Научная статья на тему 'ANTIBACTERIAL, ANTI-ADHESIVE AND ANTI-BIOFILM-FORMING ACTIVITY OF PLANT COMPLEXES AGAINST PERIODONTOPATHOGENIC BACTERIA IN VITRO'

ANTIBACTERIAL, ANTI-ADHESIVE AND ANTI-BIOFILM-FORMING ACTIVITY OF PLANT COMPLEXES AGAINST PERIODONTOPATHOGENIC BACTERIA IN VITRO Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
41
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
periodontitis / copper derivatives of chlorophyll / gel / aspen bark / dihydroquercetin / biofilm formation preventing properties / antimicrobial properties / adhesion prevention properties / Phytodent / пародонтит / медные производные хлорофилла / гель / кора осины / дигидрокверцетин / антибиопленкообразующее действие / антимикробное действие / антиадгезивное действие / Фитодент

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Nosov M.A., Latif I.I., Kraeva L.A., Khamdulaeva G.N., Sharov A.N.

Periodontitis is a problem urgent in Russia and throughout the world in general. Because of the dynamically changing flora causing this diseases, the treatment methods designed against it should be adapted on a regular basis. The classic approach to arresting development of the acute process relies on 0.2–0.12% chlorhexidine, a chemical antiseptic, but after 3 weeks of use, its efficacy drops drastically because pathogenic flora adjusts thereto. In the recent years, plantbased complexes with antiseptic properties have shown their capacity to challenge the classic approach. Obviously, efficacy of active ingredients depends on the form of the final product. The marker of periodontitis in the oral cavity is Staphylococcus aureus. Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii have virulence markers that are copathogens for periodontitis. This study aimed to find plant-based preparations capable of eliminating the said microbes and Streptococcus mitis, Streptococcus oralis, Streptococcus salivarius, Enterococcus faecalis. We compared antibacterial, adhesion and biofilm formation preventing properties of Phytodent plant-based products in various forms: water solution, water-alcohol solution, oil solution, gel. Long exposure form — gel — proved to be the most effective in terms of the properties tested. Products with synthetic and plant-based antiseptics, as well as those with plant-based antiseptics in maximum concentration (elixir), had comparable efficacy. Water and oil solutions are less effective because of the lower active ingredient concentration and relatively brief exposure. Our results support the results of clinical studies dedicated to the use of Phytodent products as oral care products in the context of periodontitis prevention and treatment. We recommend conducting further studies comparing compositions, cross- and comparative studies investigating the effect of frequency of application and time of exposure, such studies registering titers of active ingredient concentrations, and with subjects thereof including mixed biofilms.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ИССЛЕДОВАНИЕ АНТИБАКТЕРИАЛЬНОЙ, АНТИАДГЕЗИВНОЙ И АНТИБИОПЛЕНКООБРАЗУЮЩЕЙ АКТИВНОСТИ РАСТИТЕЛЬНЫХ КОМПЛЕКСОВ В ОТНОШЕНИИ ПАРОДОНТОПАТОГЕННЫХ БАКТЕРИЙ IN VITRO

Пародонтит — актуальная проблема в России и в мире, требующая регулярной адаптации схем лечения и реабилитации из-за динамично меняющейся пародонтопатогенной флоры. Классическая терапия купирования острого процесса включает использование химического антисептика хлоргексидин 0,2–0,12%, эффективного только до трех недель применения ввиду адаптации патогенной флоры. Растительные комплексы с антисептическим действием в последние годы зарекомендовали себя как способные заместить классическую терапию. Очевидно, что разные формы выпуска имеют разную эффективность. Staphylococcus aureus в полости рта служит маркером пародонтита. Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii обладают маркерами вирулентности в качестве копатогенов при пародонтите. Целью исследования было выявить растительные препараты для борьбы с перечисленными микробами, а также с Streptococcus mitis, Streptococcus oralis, Streptococcus salivarius, Enterococcus faecalis. Проводили сравнительную оценку антибактериальной, антиадгезивной и антибиопленкообразующей активности отечественных средств «Фитодент» из растительного сырья: водных, водно-спиртовых и масляных растворов; гелевых форм. Наибольшая антибактериальная, антиадгезивная и антибиопленочная эффективность обнаружена у форм с длительной экспозицией — гелей, сопоставимая — у средств с синтетическими и с растительными антисептиками, а также у форм с максимальной концентрацией растительных антисептиков — эликсира. Водные и масляные формы за счет меньшей концентрации и сравнительно короткого времени контакта имеют меньшую эффективность. Полученные результаты подтверждают результаты клинических наблюдений за применением средств «Фитодент» в качестве ухода за полостью рта при лечении и профилактике пародонтита. Рекомендованы дальнейшие сравнительные исследования композиций, перекрестные и сравнительные исследования в зависимости от частоты применения и времени воздействия и с титрованием концентраций активных компонентов, в том числе на смешанных биопленках.

Текст научной работы на тему «ANTIBACTERIAL, ANTI-ADHESIVE AND ANTI-BIOFILM-FORMING ACTIVITY OF PLANT COMPLEXES AGAINST PERIODONTOPATHOGENIC BACTERIA IN VITRO»

ANTIBACTERIAL, ANTI-ADHESIVE AND ANTI-BIOFILM-FORMING ACTIVITY OF PLANT COMPLEXES AGAINST PERIODONTOPATHOGENIC BACTERIA IN VITRO

Nosova MA1, Latif II2, Kraeva LA2'3, Khamdulaeva GN3, Sharov AN4 Kopetskiy IS5, Eremin DA4, Postnikova EV6, MA Postnlkov1

1 Samara State Medical University, Samara, Russia

2 Military Medical Academy named after S.M.Kirov, St. Petersburg, Russia

3 Saint-Petersburg Pasteur Institute, St. Petersburg, Russia

4 ROMASHKA dental shop, department of scientific research, St. Petersburg, Russia

5 Pirogov Russian National Research Medical University, Moscow, Russia

6 Korolev Samara State University, Samara, Russia

Periodontitis is a problem urgent in Russia and throughout the world in general. Because of the dynamically changing flora causing this diseases, the treatment methods designed against it should be adapted on a regular basis. The classic approach to arresting development of the acute process relies on 0.2-0.12% chlorhexidine, a chemical antiseptic, but after 3 weeks of use, its efficacy drops drastically because pathogenic flora adjusts thereto. In the recent years, plant-based complexes with antiseptic properties have shown their capacity to challenge the classic approach. Obviously, efficacy of active ingredients depends on the form of the final product. The marker of periodontitis in the oral cavity is Staphylococcus aureus. Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii have virulence markers that are copathogens for periodontitis. This study aimed to find plant-based preparations capable of eliminating the said microbes and Streptococcus mitis, Streptococcus oralis, Streptococcus salivarius, Enterococcus faecalis. We compared antibacterial, adhesion and biofilm formation preventing properties of Phytodent plant-based products in various forms: water solution, water-alcohol solution, oil solution, gel. Long exposure form — gel — proved to be the most effective in terms of the properties tested. Products with synthetic and plant-based antiseptics, as well as those with plant-based antiseptics in maximum concentration (elixir), had comparable efficacy. Water and oil solutions are less effective because of the lower active ingredient concentration and relatively brief exposure. Our results support the results of clinical studies dedicated to the use of Phytodent products as oral care products in the context of periodontitis prevention and treatment. We recommend conducting further studies comparing compositions, cross- and comparative studies investigating the effect of frequency of application and time of exposure, such studies registering titers of active ingredient concentrations, and with subjects thereof including mixed biofilms. Keywords: periodontitis, copper derivatives of chlorophyll, gel, aspen bark, dihydroquercetin, biofilm formation preventing properties, antimicrobial properties, adhesion prevention properties, Phytodent

Acknowledgements: authors thank SS Astashova, illustrator with the Academy of Chlorophyll and Aspen Bark journal, for preparing photos and tables for this publication. Author contribution: Kraeva LA, Khamdulayeva GN, Nosova MA — concept and design of the study; Latif II, Sharov AN — literature analysis, data collection and processing; Kraeva LA — statistical processing; Kraeva LA, Sharov AN, Latif II — manuscript drafting; Kopetsky IS, Eremin DA, Postnikova EV Postnikov MA—editing. Compliance with ethical standards: the study was approved by the Samara State Medical University's Ethics Committee (Minutes # ... of January 10, 2022) [><1 Correspondence should be addressed: Alexey N. Sharov

Nevsky Prospekt, 46, Saint Petersburg, Russia; me@sharovalex.ru Received: 16.06.2023 Accepted: 08.08.2023 Published online: 24.08.2023 DOI: 10.24075/brsmu.2023.029

ИССЛЕДОВАНИЕ АНТИБАКТЕРИАЛЬНОЙ, АНТИАДГЕЗИВНОЙ И АНТИБИОПЛЕНКООБРАЗУЮЩЕЙ АКТИВНОСТИ РАСТИТЕЛЬНЫХ КОМПЛЕКСОВ В ОТНОШЕНИИ ПАРОДОНТОПАТОГЕННЫХ БАКТЕРИЙ IN VITRO

М. А. Носова1, И. И. Латиф2, Л. А. Краева2,3, Г. Н. Хамдулаева3, А. Н. Шаров4 И. С. Копецкий5, Д. А. Еремин4, Е. В. Постникова6, М. A. Постников1

1 Самарский государственный медицинский университет, Самара, Россия

2 Военно-медицинская академия имени С. М. Кирова, Санкт-Петербург, Россия

3 Санкт-Петербургский научно-исследовательский институт эпидемиологии и микробиологии имени Пастера, Санкт-Петербург, Россия

4 Стоматологический магазин «РОМАШКА», отдел научных исследований, Санкт-Петербург Россия

5 Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия

6 Самарский национальный исследовательский университет имени С. П. Королева, Самара, Россия

Пародонтит — актуальная проблема в России и в мире, требующая регулярной адаптации схем лечения и реабилитации из-за динамично меняющейся пародонтопатогенной флоры. Классическая терапия купирования острого процесса включает использование химического антисептика хлоргексидин 0,2-0,12%, эффективного только до трех недель применения ввиду адаптации патогенной флоры. Растительные комплексы с антисептическим действием в последние годы зарекомендовали себя как способные заместить классическую терапию. Очевидно, что разные формы выпуска имеют разную эффективность. Staphylococcus aureus в полости рта служит маркером пародонтита. Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii обладают маркерами вирулентности в качестве копатогенов при пародонтите. Целью исследования было выявить растительные препараты для борьбы с перечисленными микробами, а также с Streptococcus mitis, Streptococcus oralis, Streptococcus salivarius, Enterococcus faecalis. Проводили сравнительную оценку антибактериальной, антиадгезивной и антибиопленкообразующей активности отечественных средств «Фитодент» из растительного сырья: водных, водно-спиртовых и масляных растворов; гелевых форм. Наибольшая антибактериальная, антиадгезивная и антибиопленочная эффективность обнаружена у форм с длительной экспозицией — гелей, сопоставимая — у средств с синтетическими и с растительными антисептиками, а также у форм с максимальной концентрацией растительных антисептиков — эликсира. Водные и масляные формы за счет меньшей концентрации и сравнительно короткого времени контакта имеют меньшую эффективность. Полученные результаты подтверждают результаты клинических наблюдений за применением средств «Фитодент» в качестве ухода за полостью рта при лечении и профилактике пародонтита. Рекомендованы дальнейшие сравнительные исследования композиций, перекрестные и сравнительные исследования в зависимости от частоты применения и времени воздействия и с титрованием концентраций активных компонентов, в том числе на смешанных биопленках.

Ключевые слова: пародонтит, медные производные хлорофилла, гель, кора осины, дигидрокверцетин, антибиопленкообразующее действие, антимикробное действие, антиадгезивное действие, Фитодент

Благодарности: авторы выражают благодарность С. С. Асташовой, дизайнеру научно-практического журнала «Академия хлорофилла и коры осины» за подготовку фотографий и таблиц для публикации.

Вклад авторов: Л. А. Краева, Г. Н. Хамдулаева, М. А. Носова — концепция и дизайн исследования; И. И. Латиф, А. Н. Шаров — анализ литературы, сбор и обработка данных; Л. А. Краева — статистическая обработка; Л. А. Краева, А. Н. Шаров, И. И. Латиф — подготовка черновика рукописи; И. С. Копецкий, Д. А. Еремин, Е. В. Постникова, М. A. Постников — редактирование.

Соблюдение этических стандартов: исследование одобрено этическим комитетом СамГМУ (протокол № 7 от 10 января 2022 г.). CxJ Для корреспонденции: Алексей Николаевич Шаров

Невский пр., д. 46, г. Санкт-Петербург, Россия; me@sharovalex.ru

Статья получена: 16.06.2023 Статья принята к печати: 08.08.2023 Опубликована онлайн: 24.08.2023 DOI: 10.24075/vrgmu.2023.029

Periodontitis (P) is an extremely urgent oral cavity problem in Russia and the entire world in general [1-4]. Almost all medicines with proven effectiveness against it, those that arrest acute infectious and inflammatory processes, contain a chemical antiseptic, 0.12-0.2% chlorhexidine in most cases, regardless of the form of the product [5-8]. However, bacterial flora can grow resistant to chemical antiseptics, which makes them effective only for a limited period of time. In the recent years, plant-based complexes with antiseptic properties proved they are a viable alternative to the standard antiseptic therapy products, with which these complexes are comparable in terms of the range of action and efficacy [9-12]. Obviously, different forms of products, be they water solutions, water-alcohol solutions, oil solutions, or gels, have different efficacy, which is conditioned by the time the product remains on periodontal tissues, and subsequently, frequency of its use, time needed to arrest the acute process and, ultimately, the time of compensated stable remission of the patient [13-14]. There is evidence confirming antibacterial properties of phytoncides of coniferous plants, extracts from aspen bark, Japanese and sugar kelp. The results of their application have been known for a long time, and various combined forms are used in dentistry in a cosmopolitan manner. However, the evidence base is fragmentary, and its key components are clinical, not fundamental [15-18]. The preferred form of anti-periodontitis drugs is gel, which ensures prolonged exposure of periodontal tissues to active ingredients. The gels currently available to a periodontist contain either an antiseptic or substrates for tissue repair. There is no gel acting in all the directions needed, i.e. eliminating toxins and biological debris, promoting metabolism in periodontal tissues, producing a non-specific immunomodulatory effect, normalizing respiration and trophism in the periodontium, and, as a result, inducting autoregeneration [19].

Oral cavity is a habitat for a large number of different microorganisms. Most of them are commensals. However, a number of bacterial species directly or indirectly drive development of P and other inflammatory processes. For example, Streptococcus sanguinis promotes formation of biofilm on teeth that includes Fusobacterium nucleatum, which is one of the bacteria causing P [20], with one of the possible consequences thereof being endocarditis [21]. Many researchers seek for preparations, plant-based or synthesized from substances of natural origin, that would combat cariesogenic and periodontal bacteria Streptococcus mitis, Streptococcus oralis, Streptococcus salivarius, Enterococcus faecalis [22-25]. Detection of Staphylococcus aureus and its metabolites in the oral cavity can indicate a certain stage of P [26]. The "oral cavity — intestine" pathogenetic axis allows considering a number of bacteria, especially those with virulence markers, as copathogens in periodontitis: Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii [27-29]. Therefore, we considered these pathogens in this work. The purpose of this study was to evaluate antibacterial, adhesion and biofilm formation preventing properties of various forms of products combining plant-based and synthetic components factoring in the vectors of their effect on flora causing periodontitis.

METHODS

The study was conducted at the Department of New Technologies of the Pasteur Research Institute in October 2021 -April 2022.

We used the patented gel composition that includes copper derivatives of chlorophyll, aspen bark, sodium alginate and dihydroquercetin (DHQ); this gel meets the requirements

for complex therapy of P and has the necessary antibacterial properties [30]. The study has shown positive clinical results of application of gel with copper derivatives of chlorophyll, aspen bark, sodium alginate and DHQ against P [31] and gingivitis concomitant with P [32].

Compositions of active ingredients

The elixir is a water-alcohol concentrate of active ingredients: water, 20% ethyl alcohol, sodium-copper chlorophyllin, aspen bark extract, kelp extract, cocamidopropyl betaine, natural flavor "Mint", polyvinylpyrrolidone.

The mouthwash is a water concentrate of active ingredients: water, sodium-copper chlorophyllin, aspen bark extract, kelp extract, cocamidopropyl betaine, natural flavor "Mint", polyvinylpyrrolidone, sodium benzoate.

Phytolon oil is an oil solution of active ingredients: refined peach pit or olive oil, sodium-copper chlorophyllin.

Provitam oil is an oil solution of active ingredients: refined peach pit or olive oil, spruce concentrate with provitamins.

Gel 1 with chlorhexidine is a gel composition of active ingredients: sorbitol, water, hydrogenated castor oil, hydroxyethyl cellulose, sodium alginate, chlorhexidine hydrochloride, d-panthenol, allantoin, methyl paraben, methyl salicylate, flavor "Pectral", menthol, fir extract, sodium-copper chlorophyllin, eugenol, pectin.

Gel 2 with aspen bark and DHQ is a gel composition of active ingredients: sorbitol, water, hydrogenated castor oil, hydroxyethyl cellulose, sodium alginate, dihydroquercetin, d-panthenol, allantoin, aspen bark extract, methylparaben, methyl salicylate, spruce extract complex, menthol, flavor "Pectral", citric acid, sodium-copper chlorophyllin, eugenol.

Gel 3 with chlorhexidine is a gel composition of active ingredients: sorbitol, water, hydrogenated castor oil, hydroxyethyl cellulose, sodium alginate, d-panthenol, chlorhexidine hydrochloride, allantoin, methylparaben, methyl salicylate, Pectral flavor, menthol, fir extract, sodium-copper chlorophyllin, eugenol, pectin; the product was 2 years expired.

Bacterial strains

Reference bacterial strains:

Staphylococcus aureus ATCC № 25923

Enterococcus faecalis ATCC № 29212

Klebsiella pneumoniae ATCC № 13883

Pseudomonas aeruginosa ATCC № 27853

Acinetobacter baumannii ATCC № 19606

Bacterial strains from the laboratory's collection of microorganisms:

Streptococcus sanguinis № 2111

Streptococcus mitis № 2118

Streptococcus oralis № 2114

Streptococcus salivarius № 2107

Research methods

We used the bacteriological method of research to study the effect of plant-based complexes on the bacteria's capability to survive, adhere to surfaces and form biofilms.

Investigation of antibacterial properties of plant-based complexes

We prepared microbial suspensions of 24-hour bacterial cultures in saline, initial content — 1 x 108 CFU/ml. Tenfold dilutions brought the content down to 1 x 105 CFU/ml. For the last

300

200

<B

.a E

100

Oh.

.n

D

L L L

Control

I S. sanguinis m S. mitis □ S. oralis

S. salivarius ■ S. aureus □ E. faecalis ■ K. pneumoniae n P. aeruginosa m A. baumannii Product form or control

Fig. 1. Investigation of antibacterial properties of plant-based complexes. 1 — mouthwash; 2 — gel with chlorophyll, aspen bark and DHQ (Gel 2); 3 — gel with chlorophyll and Chlorhexidine (Gel 1); 4 — oil with chlorophyll (Phytolone oil); 5 — oil with carotenoids from fir needles (Provitam oil); 6 — gel with chlorophyll and Chlorhexidine (Gel 3); 7 — dental elixir with aspen bark extract and chlorophyll (Elixir)

dilution, we used meat peptone broth. Microbial suspensions were transferred to twenty four 1 ml tubes. One ml of each plant-based complex was added to 3 test tubes containing 1 ml of microbial suspension (final concentration), and the remaining 2 test tubes received 1 ml of saline. All test tubes were kept in the thermostat at +37 °C for 30 minutes. Then, we plated 10 mcl from each tube onto nutrient agar: blood agar for streptococci, meat peptone agar for other bacteria. Plating followed the lawn pattern. Petri dishes were incubated in a thermostat at +37 °C for 24 hours. Next, we counted colonies on dish and calculated simple mean for each plant ingredient sample.

Investigation of adhesion preventing properties of plant-based complexes

For this investigation, we applied A.S. Blagonravova's method [33] and used cells of buccal epithelium. The cells were washed three times from the indigenous microflora in buffered saline solution at pH 7.2-7.4, speed of 35 g, for 10 minutes. Then the cells were put into test tubes, 0.5 ml of bacterial suspension containing 3 x 108 CFU/ml of S.sanguinis and 0.5 ml of each plant-based complex into each tube. One test tube contained only buccal epithelium and was used as control (natural colonization). We did three cycles of all experiments and controls. Next, the tubes with all the components were intensively shaken and put into a thermostat to incubate at +37 °C for 30 minutes. After that, we washed out non-attached microorganisms, prepared smears on slides, fixed and Gram stained the bacteria. The adhesion index was calculated by the formula:

AI = AB50/50E, (1)

where AI is the adhesion index, AB50 is the number of bacterial cells that attached to 50 epithelial cells, and 50E is the 50 studied epithelial cells.

Investigation of biofilm formation preventing properties of plant-based complexes

In the context of this investigation, we registered microcolonies of bacteria forming on a dense nutrient medium. First, we applied the 0.5 McFarland turbidity standard to the daily bacterial culture of the studied strains. Then we reduced concentration of cells to 1 x 106 CFU/ml by serial dilutions, added each plant-based complex to each resulting solution at a ratio of 1 : 10, and spread the resulting mixture on a sterile slide. As a control, we used an inoculum of bacteria in a nutrient broth without the drug. Next, the samples were placed in a thermostat to incubate at +37 °C for 3 hours. After that, the slides were examined under an Axio Scope A1 microscope (Zeiss; Germany) at a magnification of x400. The photos were taken with a professional stationary digital camera AxioCam HRc Rev3 (Zeiss; Germany). We noted the number of bacterial microcolonies that had grown on control and experimental slides on several camera coverages. Whenever the number of microcolonies was twofold or more smaller on experimental slides than on control slides, the respective plant-based complex, in the given form, was considered to produce strong biofilm growth preventing effect.

For statistical analysis of the data, we used MS Excel 2010 (Microsoft; USA), and applied Student's t-test to the results. The results were considered significant at p < 0.05.

RESULTS

Investigation of antibacterial properties

Table 1 and Figure 1 present the results of investigation of antibacterial properties. Description of the results:

1. The most effective product against bacterial flora was

0

Note: 1 — mouthwash; 2 — gel with chlorophyll, aspen bark and DHQ (Gel 2); 3 — gel with chlorophyll and Chlorhexidine (Gel 1); 4 — oil with chlorophyll (Phytolone oil); 5 — oil with carotenoids from fir needles (Provitam oil); 6 — gel with chlorophyll and Chlorhexidine (Gel 3); 7 — dental elixir with aspen bark extract and chlorophyll (Elixir)

Table 1. Investigation of antibacterial properties of plant-based complexes

Studied object (microorganism) Number of colonies grown In samples with plant-based complexes (CFU/ml), (M + m) Number of colonies grown In control samples (CFU/ml)

1 2 3 4 5 6 7

S. sanguinis 35 ± 5 130 ± 13 120 ± 11 135 ± 15 125 ± 14 33 ± 5 0 ± 1 350 ± 28

S. mitis 7 ± 2 70 ± 6 120 ± 14 125 ± 11 120 ± 9 5 ± 2 0 ± 1 330 ± 31

S. oralis 130 ± 13 125 ± 11 33 ± 5 70 ± 6 65 ± 6 4 ± 1 0 ± 1 340 ± 24

S. salivarius 140 ± 8 55 ± 5 4 ± 2 30 ± 4 25 ± 3 3 ± 1 0 ± 1 280 ± 18

S. aureus 200 ± 18 190 ± 15 0 ± 1 200 ± 17 205 ± 20 0 ± 1 3 ± 1 210 ± 15

E.faecalis 25 ± 4 130 ± 15 90 ± 8 55 ± 6 60 ± 5 30 ± 3 0 ± 1 260 ± 25

K. pneumoniae 20 ± 3 90 ± 6 85 ± 7 5 ± 2 2 ± 1 2 ± 1 0 ± 1 180 ± 15

P. aeruginosa 10 ± 2 4 ± 2 5 ± 2 5 ± 1 6 ± 2 3 ± 1 5 ± 2 160 ± 14

A. baumannii 3 ± 1 15 ± 2 18 ± 3 4 ± 1 5 ± 2 3 ± 1 0 ± 1 150 ± 17

elixir with 20% of ethyl alcohol (by weight) and maximum concentrations of active ingredients: aspen bark extract, sodium alginate and sodium-copper chlorophyllin.

2. Gel 1 had comparable antibacterial efficacy; its composition includes a chemical antibacterial agent (chlorhexidine) in a bactericidal concentration of 0.12%, and plant-based ingredients (sodium alginate, D-panthenol, allantoin, methyl salicylate, menthol, fir extract, sodium-copper chlorophyllin, eugenol).

3. Gel 3, which had similar but expired 2 years ago, showed average antibacterial activity.

4. Mouthwash and Gel 2 with aspen bark and DHQ were not highly effective against pathogenic flora of periodontium.

5. Oil solutions had poor eliminating effect on the pathogenic flora of periodontium.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Investigation of adhesion preventing properties

Table 2 shows the results of investigation of adhesion preventing properties.

Description of the results:

Elixir and gel with DHQ (Gel 2) showed comparable maximum adhesion preventing effect.

2. Gel with chlorhexidine and mouthwash had an average effect.

3. Oil solutions had poor adhesion preventing effect.

Investigation of biofilm formation preventing properties of plant-based complexes

Figures 2-4 reflect biofilm preventing effect of various forms of products.

Description of the results:

Table 2. Investigation of adhesion preventing properties of plant-based complexes

All the products proved to be highly effective in preventing formation of biofilm. Gels (1 and 2) were the most effective.

DISCUSSION

Biofilm tends to change its composition and qualities [1, 8, 20, 21, 23], therefore, it is necessary to evaluate its physical parameters in a particular P patient before starting treatment to more accurately assess the involvement of systemic and general somatic problems, the level of hygienic habits of the patient, personalize treatment plan, factor in phenotypic indicators and achieve the predicted positive clinical result that persists in the long term.

The antibacterial activity of plant-based complexes against pathogenic bacteria of periodontium includes three components: adhesion preventing effect, antibacterial action proper and biolfilm formation preventing effect [2, 8]. Any infectious process of bacterial etiology begins with the adhesion and colonization of the site by microorganisms. Therefore, identification of adhesion preventing capabilities of products used in dental practice translates into the possibility of early prevention, i.e., disallowing adhesion and arrest of colonization. Thus, bacterial invasion is undermined at the first phase of the infectious process, and no biofilm is formed. The studied plant-based complexes were revealed to be highly active against biofilm, such activity significantly reducing the likelihood of appearance of a chronic infection locus in the periodontal area. In turn, direct antibacterial capabilities of the complexes decrease the number of bacteria and renders initiation of the infectious process unlikely [6, 12].

Allegedly, the reasons behind high antiseptic effectiveness of the elixir are 20% of ethyl alcohol in its content (by weight) and high concentrations of plant-based antibacterial components.

Studied composition Adhesion index (M + m)

Control S. sanguinis

1 — Mouthwash 75 + 6 33 + 5

2 — Gel with chlorophyll, aspen bark and DHQ (Gel 2) 24 + 4

3 — Gel with chlorophyll and chlorhexidine (Gel 1) 30 + 5

4 — Oil with chlorophyll (Phytolone oil) 42 + 6

5 — Oil with carotenoids from fir needles (Provitam oil) 37 + 4

6 — Gel with chlorophyll and chlorhexidine (Gel 3) 48 + 5

7 — Elixir with aspen bark extract and chlorophyll (Elixir) 21 + 4

Note: 1 — mouthwash; 2 — gel with chlorophyll, aspen bark and DHQ (Gel 2); 3 — gel with chlorophyll and chlorhexidine (Gel 1); 4 — oil with chlorophyll (Phytolone oil); 5 — oil with carotenoids from fir needles (Provitam oil); 6 — gel with chlorophyll and chlorhexidine (Gel 3); 7 — dental elixir with aspen bark extract and chlorophyll (Elixir).

• •/ ■ :H ■ t. ss i- -„v".^'i*'-. . a?... ;

Fig. 2. Biofilm formation preventing properties: Gel 1 vs. S. sanguinis. A. Colonies of S. sanguinis before application of gel with chlorophyll and Chlorhexidine. B. Colonies of S. sanguinis after application of gel with chlorophyll and Chlorhexidine (magnification *400)

The efficacy of Gel 1 is most likely associated with the prolonged release of active ingredients ensured by its unique bioadhesive film-forming base.

As for Gel 3, the expired subject of the experiment, it retained antiseptic properties but its efficacy had decreased compared to the tested gel that had not expired. Likely, the decrease was caused by aging of the components of the base and its rapid degradation, deterioration of the cumulative activity of plant-based complexes, while chlorhexidine remained active as the antiseptic component. This also gives reason to assume the studied composition has a multidirectional combined effect.

Elixir's high adhesion prevention activity is most likely formed by sodium alginate, aspen bark extract and alcohol content, while Gel 2's similar capability stems from sodium alginate, dihydroquercetin and aspen bark extract.

The comparatively lower antiseptic activity of water and oil forms is associated with a low concentration of antibacterial agents (aspen bark extract in the first place) and a short time on the tissues.

The form of the product has a significant effect on the time of exposure of tissues to the active ingredients of plant-based complexes. Gels are the most effective because of the slow and uniform release of the active substances, bioadhesion and development of a film on the gum and mucosa [13-14]. High concentration of active ingredients in water-alcohol solutions also delivers a persistent and long-lasting antibacterial effect, but the time of exposure of periodontal tissues thereto is shorter.

The expired gel loses its effect because of the aging of the base due to moisture loss. It is expedient to produce gels in small batches or, in some cases, as a pharmacy-made compounded drug. Base of gels acts in a special way: it adheres to the dried surface of mucosa or gum, remains in the exposure locus for a long time, slowly releases the active ingredients and allows reduction of dosage in the composition; this set of peculiarities calls for additional research.

Thus, the three-stage antibacterial action of plant-based complexes reduces the risk of periodontitis, even in the presence of periodontal pathogenic bacteria in the locus. The use of plant-based complexes in the acute period after professional hygiene, especially if such complexes are part of gels, boosts restoration of the structure and condition of periodontium, normalization of trophism and nutrition, respiration and metabolic processes in the tissues. Used after the arrest of the acute process, plant-based complexes prolong the remission and significantly reduce the risk of repeated exacerbations, their course and repeated tissue damage by infectious agents.

In the acute period, up to days 14 through 21, it is advisable to use a combination of elixir + gel with 0.12% chlorhexidine, and after arrest of the acute process — mouthwash and gel with aspen bark and DHQ [11, 13]. Mouthwash and gel with aspen bark and DHQ can be used to prevent exacerbations in patients with chronic generalized periodontitis since they contain no chemical components bacteria grow resistant to

■ -J 3

• V- -

■ < , " ;

Fig. 3. Biofilm formation preventing properties: mouthwash vs. S. mitis. A. Colonies of S. mitis before use of mouthwash. B. Colonies of S. mitis after use of mouthwash

Fig. 4. Biofilm formation preventing properties: Provitam oil vs. S. oralis. A. Colonies of S. oralis before application of oil with fir needle carotenoids. B. Colonies of S. oralis after application of oil with fir needle carotenoids

while having a non-specific antibacterial effect based on the induced changes in the permeability of bacterial cell wall.

CONCLUSIONS

The studied plant-based complexes in the form of gel have proved to have high antiseptic, adhesion and biofilm formation preventing capabilities. Oil solutions are advisable as part of a complex therapy aimed at diseases of the oral mucosa; elixir and gel with 0.12% chlorophyll and chlorhexidine — as part of a complex therapy of periodontitis; gel with aspen bark and DHQ plus mouthwash — as means of prevention of periodontitis and other gum lesions. It is necessary to continue studying capabilities of plant-based complexes

in various forms with titration of concentrations in elixirs compared to mouthwashes, comparison of frequency-dependent effect of application of gels, and determination of when the bacteria become resistant in case of use of gel with a chemical antiseptic. It is important to continue work aimed at in vitro evaluation of the biological properties of pathogenic bacteria of periodontium using experimental models of mixed (multi-species) biofilms. Flora of the oral cavity has changed a lot over the past 20 years, with specifics of the regions of residence contributing to the changes. For research activities, it is recommended to first evaluate the actual composition of periodontal pathogenic bacteria in plaque and on the surface of the tooth root, as well as in periodontal fluid.

References

1. Borodulina II, Vasileva LV, Rumakin VP, Kovalevskij AM, Fadeev RA, Grebnev GA. Morfologiya parodontal'nogo karmana pri xronicheskom generalizovannom parodontite srednej stepeni tyazhesti. Medicinskij vestnik Severnogo Kavkaza. 2019; 14: 164-7. Russian.

2. Cepov LM, Goleva NA. Rol' mikroflory v vozniknovenii vospalitel'nyx zabolevanij parodonta. Parodontologiya. 2009; 1: 7-12. Russian.

3. Tonetti, MS, Van Dyke TE. Periodontitis and atherosclerotic cardiovascular disease: consensus report of the Joint EFPA. AP Workshop on Periodontitis and Systemic Diseases. J Periodontol. 2013; 84 (4): 24-29.

4. Kardanova LV, Txazaplizheva MT, Balkarov AO. Nekotorye aspekty mestnogo lecheniya xronicheskix vospalitel'nyx zabolevanij parodonta. Sovremennye problemy nauki i obrazovaniya. 2014; 6: 1048-54. Russian.

5. lordanishvili AK, Kovalevskij AM. Fakul'tetskaya stomatologiya: rukovodstvo dlya vrachej-stomatologov. M.: SIMK, 2015; 504 s. Russian.

6. Txazaplizheva MT, Batyrbekova FR. Sravnitel'naya ocenka ehffektivnosti izolirovannogo i sochetannogo primeneniya xlorgeksidina i nizkochastotnogo ul'trazvuka v kompleksnom lechenii parodontita srednej stepeni tyazhesti. Materialy V Vsemirnogo kongressa po immunologii i allergii. Allergologiya i immunologiya. 2007; 8 (1): 145. Russian.

7. Barnett ML. The rationale for the daily use of an antimicrobial mouthrinse J Am Dent Assoc. 2006; 137: 16-21.

8. Teles RP, Teles FRF. Antimicrobial agents used in the control of periodontal biofilms: effective adjuncts to mechanical plaque control. Braz Oral Res. 2009; 23 (1): 39-48.

9. Nikolaev AI, Cepov LM. Prakticheskaya stomatologiya: ucheb. posobie. M.: MEDpress-inform, 2018; 928 s. Russian.

10. Kiyun ID. Sravnitel'noe issledovanie otbelivayushhix zubnyx past s umerennoj abrazivnost'yu. Molodoj uchenyj. 2015; 6: 274-7. Russian.

11. Fedorov YuA, Drozhzhina V. A. Profilaktika stomatologicheskix zabolevanij. V kn.: V. A. Kozlov, redaktor. Stomatologiya: uchebnik dlya medicinskix vuzov i poslediplomnoj podgotovki specialistov. SPb.: SpecLit, 2011; 36-67. Russian.

12. Dzhioeva RF. Klinicheskaya ehffektivnost' fitoterapii pri lechenii xronicheskogo generalizovannogo parodontita. Vestnik medicinskogo stomatologicheskogo instituta. 2013; 4 (27): 27-29. Russian.

13. Ulitovskij SB. Poloskaniya dlya rta ili zhidkie sredstva gigieny rta. SPb.: Chelovek, 2017; 192 s. Russian.

14. Ulitovskij SB. Sredstva individual'noj gigieny rta: uchebnik dlya poslediplom. obrazovaniya. M.: Spec. izd-vo med. kn., 2018; 200 s. Russian.

15. Drozhzhina VA, Petrishhev NN, Fedorov YuA. Povyshenie fiziologicheskoj rezistentnosti tkanej parodonta belyx krys pri dejstvii biologicheski aktivnyx veshhestv laminarii. Fiziol. zhurnal. 1995; 81 (2): 126-33. Russian.

16. Blinova KF, Yakovlev GP, redaktory. Botaniko-farmakognosticheskij slovar'. M.: Vysshaya shkola, 1990; 272 s. Russian.

17. Blinova KF, Yakovlev GP, redaktory. Botaniko-farmakognosticheskij slovar'. M.: Vysshaya shkola, 1990; 272 s. Russian.

18. Lobanova IYu, Tureckova VF, Zverev YaF, Talalaeva OS. Izuchenie ostroj toksichnosti i antioksidantnoj aktivnosti ehkstrakta list'ev osiny suxogo. Fundamental'nye issledovaniya. 2012; 9: 308-12. Russian.

19. Belyackaya AV, Kashlikova IM, Elagina AO, Krasnyuk (ml.) II, Krasnyuk II, Stepanova O. I. Nitrofurany dlya naruzhnogo primeneniya. Razrabotka i registraciya lekarstvennyx sredstv. 2019; 8 (2): 38-47. Russian.

20. He X, Hu W, Kaplan CW, Guo L, Shi W, Lux R. Adherence to streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community. Microb Ecol. 2012; 63 (3): 532-42. DOI: 10.1007/s00248-011-9989-2.

21. Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol. 2018; 13 (8): 915-32. DOI: 10.2217/fmb-2018-0043.

22. Kumarasamy B, Manipal S, Duraisamy P, Ahmed A, Mohanaganesh S, Jeevika C. Role of aqueous extract of morinda citrifolia (Indian noni) ripe fruits in inhibiting dental caries-causing streptococcus mutans and streptococcus mitis. J Dent (Tehran). 2014; 11 (6): 703-10.

23. Cabal B, Cafini F, Esteban-Tejeda L, et al. Inhibitory effect on in vitro Streptococcus oralis biofilm of a soda-lime glass containing silver nanoparticles coating on titanium alloy. PLoS One. 2012; 7 (8): e42393. DOI: 10.1371/journal.pone.0042393.

24. Mirpour M, Gholizadeh Siahmazgi Z, Sharifi Kiasaraie M. Antibacterial activity of clove, gall nut methanolic and ethanolic extracts on Streptococcus mutans PTCC 1683 and Streptococcus salivarius PTCC 1448. J Oral Biol Craniofac Res. 2015; 5 (1): 7-10. DOI: 10.1016/j.jobcr.2015.02.002.

25. Wu S, Liu Y, Zhang H, Lei L. Nano-graphene oxide with antisense walR RNA inhibits the pathogenicity of Enterococcus faecalis in periapical periodontitis. J Dent Sci. 2020; 15 (1): 65-74. DOI: 10.1016/j.jds.2019.09.006.

26. Lee J, Lee JB, Song HY, et al. Diagnostic Models for Screening of Periodontitis with Inflammatory Mediators and Microbial Profiles in Saliva. Diagnostics (Basel). 2020; 10 (10): 820. DOI: 10.3390/ diagnostics10100820/.

Литература

1. Бородулина И. И., Васильева Л. В., Румакин В. П., Ковалевский А. М., Фадеев Р. А., Гребнев Г. А. Морфология пародонтального кармана при хроническом генерализованном пародонтите средней степени тяжести. Медицинский вестник Северного Кавказа. 2019; 14: 164-7.

2. Цепов Л. М., Голева Н. А. Роль микрофлоры в возникновении воспалительных заболеваний пародонта. Пародонтология. 2009; 1: 7-12.

3. Tonetti, MS, Van Dyke TE. Periodontitis and atherosclerotic cardiovascular disease: consensus report of the Joint EFPA. AP Workshop on Periodontitis and Systemic Diseases. J Periodontol. 2013; 84 (4): 24-29.

4. Карданова Л. В., Тхазаплижева М. Т., Балкаров А. О. Некоторые аспекты местного лечения хронических воспалительных заболеваний пародонта. Современные проблемы науки и образования. 2014; 6: 1048-54.

5. Иорданишвили А. К., Ковалевский А. М. Факультетская стоматология: руководство для врачей-стоматологов. М.: СИМК, 2015; 504 с.

6. Тхазаплижева, М. Т., Батырбекова Ф. Р. Сравнительная оценка эффективности изолированного и сочетанного применения хлоргексидина и низкочастотного ультразвука в комплексном лечении пародонтита средней степени тяжести. Материалы V Всемирного конгресса по иммунологии и аллергии. Аллергология и иммунология. 2007; 8 (1): 145.

7. Barnett ML. The rationale for the daily use of an antimicrobial mouthrinse J Am Dent Assoc. 2006; 137: 16-21.

8. Teles RP, Teles FRF. Antimicrobial agents used in the control of periodontal biofilms: effective adjuncts to mechanical plaque control. Braz Oral Res. 2009; 23 (1): 39-48.

9. Николаев А. И., Цепов Л. М. Практическая стоматология: учеб. пособие. М.: МЕДпресс-информ, 2018; 928 с.

10. Киюн И. Д. Сравнительное исследование отбеливающих зубных паст с умеренной абразивностью. Молодой ученый. 2015; 6: 274-7.

27. Cai Z, Zhu T, Liu F, Zhuang Z, Zhao L. Co-pathogens in Periodontitis and Inflammatory Bowel Disease. Front Med (Lausanne). 2021; 8: 723719. DOI: 10.3389/fmed.2021.723719.

28. Li Q, Wang H, Tan L, et al. Oral Pathogen Fusobacterium nucleatum Coaggregates With Pseudomonas aeruginosa to Modulate the Inflammatory Cytotoxicity of Pulmonary Epithelial Cells. Front Cell Infect Microbiol. 2021; 11: 643913. DOI: 10.3389/ fcimb.2021.643913.

29. Richards AM, Abu Kwaik Y, Lamont RJ. Code blue: Acinetobacter baumannii, a nosocomial pathogen with a role in the oral cavity. Mol Oral Microbiol. 2015; 30 (1): 2-15. DOI: 10.1111/ omi.12072.

30. Kovalevskij AM, Latif II, Kovalevskij VA, Sharov AN, Nosova MA, Nekrasova VB, avtory; OOO «FITOLON-NAUKA», patentoobladatel'. Kompoziciya v forme gelya dlya uxoda za tkanyami polosti rta. Patent RF # 2733718 ot 06.10.2020. Russian.

31. Nikitenko VV, Kovalevskij AM, Latif II. Ehffektivnost' primeneniya kompozicii v forme gelya s ehkstraktom kory osiny i xlorofillom dlya lecheniya i profilaktiki vospalitel'nyx zabolevanij parodonta. V sbornike: V. V. Nikitenko, V.A. Zheleznyak, redaktory. Materialy nauchno-prakticheskoj konferencii «Aktual'nye voprosy teoreticheskoj i prakticheskoj stomatologii», 7-8 oktyabrya 2021 g. SPb., 2021; 128-33. Russian.

32. Latif II, Kovalevskij AM, Nosova MA, Sharov AN, Kraeva LA. Ocenka ehffektivnosti gelevoj kompozicii dlya uxoda tkanyami polosti rta. Stomatologicheskaya vesna v Belgorode — 2022: sbornik trudov Mezhdunarodnoj nauchno-prakticheskoj konferencii k 100-letiyu MGMSU. Belgorod: «BelGU», 2022; 276 s. Russian.

33. Blagonravova AS, Afonin AN, Vorobeva ON, Shirokova IYu. Sravnitel'nyj analiz adgezivnosti mikroorganizmov, vydelennyx ot bol'nyx i s ob"ektov vneshnej sredy lechebno-profilakticheskix uchrezhdenij. Medicinskij al'manax. 2011; 5 (18): 215-8. Russian.

11. Федоров Ю. А., Дрожжина В. А. Профилактика стоматологических заболеваний. В кн.: В. А. Козлов, редактор. Стоматология: учебник для медицинских вузов и последипломной подготовки специалистов. СПб.: СпецЛит, 2011;36-67.

12. Джиоева Р. Ф. Клиническая эффективность фитотерапии при лечении хронического генерализованного пародонтита. Вестник медицинского стоматологического института. 2013; 4 (27): 27-29.

13. Улитовский С. Б. Полоскания для рта или жидкие средства гигиены рта. СПб.: Человек, 2017; 192 с.

14. Улитовский С. Б. Средства индивидуальной гигиены рта: учебник для последиплом. образования. М.: Спец. изд-во мед. кн., 2018; 200 с.

15. Дрожжина В. А., Петрищев Н. Н., Федоров Ю. А. Повышение физиологической резистентности тканей пародонта белых крыс при действии биологически активных веществ ламинарии. Физиол. журнал. 1995; 81 (2): 126-33.

16. Блинова К. Ф., Яковлев Г. П., редакторы. Ботанико-фармакогностический словарь. М.: Высшая школа, 1990; 272 с.

17. Дейнеко И. П., Фаустова Н. М. Элементарный и групповой химический состав коры и древесины сосны. Химия растительного сырья. 2015; 1: 51-62.

18. Лобанова И. Ю., Турецкова В. Ф., Зверев Я. Ф., Талалаева О. С. Изучение острой токсичности и антиоксидантной активности экстракта листьев осины сухого. Фундаментальные исследования. 2012; 9: 308-12.

19. Беляцкая А. В., Кашликова И. М., Елагина А. О., Краснюк (мл.) И. И., Краснюк И. И., Степанова О. И. Нитрофураны для наружного применения. Разработка и регистрация лекарственных средств. 2019; 8 (2): 38-47.

20. He X, Hu W, Kaplan CW, Guo L, Shi W, Lux R. Adherence to Streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community. Microb Ecol. 2012; 63 (3): 532-42. DOI: 10.1007/S00248-011-9989-2.

21. Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol. 2018; 13 (8): 915-32. DOI: 10.2217/fmb-2018-0043.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

22. Kumarasamy B, Manipal S, Duraisamy P, Ahmed A, Mohanaganesh S, Jeevika C. Role of aqueous extract of morinda citrifolia (Indian noni) ripe fruits in inhibiting dental caries-causing streptococcus mutans and streptococcus mitis. J Dent (Tehran). 2014; 11 (6): 703-10.

23. Cabal B, Cafini F, Esteban-Tejeda L, et al. Inhibitory effect on in vitro Streptococcus oralis biofilm of a soda-lime glass containing silver nanoparticles coating on titanium alloy. PLoS One. 2012; 7 (8): e42393. DOI: 10.1371/journal.pone.0042393.

24. Mirpour M, Gholizadeh Siahmazgi Z, Sharifi Kiasaraie M. Antibacterial activity of clove, gall nut methanolic and ethanolic extracts on Streptococcus mutans PTCC 1683 and Streptococcus salivarius PTCC 1448. J Oral Biol Craniofac Res. 2015; 5 (1): 7-10. DOI: 10.1016/j.jobcr.2015.02.002.

25. Wu S, Liu Y, Zhang H, Lei L. Nano-graphene oxide with antisense walR RNA inhibits the pathogenicity of Enterococcus faecalis in periapical periodontitis. J Dent Sci. 2020; 15 (1): 65-74. DOI: 10.1016/j.jds.2019.09.006.

26. Lee J, Lee JB, Song HY, et al. Diagnostic Models for Screening of Periodontitis with Inflammatory Mediators and Microbial Profiles in Saliva. Diagnostics (Basel). 2020; 10 (10): 820. DOI: 10.3390/ diagnostics10100820/.

27. Cai Z, Zhu T, Liu F, Zhuang Z, Zhao L. Co-pathogens in Periodontitis and Inflammatory Bowel Disease. Front Med (Lausanne). 2021; 8: 723719. DOI: 10.3389/fmed.2021.723719.

28. Li Q, Wang H, Tan L, et al. Oral Pathogen Fusobacterium nucleatum Coaggregates With Pseudomonas aeruginosa to

Modulate the Inflammatory Cytotoxicity of Pulmonary Epithelial Cells. Front Cell Infect Microbiol. 2021; 11: 643913. DOI: 10.3389/ fcimb.2021.643913.

29. Richards AM, Abu Kwaik Y, Lamont RJ. Code blue: Acinetobacter baumannii, a nosocomial pathogen with a role in the oral cavity. Mol Oral Microbiol. 2015; 30 (1): 2-15. DOI: 10.1111/omi.12072.

30. Ковалевский А. М., Латиф И. И., Ковалевский В. А., Шаров А. Н., Носова М. А., Некрасова В. Б., авторы; ООО «ФИТОЛОН-НАУКА», патентообладатель. Композиция в форме геля для ухода за тканями полости рта. Патент РФ № 2733718 от 06.10.2020.

31. Никитенко В. В., Ковалевский А. М., Латиф И. И. Эффективность применения композиции в форме геля с экстрактом коры осины и хлорофиллом для лечения и профилактики воспалительных заболеваний пародонта. В сборнике: В. В. Никитенко, В. А. Железняк, редакторы. Материалы научно-практической конференции «Актуальные вопросы теоретической и практической стоматологии», 7-8 октября 2021 г. СПб., 2021; 128-33.

32. Латиф И. И., Ковалевский А. М., Носова М. А., Шаров А. Н., Краева Л. А. Оценка эффективности гелевой композиции для ухода тканями полости рта. Стоматологическая весна в Белгороде — 2022: сборник трудов Международной научно-практической конференции к 100-летию МГМСУ. Белгород: «БелГУ», 2022; 276 с.

33. Благонравова А. С., Афонин А. Н., Воробьева О. Н., Широкова И. Ю. Сравнительный анализ адгезивности микроорганизмов, выделенных от больных и с объектов внешней среды лечебно-профилактических учреждений. Медицинский альманах. 2011; 5 (18): 215-8.

i Надоели баннеры? Вы всегда можете отключить рекламу.