinalis L. 7.4 ± 0.39 18.6 ± 0.89 2.1 ± 0.44 4.3 ± 1.69 4.6 ± 0.76 4.7 ± 1.23 0 ± 0 0.6 ± 0.32

Lamiaceae Monarda fistulosa L. 2.3 ± 0.76 17.2 ± 0.78 0 ± 0 5.1 ± 1.13 1.3 ± 0.56 5.3 ± 1.85 0 ± 0 2.4 ± 0.14

Lamiaceae Origanum vulgare L. 5.6 ± 0.58 2.2 ± 0.99 2.4 ± 0.36 4.5 ± 1.07 0 ± 0 4.4 ± 1.38 2.8 ± 0.78 2.7 ± 0.75

Lamiaceae Salvia sclarea L. 0 ± 0 6.2 ± 0.68 4.3 ± 0.87 5.2 ± 1.19 0 ± 0 5.8 ± 1.54 2.6 ± 0.62 2.5 ± 0.43

Lauraceae Laurus nobilis L. 13.3 ± 2.28* 7.1 ± 1.59 0 ± 0 7.1 ± 2.18 0 ± 0 7.3 ± 1.81 0 ± 0 0.9 ± 0.14

Lythraceae Punica granatum L. 14.3 ± 3.20* 6.2 ± 1.85 17.2 ± 4.39* 4.3 ± 1.88 10.3 ± 1.96* 4.1 ± 1.30 15.4 ± 3.90* 2.6 ± 1.85

Malvaceae Hibiscus rosa-sinensis L. 4.1 ± 0.94 18.3 ± 5.21 2.1 ± 0.36 5.3 ± 0.98 0 ± 0 5.7 ± 1.45 0 ± 0 2.1 ± 0.16

Menispermaceae Menispermum dauricum DC. 0 ± 0 23.3 ± 0.44 2.2 ± 0.37 10.7 ± 2.25 1.4 ± 0.41 10.4 ± 1.66 0 ± 0 2.7 ± 0.85

Moraceae Ficus benjamina L. 7.6 ± 0.95 17.3 ± 0.88 2.2 ± 0.88 6.9 ± 1.27 1.2 ± 0.22 7.7 ± 1.43 0 ± 0 0.9 ± 0.31

Moraceae Morus alba L. 3.3 ± 0.75 7.3 ± 2.45 4.1 ± 0.83 5.5 ± 1.11 2.2 ± 0.54 5.6 ± 1.19 0 ± 0 1.1 ± 0.22

Paeoniaceae Paeonia suffruticosa Andrews 3.2 ± 0.54 6.6 ± 0.57 0 ± 0 2.4 ± 0.76 0 ± 0 2.4 ± 1.23 6.1 ± 1.43* 1.8 ± 0.81

Pinaceae Picea abies (L.) H. Karst 2.1 ± 0.65 19.6 ± 0.43 0 ± 0 2.5 ± 0.69 0 ± 0 2.5 ± 1.10 2.1 ± 0.12 1.7 ± 0.31

Ranunculaceae Adonis vernalis L. 5.3 ± 0.58 7.5 ± 2.79 0 ± 0 6.4 ± 1.56 1.4 ± 0.42 6.5 ± 1.69 1.2 ± 0.53 2.1 ± 0.23

Rosaceae Amelanchier ovalis Medik. 0 ± 0 17.4 ± 0.78 2.3 ± 0.37 4.1 ± 1.47 0 ± 0 4.1 ± 1.44 1.3 ± 0.36 0.7 ± 0.43

Rosaceae Prunus armeniaca L. 2.3 ± 0.45 19.5 ± 0.24 0 ± 0 10.3 ± 1.47 1.2 ± 0.32 10.7 ± 1.53 0 ± 0 2.9 ± 0.75

Rosaceae Crataegus monogyna Jacq. 0 ± 0 23.4 ± 0.45 1.1 ± 0.21 6.3 ± 1.23 6.3 ± 0.88 6.8 ± 1.63 10.4 ± 2.84* 2.8 ± 1.56

Rutaceae Citrus sinensis (L.) Osbeck 6.5 ± 0.76 7.1 ± 0.79 3.3 ± 0.87 4.2 ± 1.49 5.6 ± 0.79 4.7 ± 1.54 0 ± 0 2.8 ± 0.52

Salicaceae Salix babylonica L. 3.5 ± 0.53 27.6 ± 0.12 1.1 ± 0.12 2.4 ± 0.58 0 ± 0 2.1 ± 0.67 2.5 ± 0.34 1.7 ± 0.45

Saxifragaceae Bergenia crassifolia (L.) Fritsch 8.8 ± 0.79 12.5 ± 0.44 2.2 ± 0.37 2.5 ± 0.87 6.3 ± 1.65* 2.3 ± 0.86 10.6 ± 3.17* 1.9 ± 0.89

Schisandraceae Schisandra chinensis (Turcz.) Baill. 0 ± 0 23.7 ± 0.21 1.1 ± 0.24 4.7 ± 1.55 0 ± 0 23.7 ± 0.21 7.2 ± 2.52* 0.7 ± 0.44

Taxaceae Taxus baccata L. 0 ± 0 17.5 ± 0.33 3.1 ± 0.44 10.3 ± 1.77 0 ± 0 10.6 ± 1.35 0 ± 0 2.5 ± 0.86

Teloschistaceae Xanthoria parietina (L.) Th. Fr. 0 ± 0 2.3 ± 0.44 0 ± 0 10.3 ± 1.85 0 ± 0 10.5 ± 1.89 0 ± 0 2.4 ± 0.47

Note, the control was disks with benzylpenicillin sodium salt (one disk contains 6.0 ^g of the preparation, according to Valle et al. (2015), * - P < 0.05 compared to the control group.

We obtained ambiguous results on the influence of ethanol extracts from the plants on K. pneumonia. We observed effective slowing of growth when the bacteria were exposed to Artemisia annua (ZIG -12.6 mm), Tanacetum vulgare (10.7), Eleutherococcus senticosus (10.5),

Lavandula angustifolia (10.4), and Punica granatum (10.3). Slightly less potent against the colonies of these bacteria were alcohol tinctures of Echinacea purpurea (8.5), Petroselinum crispum (7.7), Bergenia cras-sifolia (6.3), Crataegus monogyna (6.3), Citrus sinensis (5.6), Ribes

nigrum (5.6), Buxus sempervirens (5.3), Melissa officinalis (4.6) and Cycas revoluta (4.2). Thus, 14 out of 49 samples (28.6%) of tested plant material inhibited growth of colonies of K. pneumonia. Maximum ZIG of colonies of P. vulgaris bacteria was presented by Punica granatum (15.4 mm). Also, there was determined high efficiency of effect of preparations ofBergenia crassifolia (10.6), Humulus lupulus (10.5) and Crataegus monogyna (10.4). The lowest effect on P. vulgaris was exerted by Schisandra chinensis (7.2), Paeonia suffruticosa (6.1), Echinacea purpurea (5.3), Lavandula angustfolia (4.3), Buxus sempervirens (4.1). Thus, 9 of 49 samples (18.4%) of the studied plant material inhibited growth of colonies of P. vulgaris, producing ZIG which exceeded 4 mm.

None of the tested preparations (Table 3) exceeded the control (benzylpenicillin sodium salt) for size of ZIG for L. monocytogenes, though Monarda fistulosa gave ZGI of 5.3 mm, and Punica granatum -

Table 3

Antibacterial effect of herbal infusions on Listeria monocytogenes, Coy

even 12.1 mm. We determined high resistance of C. xerosis during exposure to ethanol extracts of plants. High antibacterial activity was presented by Punica granatum (ZIG - 16.2 mm) against C. xerosis. Much lower activity against this species of bacteria was observed for alcohol tincture of Adonis vernalis (ZIG - 4.3 mm). Thus, only 2 of 49 samples (4.1%) of the studied plant material inhibited growth of colonies of L. monocytogenes and C. xerosis with ZIG exceeding 4 mm.

Tinctures of the studied species of plants had low effect on the growth of colonies of C. albicans: in none of cases did ZIG exceed 4 mm. At the same time, the parameter of the control (amphotericinin) did not exeed 2.7 mm. Therefore biological effect of the following plant extracts produced a ZIG of over 2 mm: Juniperus communis (3.4), Levisticum officinale (3.3), Citrus sinensis (2.5), Echinacea purpurea (2.3), Prunus armeniaca (2.3), Humulus lupulus (2.1).

cterium xerosis and Candida albicans (x ± SD, n = 12)

L. monocytogenes_C. xerosis_C. albicans*

test control test control test control

Apiaceae Levisticum officinale W. D. J. Koch 0 ± 0 37.4 ± 1.23 2.4 ± 0.65 11.2 ± 1.89 3.3 ± 0.42 1.5 ± 0.34

Apiaceae Petroselinum crispum (Mill.) Fuss 0 ± 0 40.5 ± 1.78 0 ± 0 9.7 ± 1.87 0 ± 0 0 ± 0

Apocynaceae Nerium oleander L. 0 ± 0 37.4 ± 3.79 0 ± 0 7.7 ± 1.30 0 ± 0 1.9 ± 0.26

Apocynaceae Vinca minor L. 0 ± 0 40.4 ± 2.67 0 ± 0 11.3 ± 1.75 0 ± 0 1.5 ± 0.32

Araliaceae Eleutherococcus senticosus (Rupr. and Maxim.) Maxim. 0 ± 0 35.5 ± 2.43 0 ± 0 7.2 ± 1.10 0 ± 0 1.1 ± 0.23

Araliaceae E. sieboldianus (Makino) Koidz. 0 ± 0 36.2 ± 4.64 0 ± 0 7.6 ± 1.24 0 ± 0 1.3 ± 0.19

Asparagaceae Yucca filamentosa L. 1.2 ± 0.33 40.4 ± 2.44 0 ± 0 12.6 ± 1.13 0 ± 0 0 ± 0

Asteraceae Artemisia annua L. 0 ± 0 36.1 ± 2.59 1.3 ± 0.22 11.1 ± 1.54 0 ± 0 1.1 ± 0.14

Asteraceae Echinacea purpurea (L.) Moench 0 ± 0 38.3 ± 1.37 0 ± 0 9.5 ± 1.64 2.3 ± 0.82 0 ± 0

Asteraceae Matricaria recutita L. 0 ± 0 39.5 ± 3.45 0 ± 0 7.1 ± 1.56 0 ± 0 2.3 ± 0.31

Asteraceae Tanacetum vulgare L. 0 ± 0 38.6 ± 1.68 1.1 ± 0.18 11.9 ± 1.79 0 ± 0 1.7 ± 0.21

Betulaceae Betula pendula Roth 0 ± 0 37.4 ± 1.55 0 ± 0 12.7 ± 1.65 0.5 ± 0.03 0 ± 0

Betulaceae Corylus avellana L. 0 ± 0 40.2 ± 1.75 0 ± 0 10.4 ± 1.73 1.2 ± 0.62 1.3 ± 0.43

Buxaceae Buxus sempervirens L. 0 ± 0 37.7 ± 2.17 0 ± 0 9.2 ± 1.39 1.3 ± 0.37 0 ± 0

Cannabaceae Humulus lupulus L. 0 ± 0 37.3 ± 1.27 3.2 ± 0.32 10.8 ± 1.68 2.1 ± 0.72 1.3 ± 0.42

Crassulaceae Crassula ovata (Miller) Druce 0 ± 0 39.2 ± 1.69 0 ± 0 7.2 ± 1.41 0 ± 0 2.2 ± 0.30

Crassulaceae Bryophyllum daigremontianum 0 ± 0 38.3 ± 2.58 0 ± 0 7.5 ± 1.54 0 ± 0 2.7 ± 0.45

(Raym.-Hamet and H. Perrier) A. Berger

Cupressaceae Juniperus communis L. 0 ± 0 37.3 ± 2.56 0 ± 0 10.8 ± 1.56 3.4 ± 0.72 1.5 ± 0.54

Cupressaceae Platycladus orientalis (L.) Franco 0 ± 0 35.3 ± 2.87 2.2 ± 0.69 10.8 ± 1.49 1.2 ± 0.12 1.7 ± 0.22

Cycadaceae Cycas revoluta Thunb. 0 ± 0 37.1 ± 3.97 0 ± 0 7.5 ± 1.23 0 ± 0 1.5 ± 0.16

Ericaceae Calluna vulgaris (L.) Hull 0 ± 0 37.7 ± 2.13 0 ± 0 10.8 ± 1.45 1.3 ± 0.22 1.2 ± 0.15

Ericaceae Rhododendron ferrugineum L. 1.3 ± 0.29 37.3 ± 1.52 0 ± 0 12.5 ± 1.35 0 ± 0 0 ± 0

Fabaceae Ceratonia siliqua L. 0 ± 0 35.2 ± 3.57 0 ± 0 12.3 ± 1.54 0 ± 0 0 ± 0

Fabaceae Trigonella foenum-graecum L. 0 ± 0 38.2 ± 2.57 0 ± 0 12.3 ± 1.78 0 ± 0 0 ± 0

Grossulariaceae Ribes nigrum L. 0 ± 0 38.5 ± 1.27 0 ± 0 11.5 ± 1.69 0 ± 0 1.8 ± 0.23

Hymenochaetaceae Phellinus tuberculosus (Baumg.) 0 ± 0 35.2 ± 2.59 0 ± 0 10.3 ± 1.76 0 ± 0 1.7 ± 0.62

Lamiaceae Lavandula angustifolia Mill. 0 ± 0 37.6 ± 1.44 0 ± 0 10.7 ± 1.97 1.3 ± 0.12 1.5 ± 0.18

Lamiaceae Melissa officinalis L. 0 ± 0 35.3 ± 1.17 1.2 ± 0.17 11.4 ± 1.88 0 ± 0 1.4 ± 0.43

Lamiaceae Monarda fistulosa L. 5.3 ± 0.98 37.3 ± 4.98 0 ± 0 7.7 ± 1.54 0 ± 0 2.1 ± 0.43

Lamiaceae Origanum vulgare L. 0 ± 0 36.5 ± 1.44 0 ± 0 9.8 ± 1.71 0 ± 0 0 ± 0

Lamiaceae Salvia sclarea L. 0 ± 0 37.2 ± 1.17 0 ± 0 7.3 ± 1.77 0 ± 0 2.1 ± 0.35

Lauraceae Laurus nobilis L. 0 ± 0 38.2 ± 2.88 2.1 ± 0.65 7.1 ± 1.47 0 ± 0 1.1 ± 0.32

Lythraceae Punica granatum L. 12.1 ± 2.43 38.4 ± 2.08 16.2 ± 2.32* 9.1 ± 1.44 0.5 ± 0.07 0 ± 0

Malvaceae Hibiscus rosa-sinensis L. 0 ± 0 40.5 ± 1.43 0 ± 0 7.2 ± 1.54 1.3 ± 0.12 2.4 ± 0.62

Menispermaceae Menispermum dauricum DC. 0 ± 0 37.3 ± 1.11 1.1 ± 0.12 10.3 ± 1.49 0 ± 0 1.4 ± 0.42

Moraceae Ficus benjamina L. 0 ± 0 35.1 ± 1.88 0 ± 0 7.4 ± 1.33 0 ± 0 1.2 ± 0.34

Moraceae Morus alba L. 1.1 ± 0.25 36.1 ± 4.63 0 ± 0 12.1 ± 1.77 0 ± 0 0 ± 0

Paeoniaceae Paeonia suffruticosa Andrews 0 ± 0 36.1 ± 1.19 0 ± 0 11.1 ± 1.89 0 ± 0 1.4 ± 0.37

Pinaceae Picea abies (L.) H. Karst 0 ± 0 37.2 ± 1.27 0 ± 0 11.7 ± 1.75 0 ± 0 1.5 ± 0.52

Ranunculaceae Adonis vernalis L. 2.5 ± 0.65 36.3 ± 1.17 4.3 ± 0.78 10.3 ± 1.86 1.5 ± 0.12 1.1 ± 0.35

Rosaceae Amelanchier ovalis Medik. 2.4 ± 0.74 36.2 ± 1.98 0 ± 0 11.7 ± 1.73 0 ± 0 1.5 ± 0.17

Rosaceae Prunus armeniaca L. 0 ± 0 38.4 ± 1.04 0 ± 0 10.7 ± 1.69 2.3 ± 0.33 1.2 ± 0.47

Rosaceae Crataegus monogyna Jacq. 0 ± 0 38.4 ± 2.67 0 ± 0 10.6 ± 1.84 0 ± 0 1.1 ± 0.28

Rutaceae Citrus sinensis (L.) Osbeck 0 ± 0 36.2 ± 2.48 0 ± 0 9.4 ± 1.75 2.5 ± 0.65 0 ± 0

Salicaceae Salix babylonica L. 0 ± 0 36.2 ± 2.66 0 ± 0 36.2 ± 2.66 0 ± 0 1.6 ± 0.63

Saxifragaceae Bergenia crassifolia (L.) Fritsch 0 ± 0 37.7 ± 1.37 0 ± 0 11.9 ± 1.54 1.2 ± 0.12 1.3 ± 0.41

Schisandraceae Schisandra chinensis (Turcz.) Baill. 0 ± 0 39.2 ± 1.13 1.1 ± 0.44 11.5 ± 1.96 0 ± 0 1.6 ± 0.25

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Taxaceae Taxus baccata L. 0 ± 0 39.4 ± 2.63 2.2 ± 0.54 10.6 ± 1.63 1.3 ± 0.22 1.6 ± 0.38

Teloschistaceae Xanthoria parietina (L.) Th. Fr. 0 ± 0 36.2 ± 1.57 0 ± 0 10.1 ± 1.67 1.5 ± 0.23 1.4 ± 0.27

Note: the control was disks with benzylpenicillin sodium salt (one disk contains 6.0 ^g of the preparation; disks with 15.0 ^g amphotericinin were used as positive control for C. albicans (according to Valle et al., 2015), * - P < 0.05 compared to the control group.

Discussion its cardiac effects were confirmed by prolonged use and presence of

cardiac glycosides of cardenolide type (Dragoeva et al., 2015). Ethanol Extract from Adonis vernalis is used in homeopathic preparations, extract from A. vernalis in our experiment had low antibacterial effect

against C. хerosis (4.3) and S. typhimurium (5.3). Tinctures from Artemisia annua and A. afra exerted effect on the course of schistosomiasis in a large clinical study by Argemi et al. (2018). In our study, we observed high antibacterial for use of A. annua against K pneumonia and S. typhimurium (12.6 and 7.3 mm), respectively.

Oxidative stress is initiated by reactive oxygen species (ROS), such as superoxide anion, perhydroxy radical and hydroxyl radical. Antioxidant defense systems have coevolved with aerobic metabolism to counteract oxidative damage from ROS. Extracts of Bergenia species (B. ciliata, B. ligulata and B. stracheyi) are best suited for lipid peroxidation mechanism by stopping the rupturing of veins. All these activities occur due to chemicals present in this plant, for example Havonoids, inorganic multivalent elements (calcium and iron) (Chauhan et al., 2016). According to the results of our study, the inhibitory effect ofB. crassifolia was exerted on P. vulgaris, K. pneumonia and S. typhimurium (10.6, 6.3 and 8.8 mm).

Antibacterial and antimicrobial activity of different birch parts in general should be further explored when used as herbs and in herbal preparations (Duric et al., 2013). We confirm low antibacterial effect of Betula pendula only against S. typhimurium (4.3 mm).

In our experiment we determined the inhibitory effect of Buxus sempervirens on P. vulgaris and K. pneumonia (4.1 and 5.3 mm respectively).

Ethyl acetate extract of Citrus sinensis exhibited inhibitory action against against gram-positive S. aureus, B. subtilis) and gram-negative (E. coli and S. typhi) bacteria (Haroen et al., 2018). We confirm low antibacterial effect of Citrus sinensis on C. albicans (2.5 mm) and slightly higher at inhibition of growth of bacteria of K. pneumonia and S. typhimurium (5.6 and 6.5 mm, respectively).

Our studies confirm the data provided by Muiruri & Mwangi (2016) about inhibitory properties of Crassula ovata for E. coli (in our experiment, zone of inhibition of growth equaled 12.3 mm), and also we determined antibacterial effect ofthis plant on S. typhimurium (4.1 mm).

The highest antibacterial activities were recorded for the yellow azarole leaf and fruit peel extracts, especially against S. aureus and S. faecalis (Belkhir et al., 2013). We obtained high antibacterial effect of Crataegus monogyna on P. vulgaris and K. pneumonia (10.4 and 6.3 mm, respectively).

The structural and antimicrobial characteristics of Cy-AMP1 and Cy-AMP2 indicate that they are a novel type of antimicrobial peptide belonging to the plant defensin family (Yokoyama et al., 2008). We noted the inhibitory effect caused by Cycas revoluta only on K. pneumonia (4.2 mm).

Preparations from Echinacea purpurea are broadly used for treating influenza-like illnesses of children and adults (Mandal et al., 2010). We determined inhibitory effect of eastern purple coneflower (Echinacea purpurea) against C. albicans (2.3 mm), E. coli (4.2 mm), P. vulgaris (5.3 mm) and K. pneumonia (8.5 mm).

Results obtained by Jang et al. (2016) suggest that the fruit of Siberian ginseng may be a good candidate as a source of antioxidant and antimicrobial ingredients - antimicrobial activity was observed against Kocuria rhizophila (MIC = 125 ^g/mL), Micrococcus luteus (MIC = 500 ^g/mL), and Escherichia coli (MIC = 63 ^g/mL). We determined antibacterial effect of Eleuthemcoccus senticosus on K. pneumonia (10.5 mm).

Yarmolinsky et al. (2012) observed anti-virus action of Ficus ben-jamina: crude ethanol extracts from leaves of this species strongly inhibited Herpes Simplex Virus 1 and 2 (HSV-1/2) as well as Varicella Zoster Virus (VZV) cell infection in vitro; we determined inhibitory effect on S. typhimurium (7.6 mm).

Wounds treated with both Hibiscus rosa-sinensis leaves water and ethanol extracts showed better healing with slightly visible fine line scar (Ali, 2014). We obtained positive antibacterial effect only against S. typhimurium (4.1 mm).

Hop extract inhibited the growth and metabolism of Streptococcus bovis, but Selenomonas ruminantium and Megasphaera elsdenii were not affected (Flythe & Aiken, 2010). According to our data, Humulus lupulus has a notable inhibitory effect on P. vulgaris (10.5 mm) and insignificant effect on C. albicans (2.1 mm).

Results concerning the antifungal activity of Juniperus communis demonstrated the potential of needle oil against dermatophytes, particu-

larly for Microsporum canis and Trichophyton rubrum with MIC and MLC of 0.32 pL/mL (Cabral et al., 2012). We observed only antimicrobial effect of Juniperus communis against C. albicans (3.4 mm). Maajida Aafreen et al. (2019) determined anti-inflammatory activity of Laurus nobilis. We established a strong high inhibiting action on S. typhimurium (13.3 mm).

Ebrahimi et al. (2016) discovered that Levisticum officinale extracts inhibited the growth of the reference strains of Pseudomonas aerugino-sa, Acinetobacter baumannii, Escherichia coli and Salmonella enteriti-dis within a concentration range of 3125 to 25000 pg/mL. We have confirmed low inhibitory effect only on C. albicans (3.3 mm).

Korcan et al. (2018) have reported strong antimicrobial effects of the oils from Melissa officinalis against tested bacteria (Salmonella typhimorium, Escherichia coli, Listeria monocytogenes and Staphylo-coccus aureus). We confirm inhibitory action of the preparations from this plant on S. typhimurium (7.4 mm), and also found antibacterial effect on K. pneumonia (4.6 mm).

Monarda showed a lower minimum inhibitory concentration, i.e. a stronger activity, against pathogenic (Escherichia coli, Erwinia amylovora and Candida albicans) than beneficial microorganisms (Bifidobacterium animalis and Lactobacillus casei) (Mattarelli et al., 2017). We observed antibacterial effect ofthis plant only against L. monocytogenes (5.3 mm).

Significant antibacterial potential of Morus alba against Staphylo-coccus aureus (14 mm) was higher than against Escherichia coli (10 mm) and was shown at well diffusion method (Arshad, 2018). We confirm inhibitory effect only for E. coli (4.1 mm).

Chemical extract of Nerium oleander in vitro displayed antibacterial, antifungal activities and antiviral effects in the treatment of Parainfluenzal (Avci, 2014). We confirm antibacterial effect only against S. typhimurium (6.2 mm).

Various Origanum vulgare clones and plant parts showed different activity on the studied microorganisms (Alsina et al., 2010). We determined inhibitory effect of oregano on S. typhimurium (5.6 mm).

Paeonia suffruticosa is an important Chinese medicinal herb. Studies by Gao & He (2017) indicate strong antiproliferative and anti-metastasizing effect of this species. We observed inhibiting effect of P. suffruticosa for P. vulgaris (6.1 mm).

Seyyednejad et al. (2008) determined antibacterial activity of Pe-troselinum crispum against Brucella melitensis, E. coli and Bacillus li-cheniformis. We confirm inhibiting activity of parsley against E. coli (4.3 mm), and also observed high effect on K. pneumonia (7.7 mm).

The data of Fan et al. (2011) indicate that the inhibitory effects of the chloroform fraction and its components (hinokiol and acacetin) on 5-lipoxygenase contribute to the anti-inflammatory activity of Platycladus orientals. We confirm antibacterial effect on S. typhimurium (7.4 mm).

The most effective antibacterial activity of Prunus armeniaca was observed in the ethanolic extract of the fruits against Staphylococcus aureus, Bacillus subtilis, Proteus vulgaris and Escherichia coli (Sehgal, 2012). We observed only low activity in inhibiting C. albicans (2.3 mm).

Macrophages are polarized into different phenotypes depending on microenvironment of the tissue where they reside. In obesity-associated inflammation, Mrtype macrophages are predominant in the inflamed tissue, exerting pro-inflammatory responses. Studies by Lee & Lee (2019) demonstrated that blackcurrant consumption attenuates hepatic inflammation and lipopolysaccharide-stimulated inflammatory responses of splenocytes in obese mice. In this study, we determined whether blackcurrant modulates macrophage phenotypes exert anti-inflammatory action. We obtained inhibitory effect of Ribes nigrum against K. pneumonia (5.6 mm).

The antibiofilm activity of Salvia sclarea extracts was determined against Staphylococcus aureus and S. epidermidis (Küfük et al., 2019). In our experiment, we determined inhibitory effect of S. sclarea against E. coli (4.3 mm).

Han (2016) reports that Schisandra chinensis extract is effective against E. coli, and increase L. bulgaricus number and the antibacterial mechanism for E. coli is as follows: the extract decreases the number of cell divisions in logarithmic phases and induces the voids of cell walls to increase, thus the materials in the cell leak out. We determined inhibitory effect against P. vulgaris (7.2 mm).

Essential oil and extract of costmary was characterized by stronger antibacterial activity (expressed as MIC and MBC values) than tansy. In turn, tansy extract was distinguished by higher antioxidant potential (determined by FRAP and DPPH) in comparison to costmary (Bqczek et al., 2017). There was determined positive antibacterial effect of Tana-cetum vulgare against K. pneumonia and S. typhimurium (10.7 and 6.4 mm respectively).

Glycosides were isolated and determined as bedelphinidin 3-G Vinca major by chemical and spectroscopic methods (Tatsuzawa, 2015). We confirmed inhibitory effect of Vinca major only on E. coli (4.1 mm).

Minimum inhibitory concentration of 5% ether oil from Lavandula angustifolia decreased population of bacteria in the air (Kurniawansyah et al., 2018). We observed positive effect of lavender on P. vulgaris and high inhibiting effect on K. pneumonia and S. typhimurium (4.3, 10.4 and 10.4 mm respectively).

We obtained maximum inhibitory effect against 6 strains of microorganisms exposed to Punica granatum on K. pneumonia, L. monocytogenes, S. typhimurium, P. vulgaris, C. xerosis and E. coli (10.3, 12.1, 14.3, 15.4, 16.2 and 17.2 mm respectively).

Conclusion

Maximum inhibitory effect was observed for Punica granatum against K. pneumonia, L. monocytogenes, S. typhimurium, P. vulgaris, C. xerosis and E. coli; Lavandula angustifolia against P. vulgaris, K. ¡pneumonia and S. typhimurium; Echinacea purpurea against C. albicans, E. coli, P. vulgaris, K. pneumonia; Bergenia crassifolia against P. vulgaris, K. pneumonia and S. typhimurium. The obtained results allow food additives to be developed for veterinary and medical use for people and animals, affected by heightened risk of infection with bacterial and fungal infections, on the basis of phytopreparations.

References

Ali, A. A., Jusoh, N. H., Saridin, N., Wahab, M. S. A., & Zohdi, R. M. (2014). Evaluation of Hibiscus rosa-sinensis leaves extracts as wound healing promoter on rats. In: 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES).

Ali, K., Khan, S., Khan, N., Khan, W., Rahman, I. U., Ullah, F., Ali, K., & Nisar, M. (2017). Ethnobotanical and ecological study of Punica granatum in district Dir, Khyber Pakhtunkhwa, Pakistan. Regulatory Mechanisms in Biosystems, 8(4), 656-661. Alsina, I., Dubova, L., Kruma, Z., Krainis, J., Zukauska, I., & Galoburda, R. (2010). Antimicrobial activity of extracts from different Origanum vulgare clones grown in Latvia. Microorganisms in Industry and Environment, 2010. Pp. 355-358.

Al-Zoreky, N. S. (2009). Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. International Journal of Food Microbiology, 134(3), 244-248. Argemi, X., Hansmann, Y., Gaudart, J., Gillibert, A., Caumes, E., Jaureguiberry, S., & Meyer, N. (2018). Comment on "Effect of Artemisia annua and Artemisia afra tea infusions on schistosomiasis in a large clinical trial". Phytome-dicine, 62, 152804.

Arshad, M. (2018). Bioinspired synthesis of silver nanoparticles from Morus alba and their photocatalytic degradation and antibacterial activity assessment. Pure and Applied Biology, 7(4), 1252-1260. Avci, O. (2014). Determination of in vitro antiviral activity of Nerium oleander distillate against to parainfluenza-3 virus. Animal and Veterinary Sciences, 2(5), 150-153.

B^czek, K. B., Kosakowska, O., Przybyi, J. L., Pioro-Jabrucka, E., Costa, R., Mondello, L., Gniewosz, M., Synowiec, A., & W^glarz, Z. (2017). Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum vulgare L.). Industrial Crops and Products, 102, 154-163. Belkhir, M., Rebai, O., Dhaouadi, K., Congiu, F., Tuberoso, C. I. G., Amri, M., & Fattouch, S. (2013). Comparative analysis of tunisian wild Crataegus azaro-lus (yellow azarole) and Crataegus monogyna (red azarole) leaf, fruit, and traditionally derived syrup: Phenolic profiles and antioxidant and antimicrobial activities of the aqueous-acetone extracts. Journal of Agricultural and Food Chemistry, 61(40), 9594-9601. Boyko, A. A., & Brygadyrenko, V. V. (2016). Influence of water infusion of medicinal plants on larvae of Strongyloides papillosus (Nematoda, Strongyloididae). Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(2), 519-525. Cabral, C., Francisco, V., Cavaleiro, C., Gonjalves, M. J., Cruz, M. T., Sales, F., Batista, M. T., & Salgueiro, L. (2012). Essential oil of Juniperus communis

subsp. alpina (Suter) Celak Needles: Chemical composition, antifungal activity and cytotoxicity. Phytotherapy Research, 26(9), 1352-1357.

Chauhan, R., Ruby, K., & Dwivedi, J. (2016). Antioxidant, lipid peroxidation and astringency study of hydroethanolic root extracts of Bergenia ligulata, Ber-genia ciliata and Bergenia stracheyi. European Journal of Medicinal Plants, 15(1), 1-10.

Choi, J. G., Kang, O.-H., Lee, Y.-S., Chae, H.-S., Oh, Y.-C., Brice, O.-O., Kim, M.-S., Sohn, D.-H., Kim, H.-S., Park, H., Shin, D.-W., Rho, J.-R., & Kwon, D.-Y. (2011). In vitro and in vivo antibacterial activity of Punica granatum peel ethanol extract against Salmonella. Evidence-Based Complementary and Alternative Medicine, 2011, 690518.

Dahham, S. S., Ali, M. N., Tabassum, H., & Khan, M. (2010). Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.). American-Eurasian Journal of Agricultural and Environmental Sciences, 9(3), 273281.

Dragoeva, A., Ignatova-Ivanova, T., Koleva, V., Behchet, L., Nanova, Z., Kaschieva, M., & Arhangelova, N. (2015). Comparison of the effect of water infusions of Origanum vulgare ssp. vulgare and Adonis vernalis on the growth of human melanoma cell line and Gram-positive and Gram-negative bacteria. International Journal of Current Microbiology and Applied Sciences, 4(3), 571-577.

Duric, K., Kovac-Besovic, E., Niksic, H., & Sofic, E. (2013). Antibacterial activity of methanolic extracts, decoction and isolated triterpene products from different parts ofbirch, Betula pendula, Roth. Journal of Plant Studies, 2(2), 61-70.

Ebrahimi, A., Eshraghi, A., Mahzoonieh, M. R., & Lotfalian, S. (2016). Antibacterial and antibiotic-potentiation activities of Levisticum officinale L. extracts on pathogenic bacteria. International Journal of Infection, 4(2), 38768.

Fan, S.-Y., Zeng, H.-W., Pei, Y.-H., Li, L., Ye, J., Pan, Y.-X., Zhang, J.-G., Yuan, X., & Zhang, W.-D. (2012). The anti-inflammatory activities of an extract and compounds isolated from Platycladus orientalis (Linnaeus) Franco in vitro and ex vivo. Journal of Ethnopharmacology, 141(2), 647-652.

Flythe, M. D., & Aiken, G. E. (2010). Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria. Journal of Applied Microbiology, 109(4), 1169-1176.

Gao, Y., & He, C. (2017). Anti-proliferative and anti-metastasis effects of ten oli-gostilbenes from the seeds of Paeonia suffruticosa on human cancer cells. Oncology Letters, 13(6), 4371-4377.

Han, Y. (2016). Antimicrobial activity and mechanism of Schisandra chinensis extract. In: Proceedings of the 2016 5th International Conference on Environment, Materials, Chemistry and Power Electronics. Pp. 192-196.

Haroen, U., Budiansyah, A., & Nelwida (2018). Phytochemical screening and in vitro antimicrobial effect of orange (Citrus sinensis) ethyl acetate extract silage. Pakistan Journal of Nutrition, 17(5), 214-218.

Hayouni, E. A., Miled, K., Boubaker, S., Bellasfar, Z., Abedrabba, M., Iwaski, H., Oku, H., Matsui, T., Limam, F., & Hamdi, M. (2011). Hydroalcoholic extract based-ointment from Punica granatum L. peels with enhanced in vivo healing potential on dermal wounds. Phytomedicine, 18(11), 976-984.

Jang, D., Lee, J., Eom, S., Lee, S., Gil, J., Lim, H., & Hyun, T. (2016). Composition, antioxidant and antimicrobial activities of Eleutherococcus senticosus fruit extracts. Journal of Applied Pharmaceutical Science, 6(3), 125-130.

Korcan, S. E., Aksoy, B., Erdogmu§, S. F., & Cigerci, I. H. (2018). Investigation of antimicrobial activity and DNA protective capacity of Melissa officinalis extracts. Afyon Kocatepe University Journal of Sciences and Engineering, 18(3), 757-762.

Kujuk, S., Soyer, P., & Tunali, Y. (2019). Determination of antimicrobial and biological activities of Salvia sclarea L. (Lamiaceae) extracts. Journal of the Turkish Chemical Society, Section A: Chemistry, 6(1), 15-20.

Kurniawansyah, I. S., Ratnawulan, S. M., & Budiman, A. (2018). The antibacterial activities of aromatherapy essential oils of lavender (Lavandula angustifolia Mill), rosemary (Rosmarinus officinalis L.) and ylang-ylang (Cananga odorata (Lamk.) Hook) against airborne bacteria. International Research Journal of Pharmacy, 9(6), 71-75.

Lee, Y., & Lee, J.-Y. (2019). Blackcurrant (Ribes nigrum) extract exerts an anti-inflammatory action by modulating macrophage phenotypes. Nutrients, 11(5), 975.

Maajida Aafreen, M., Rv, G., & Thangavelu, L. (2019). Evaluation of antiinflammatory action of Laurus nobilis-an in vitro studyf anti-inflammatory action of Laurus nobilis-an in vitro study. International Journal of Research in Pharmaceutical Sciences, 10(2), 1209-1213.

Mahajan, D., Bhat, Z. F., & Kumar, S. (2015). Pomegranate (Punica granatum) rind extract as a novel preservative in cheese. Food Bioscience, 12, 47-53.

Mandal, S., DebMandal, M., Pal, N. K., & Saha, K. (2010). Antibacterial activity of honey against clinical isolates of Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica serovar typhi. Asian Pacific Journal of Tropical Medicine, 3(12), 961-964.

Mattarelli, P., Epifano, F., Minardi, P., Di Vito, M., Modesto, M., Barbanti, L., & Bellardi, M. G. (2017). Chemical composition and antimicrobial activity of essential oils from aerial parts of Monarda didyma and Monarda fistulosa cultivated in Italy. Journal of Essential Oil Bearing Plants, 20(1), 76-86.

Mendez, M., Rodríguez, R., Ruiz, J., Morales-Adame, D., Castillo, F., Hernández-Castillo, F. D., & Aguilar, C. N. (2012). Antibacterial activity of plant extracts obtained with alternative organics solvents against food-borne pathogen bacteria. Industrial Crops and Products, 37(1), 445-450.

Mikulásová, M., & Vaverková, S. (2009). Antimicrobial effects of essential oils from Tanacetum vulgare L. and Salvia officinalis L., growing in Slovakia. Nova Biotechnologica, 9(2), 161-167.

Millezi, A. F., Caixeta, D. S., Rossoni, D. F., Cardoso, M. das G., & Piccoli, R. H. (2012). In vitro antimicrobial properties of plant essential oils Thymus vulgaris, Cymbopogon citratus and Laurus nobilis against five important food-borne pathogens. Food Science and Technology, 32(1), 167-172.

Muiruri, M., & Mwangi, W. (2016). Phytochemical and antimicrobial activity of (Crassula ovata) jade plant on different strains of bacteria. European Journal of Medicinal Plants, 11(1), 1-12.

Natarajan, P., Katta, S., Andrei, I., Babu Rao Ambati, V., Leonida, M., & Haas, G. J. (2008). Positive antibacterial co-action between hop (Humulus lupulus) constituents and selected antibiotics. Phytomedicine, 15(3), 194-201.

Ozaki, H., Esaki, H., Takemoto, K., Ikeda, A., Nakatani, Y., Someya, A., Hiraya-ma, N., & Murase, T. (2011). Antimicrobial resistance in fecal Escherichia coli isolated from growing chickens on commercial broiler farms. Veterinary Microbiology, 150(1-2), 132-139.

Pedersen, K., Hammer, A. S., Siarensen, C. M., & Heuer, O. E. (2009). Usage of antimicrobials and occurrence of antimicrobial resistance among bacteria from mink. Veterinary Microbiology, 133, 115-122.

Sehgal, J. (2012). Antimicrobial activity of fruits of Prunus armeniaca (L.). Journal of Drug Delivery and Therapeutics, 2(4), 163-166.

Semeniuc, C. A., Pop, C. R., & Rotar, A. M. (2017). Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. Journal of Food and Drug Analysis, 25(2), 403-408.

Seyyednejad, S. M., Maleki, S., Damab, N. M., & Motamedi, H. (2008). Antibacterial activity of Prunus mahaleb and parsley (Petroselinum crispum) against some pathogen. Asian Journal of Biological Sciences, 1(1), 51-55.

Tatsuzawa, F. (2015). Differences in the floral anthocyanin content of violet-blue flowers of Vinca minor L. and V. major L. (Apocynaceae). Phytochemistry Letters, 13, 365-369.

Valle, D. L., Andrade, J. I., Puzon, J. J. M., Cabrera, E. C., & Rivera, W. L. (2015). Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria. Asian Pacific Journal of Tropical Bio-medicine, 5(7), 532-540.

Wasyl, D., Hoszowski, A., Zaj^c, M., & Szulowski, K. (2013). Antimicrobial resistance in commensal Escherichia coli isolated from animals at slaughter. Frontiers in Microbiology, 4, 221.

Yarmolinsky, L., Huleihel, M., Zaccai, M., & Ben-Shabat, S. (2012). Potent antiviral flavone glycosides from Ficus benjamina leaves. Fitoterapia, 83(2), 362-367.

Yokoyama, S., Kato, K., Koba, A., Minami, Y., Watanabe, K., & Yagi, F. (2008). Purification, characterization, and sequencing of antimicrobial peptides, Cy-AMP1, Cy-AMP2, and Cy-AMP3, from the Cycad (Cycas revoluta) seeds. Peptides, 29(12), 2110-2117.

i Надоели баннеры? Вы всегда можете отключить рекламу.