Научная статья на тему 'Anti-amyloidogenic effect of miR-101 in experimental Alzheimer’s disease'

Anti-amyloidogenic effect of miR-101 in experimental Alzheimer’s disease Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
105
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Biotechnologia Acta
CAS
Ключевые слова
MIR-101 / -AMYLOID PEPTIDE / AMYLOIDOSIS / ALZHEIMER'S DISEASE / -АМіЛОїДНИЙ ПЕПТИД / АМіЛОїДОЗ / ХВОРОБА АЛЬЦГЕЙМЕРА / -АМИЛОИДНЫЙ ПЕПТИД / АМИЛОИДОЗ / БОЛЕЗНЬ АЛЬЦГЕЙМЕРА

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Sokolik V., Berchenko O., Levicheva N., Shulga S.

The aim of the study was to determine the effect of miR-101 on the level of -amyloid peptide and activation of the cytokine system in the brain regions of animals with an experimental model of Alzheimer’s disease. MiR-101 is the key deactivating operator of mRNA function for the amyloid- protein precursor. Hence, miR-101 is capable to suppress its synthesis and amyloidogenic processing. Aged male rats were injected intrahippocampally with single-dose unilaterally of -amyloid peptide 40 aggregates (15 nmol). After 10 days, nasal administration of the liposomal form of miR-101 or empty liposomes was started. After 10 days of therapy, the level of toxic endogenous form -amyloid peptide 42 and the activity of the cytokine system were determined by the indicators of tumor necrosis factor , interleukin-6, and interleukin-10 in neocortex, hippocampus and olfactory bulbs. It was found that in rats, aggregates of exogenous -amyloid peptide 40 model the amyloidogenic and pro-inflammatory situation after 20 days in the neocortex and hippocampus (a significant increase in the concentrations of -amyloid peptide 42 by 36% and cytokines by 16-18% in the neocortex, and -amyloid peptide 42 by 27%, proinflammatory cytokines tumor necrosis factor , interleukin-6 by 14% in the hippocampus), but not in olfactory bulbs. The ten-day course of nasal therapy of liposomal miR-101 normalized the level of -amyloid peptide 42 and cytokines: in neocortex, the concentration of endogenous toxic -amyloid peptide 42 decreased by 33%, in the hippocampus by 15%, and concentration of pro-inflammatory cytokines fell by 11-20%. Thus, nasal therapy of miR-101 in liposomes caused a significant anti-amyloidogenic effect in rats with the Alzheimer’s disease model, whereas its anti-inflammatory effect was primarily due to a decrease in -amyloid peptide 42 concentration.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

АНТИАМИЛОИДОГЕННОЕ ДЕЙСТВИЕ MіR-101 ПРИ ЭКСПЕРИМЕНТАЛЬНОЙ БОЛЕЗНИ АЛЬЦГЕЙМЕРА

Целью исследования было определение эффекта miR-101 на уровень -амилоидного пептида и активацию системы цитокинов в отделах головного мозга животных с экспериментальной моделью болезни Альцгеймера. MiR-101 является ключевым оператором функции мРНК для протеина предшественника -амилоидного пептида путем ее деактивации и способна подавлять его синтез и амилоидогенный процессинг. Крысам-самцам позднего зрелого возраста интрагиппокампально одноразово унилатерально вводили агрегаты -амилоидного пептида 40 в дозе 15 нмоль. Через 10 суток начинали назально вводить липосомальную форму miR-101 или пустые липосомы. После 10 суток ежедневной терапии в неокортексе, гиппокампе и обонятельных луковицах определяли уровень токсической эндогенной формы -амилоидного пептида 42 и активности цитокиновой системы по показателям фактора некроза опухоли , интерлейкина-6, интерлейкина-10. Установлено, что экзогенные агрегаты -амилоидного пептида 40 моделируют у крыс амилоидогенную и провоспалительную ситуацию через 20 суток только в неокортексе и гиппокампе (достоверное увеличение концентрации -амилоидного пептида 42 на 36% и цитокинов на 16-18% в неокортексе и -амилоидногопептида 42 на 27% и провоспалительных цитокинов фактора некроза опухоли , интерлейкина-6 на 14% в гиппокампе), однако не в обонятельных луковицах. Десятидневный курс назальной терапии липосомальной miR-101 нормализовал уровень -амилоидного пептида 42 и цитокинов: в неокортексе концентрация эндогенного ток сического -амилоидного пептида 42 уменьшилась на 33%, в гиппокампе на 15%, а провоспалительных цитокинов на 11-20%. Таким образом, назальная терапия miR-101 в липосомах обусловила достоверный анти ами лои догенный эффект у крыс с моделью бо лезни Альцгеймера, в то время как ее анти вос па ли тельное действие прежде всего способствовало снижению концентрации -амилоидного пептида 42.

Текст научной работы на тему «Anti-amyloidogenic effect of miR-101 in experimental Alzheimer’s disease»

UDC 577.2:616 https://doi.org/10.15407/biotech12.03.041

ANTI-AMYLOIDOGENIC EFFECT OF MiR-101 IN EXPERIMENTAL ALZHEIMER'S DISEASE

V. Sokolik 1SI "Institute of Neurology, Psychiatry and Narcology

O. Berchenko1 of the National Academy of Medical Sciences of Ukraine", Kharkiv

N. Levicheva1 2SI "Institute of Food Biotechnology and Genomics

S. Shulga2 of the National Academy of Sciences of Ukraine", Kyiv

E-mail: v.sokolik67@gmail.com

Received 12.02.2019 Revised 27.04.2019 Accepted 05.07.2019

The aim of the study was to determine the effect of miR-101 on the level of P-amyloid peptide and activation of the cytokine system in the brain regions of animals with an experimental model of Alzheimer's disease. MiR-101 is the key deactivating operator of mRNA function for the amyloid-P protein precursor. Hence, miR-101 is capable to suppress its synthesis and amyloidogenic processing. Aged male rats were injected intrahippocampally with single-dose unilaterally of P-amyloid peptide 40 aggregates (15 nmol). After 10 days, nasal administration of the liposomal form of miR-101 or empty liposomes was started. After 10 days of therapy, the level of toxic endogenous form P-amyloid peptide 42 and the activity of the cytokine system were determined by the indicators of tumor necrosis factor a, interleukin-6, and interleukin-10 in neocortex, hippocampus and olfactory bulbs. It was found that in rats, aggregates of exogenous P-amyloid peptide 40 model the amyloidogenic and pro-inflammatory situation after 20 days in the neocortex and hippocampus (a significant increase in the concentrations of P-amyloid peptide 42 by 36% and cytokines by 16-18% in the neocortex, and P-amyloid peptide 42 by 27%, proinflammatory cytokines tumor necrosis factor a, interleukin-6 by 14% in the hippocampus), but not in olfactory bulbs. The ten-day course of nasal therapy of liposomal miR-101 normalized the level of P-amyloid peptide 42 and cytokines: in neocortex, the concentration of endogenous toxic P-amyloid peptide 42 decreased by 33%, in the hippocampus by 15%, and concentration of pro-inflammatory cytokines fell by 11-20%. Thus, nasal therapy of miR-101 in liposomes caused a significant anti-amyloidogenic effect in rats with the Alzheimer's disease model, whereas its anti-inflammatory effect was primarily due to a decrease in P-amyloid peptide 42 concentration.

Key words: miR-101, P-amyloid peptide, amyloidosis, Alzheimer's disease.

RNA interference technologies are increasingly used for RNA-based medical preparations study. The reason for that is the possibility of controlling the expression of certain gene during the protein translation [1-3].

Alzheimer's disease (AD) is a type of dementia induced by amyloidosis [4-6]. The rare familial forms of AD with early onset are thought to be caused by the increased proteolytic production of P-amyloid peptide 42 (AP42) from the amyloid precursor protein (APPP). Pathogenesis of the common form of AD with late manifestation is still unclear. However, the enzyme BACE1, which is linked to amyloidogenic processing of APPP, is more active in such patients [7]. That means that increased production and age-related

aggregation of AP42 can promote a sporadic disease.

In [8—11], it was shown that mutations or gene polymorphism also regulate the AP metabolism in AD. By now, mutations of the following genes are linked to the early onset of AD: APРР encodes the amyloid precursor protein, PSEN1 encodes presenilin 1 (PS1) and PSEN2, presenilin 2 (PS2). Late onset of AD is associated with polymorphism of gene AD2, which encodes apolipoprotein E [12-13]. Several genes are also known to indirectly affect the amyloidosis regulation and are linked to that pathology. Those genes encode the low-density lipoprotein receptor (LRP), a-2-macroglobulin (a-2-M), insulin-degrading enzyme (IDE), ATP-binding

cassette transporter (ABCA1), cholesterol 24-hydroxylase (cyp46), etc. [14].

Most of the mutant genes in AD patients encode multifunctional proteins active in many branched biochemical pathways. This presents some difficulties for the pharmacological therapy aimed to correct the expression of such genes. Thus, using specific miRNA (also known as miR) to regulate the expression of target genes is a promising direction of research [15, 16].

MiRs are small (18-25 nucleotides), evolutionally conservative, non-coding, single-stranded RNAs which are key in various biological processes through regulating expression of target genes by binding with 3'-non-translated loci of their mRNA [17, 18]. Each miR is proven to control up to several hundreds of genes, and one gene can be a target for more than one miR [19]. These regulatory RNAs can "silence" a gene through various ways. First, they inhibit the gene expression by interacting with mRNA: miR attach to mRNA and block the translation process. Another way to deactivate a gene is during transcription, when miR, as part of poliprotein complex, induces epigenetic modifications in the genome: methylation of DNA and histones, and deacetylation of histones. Protein synthesis can also be inhibited by the interaction of miR with repressor proteins that block translation [20]. However, in very rare circumstances (namely, arrested cell cycle), miR, conversely, activates translation [21]. Hence, miRs are more and more used in diagnostics and therapy of neurodegenerative, cardiovascular, cancer and other pathologies [22].

MiR-101 belong to the family of miRNAs, which participate in several cellular activities such as cell proliferation, differentiation, invasion, and angiogenesis [23]. Hypoxia-sensitive miR-101 stimulates angiogenesis and factors in regulation of the vascular remodeling [24]. Deregulation by miR-101 is observed during the development of malignant neoplasms, which indicates its suppressor function in a number of tumor varieties [25]. MiR-101 regulates several simultaneous postnatal programs of brain development, because the balanced excitement/ deceleration is necessary for the normal functioning of neural networks [26]. Transitory loss of miR-101 regulation on pyramidal neurons in dorsal hippocampus causes the hypersensitivity of the neural network and cognitive deficit, thus concentration of miR-101 in the postnatal period is critical for further functioning of neural chains. This

miR inhibits NKCC1 chloride importer (gene Slc12a2) needed for initiating the maturing of GABA-ergic signaling system. That causes the reduced spontaneous synchronized activity and prevents dendrite overgrowth. Also, miR-101 is a part of program of development which activates the repression of motor protein 1A KIF1A (gene Kif1a) from the superfamily of kinesin and Ankyrin-2 (gene Ank2), to inhibit the excessive collection of pre-synaptic components and the decrease in the density of glutamatergical synapses. Targets of miR-101 also include mRNAs of the following genes: Abca1, Ndrg2, Slc7a11, PMCA2, Rapgef1, Slc25a4, Camk2a, Clasp2, Dbs, etc. [26]. It is shown that miR-101 is a key operator of mRNA's function for ApPP (mRNAAppp) by deactivating it and inhibiting the protein synthesis of the amyloid-P protein precursor and its amyloidogenic processing [27-28]. In [29-31], the cytokine activation is shown to directly affect the expression of gene APРР and APPP synthesis during chronic inflammation in central neural system (CNS), accompanying the process of amyloidosis.

In previous studies of experimental AD rat model, it was shown that a natural polyphenol curcumin in soluble and liposomal forms inhibited the cytokine response to the toxic action of P-amyloid aggregates in target departments of animal brain (neocortex and hippocampus) [32-33]. A possible biochemical mechanism for this is that curcumin suppresses the activation of IkB kinase (IKK), phosphorylation and degradation of IkBo, (inhibitor of NFkB) and thus blocks the activation of nuclear transcription factor NFkB [34-35]. The anti-inflammatory effect of curcumin causes improvement of mnestic abilities and memory characteristics in animals with experimental AD. However, there is no evidence of direct and targeting inhibition effect of curcumin on excessive production of P-amyloid peptides.

The present work aimed to study the effect of liposomal miR-101 on the levels of P-amyloid peptide, and on the activation of cytokine system in brains of animals with experimental AD.

Materials and Methods

AD was modeled in aged male rats (14 months old) with intrahippocampal injections of aggregated Humanbeta Amyloid 1-40 protein (ChinaPeptidesCo., Ltd, China), as described previously in detail [26]. Commercial AP40 was dissolved in bidistillate to the final

concentration of 15 pmol/l, and incubated at 37 °C for 24 hr for aggregation. Large AP40 conglomerates were dispersed with ultrasound and sterilized directly before the injection. The suspension's volume was 10 pl per animal, infusion was carried out for 5 min. Stereotaxic coordinates of the area of injection in left hippocampus were determined using brain map in [40]. It corresponds to the distance from the intersection point of sagittal suture with bregma (zero point): 2 mm distally, 2 mm laterally and 3.5 mm in depth. Stereotaxic operations were performed on animals under general anesthesia with thiopental intraperitoneally (50 mg/kg). Intact animals served as control (n = 6).

Experimental AD rat model is generally accepted because it demonstrates not only the toxicity of AP aggregates (main mechanism of amyloidosis), but also the dementia symptoms characteristic for AD, such as worsening memory and violated mnestic abilities [36, 37]. AP40 was used instead of AP42 to model AD in rats because even though the latter P-amyloid peptide is thought to be a specific marker of amyloidosis, AP40 is synthesized in CNS by an order of magnitude more than AP42 [39]. Thus, AP40 aggregates are toxic for neural synapses. Also, AP40 and AP42 of rats do not aggregate, thus only AP40 Human aggregates were used in experimental AD models.

In 10 days after the model was established, miR-101-3p (OOO "NPF Sintol", Russia) was nasally administrated to experimental animals (n = 7) and empty liposomes were given to rats from the comparison group (n = 6). Liposomes were obtained from lipid films [41]. In total, 10 therapeutic sessions were concluded; in each an experimental animal was given 2.5-1014 molecules of miR-101, in single 20 pl doses of liposome suspension. Another group of rats with AD model (n = 6) were not given anything.

In 10 days of nasal therapy (20th day of experiment), all animals were decapitated. Neocortex, hippocampus and olfactory bulbs were removed in cold conditions, frozen and stored at -40 °C. Tissues of studied brain regions were homogenized in Tris buffer (50 mM tris-HCl, 150 mM NaCl, pH 7.5) and centrifuged at 14000 rpm for 5 min. Then, supernatant was collected. Supernatant samples of the aforementioned rat brain regions were used to determine concentrations of toxic endogenous form of AP42, tumor necrosis factor a (TNFa), interleukin-6 (IL-6), and interleukin-10 (IL-10) in bioassay according to protocols of Rat Amyloid beta peptide 1-42 ELISA Kit (Bioassay Technology

Laboratory, China) for P-amyloid peptide 42, and Rat ELISA Kits TNFa, IL-6 and IL-10 (Invitrogen BCM DIAGNOSTICS, USA) for cytokines. Concentrations were expressed in ng/mg of protein for AP42 and in pg/mg for cytokines. Absorption of samples was evaluated in microwell plate reader GBG Stat FAX 2100 (USA) at X = 450 nm with wavelength correction at X = 630 nm. Total protein content was measured according to Lowry [42].

Experimental protocols for rats were conducted in compliance with "General ethical principles of experiments on animals" (Kyiv, 2011).

The obtained results were statistically processed, average values and standard deviations were calculated. Statistical analysis of differences was done with Student's t-test for samples with normal distribution. Values were considered significant at P < 0.05.

Results and Discussion

1. Anti-amyloidogenic effect of miR-101

It was shown that the introduction of AP40 aggregates to rat hippocampus to model amyloidogenic processes in 20 days only in neocortex and hippocampus (significant increase in concentration of AP42 by 36% in neocortex and by 27% in hippocampus) while in olfactory bulbs, the concentration of AP42 did not change (Fig. 1). 10 days of nasal therapy with liposome miR-101, started in 10 days after establishing experimental AD model, normalized AP42 levels in target regions of rat brains, compared to empty liposomes. Thus, concentration of toxic endogenous AP42 decreased by 33% in neocortex and by 15% in hippocampus. No changes were seen in olfactory bulbs.

These results are in line with previous findings. According to [43-44], miR-101 negatively regulated APPP expression and accumulation of AP in neocortex, and its function decreased in patients with AD. A few authors link that to single-nucleotide polymorphism in 3'UTR region of APPP gene [45]. There is now a body of evidence that miR-101 regulates the level of APPP in cell cultures, particularly in hippocampal neurons [46-47].

Considering that APPP and AP are the main factors of Alzheimer's disease pathogenesis, we suggest inhibiting the expression of APPP to mitigate the pathological processes underlying amyloidosis. Consequently, miR-101 may become a new tool for therapeutic modulation of APPP levels. It is possible that

Fig. 1. Level of Аp42 in neocortex, hippocampus, and olfactory bulbs in rats with experimental model of Alzheimer's disease, nasally treated with liposome miR-101 for 10 days

Hereinafter * — Р < 0.05 compared to control; # — Р < 0.05 compared to AD model (Ap40 group); & — Р < 0.05 compared to therapy with empty liposomes (Liposome group)

either directly delivering miR-101 to CNS, or regulating its endogenous expression, should reduce ApPP levels in brains of patients. In [47] it was shown that miR-101 is expressed from two independent genomic loci contained in the intergenic regions on chromosome 1 and chromosome 9. The promoter elements regulating the transcription of miR-101 have not been sufficiently studied, and only now their detailed research is underway. Therefore, nasal therapy of miR-101 in liposomal form may be promising for the treatment of patients with Alzheimer's disease.

2. Anti-inflammatory effect of miR-101

Using an experimental AD model, it was shown that exogenous Ap40 induces anti-inflammatory processes in neocortes and hippocampus (possible increase of total studied cytokines by 16-18% in neocortex and inflammatory cytokines TNFa and IL-6 by 14% in hippocampus). In olfactory bulbs, cytokine levels did not change significantly (Fig. 2, А, B, C).

Ten days of nasal administration of miR-101 in liposomal form decreased level of IL-6 by 23% in neocortex and by 19% in hippocampus, which was statistically significant compared to AD model and therapy with empty liposomes (Fig. 2, А). Significant decrease of TNFa levels by 12% under effect of miR-101 was seen only in animal hippocampus (Fig. 2, B). Unexpectedly, concentration of TNFa decreased in olfactory bulbs of rats with AD model after nasal treatment with empty liposomes (by 13%) and with liposomes containing miR-101 (by 10%). The levels

of IL-10 did not change significantly under influence of miR-101 in any of the brain region in AD model rats (Fig. 2, C). Notably, treatment with liposomal miR-101 strongly affected the levels of IL-6 (Fig. 2). This can be caused by experimental conditions. At the 20th day of experiment, TNFa, formed and secreted early under treatment, becomes less prominent in the neural inflammation compared to second generation cytokine such as IL-6 [48].

Comparing our data to the previous findings on anti-inflammatory effect of curcumin in liposomes under similar experimental conditions [37], it should be noted that polyphenol has higher anti-cytokine potential than miR-101. Anti-cytokine potential of curcumin can be explained by the direct effect it has on the levels of cytokine genes induction, and its indirect influence on the Ap level in animal CNS. MiR-101 targets the mRNA from which ApPP is translated.

Decreasing concentration of inflammatory cytokines (IL-6 and TNFa) under effect of miR-101 is, in our opinion, not a direct effect. It is related to the falling levels of the toxic endogenous Ap42 in neocortex and hippocampus (brain regions that are responsible for memory and studying). However, a number of authors assume that miR-101 may have a possible direct influence by decreasing the induced levels of inflammatory cytokines [49], by increasing IL-6 production in response to transfection of cells with miR-101 [50], or in case of excessive expression in LPS-activated macrophages [51].

Thus, the feasibility of combining miR-101 and curcumin in a single liposomal

А

B

C

Fig. 2. Concentration of IL-6 (A), TNFa (B) and IL-10 (C) in AD model rats treated nasally with miR-101 in liposomes for 10 days

preparation should be considered to simultaneously eliminate the excess synthesis of APPP with the formation of toxic aggregates of P-amyloid peptides and chronic neuroinflammation.

Thus, nasal therapy with miR-101 in liposomal form caused significant anti-amyloidogenic effect (normalization of AP42

levels in neocortex and hippocampus in rat brains with AD model).

Anti-inflammatory effect of miR-101 in liposomal form caused decrease in concentrations of inflammatory cytokines (IL-6 and TNFa in neocortex and TNFa in hippocampus of animals with experimental AD) due to decreased level of toxic endogenous AP42.

REFERENCES

1. Nikam R. R., Gore K. R. Journey of siRNA: clinical developments and targeted delivery. Nucl. Acid Ther. 2018, 28 (4), 209-224. https://doi.org/10.1089/nat.2017.0715

2. Dana H., Chalbatani G. M., Mahmoodzadeh H, Karimloo R., Rezaiean O., Moradzadeh A., Mehmandoost N., Moazzen F., Mazraeh A., Marmari V., Ebrahimi M, Rashno M. M., Abadi S. J., Gharagouzlo E. Molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci. 2017, 13 (2), 48-57.

3. Yu A. M., Jian C., Yu A. H., Tu M. J. RNA therapy: Are we using the right molecules? Pharmacol. Ther. 2019, V. 196, P. 91-104.

4. Panza F., Lozupone M., Logroscino G., Imbim-bo B. P. A critical appraisal of amyloid-p-targeting therapies for Alzheimerdisease. Nat. Rev. Neurol. 2019, V. 15, P. 73-88. https:// doi.org/10.1038/s41582-018-0116-6

5. Reiss A. B., Arain H. A., Stecker M. M., Siegart N. M., Kasselman L. J. Amyloid toxicity in Alzheimer's disease. Rev. Neurosci. 2018, 29 (6), 613-627. https://doi. org/10,1515 / revneuro-2017-0063

6. Wang Z. X., Tan L., Liu J., Yu J. T. The essential role of soluble Ap oligomers in Alzheimer's disease. Mol. Neurobiol. 2016, V. 53, P. 1905-1924. https://doi.org/10,1007 / s12035-015-9143-0

7. Herrera-Rivero M. Late-onset Alzheimer's disease: risk factors, clinical diagnosis and the search for biomarkers. Neurodegenerative Diseases. Kishore U. (Ed.). Res. Triangle Park: InTech. 2013.

8. Kunkle B. W., Grenier-Boley B., Sims R. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Ap, tau, immunity and lipid processing. Nat. Genet. 2019, V. 51, P. 414-430.

9. Rogaeva E. The genetic profile of Alzheimer's disease: updates and considerations. Geriatrics and Aging. 2008, 11 (10), 577-581.

10. Kelleher R. J., Shen J. Presenilin-1 mutations and Alzheimer's disease. Proc. Nat. Acad. Sci. 2017, 114 (4), 629-631. https://doi. org/10.1073/pnas.1619574114

11. Cai Y., An S. S. A., Kim S. Y. Mutations in presenilin 2 and its implications in Alzheimer's disease and other dementia-associated disorders. Clinical Interventions in Aging. 2015, V. 10, P. 1163-1172. https://doi.org/10.2147/CIA.S85808

12. Safieh M., Korczyn A. D., Michaelson D. M. ApoE4: an emerging therapeutic target for Alzheimer's disease. BMC Medicine. 2019, V. 17, P. 64. https://doi.org/10.1186/ s12916-019-1299-4

13. Lim Y. Y., Mormino E. C. APOE genotype and early p-amyloid accumulation in older adults

without dementia. Neurology. 2017, V. 89, P. 1028-1034. https://doi.org/10.1212/ WNL.0000000000004336

14. Verheijen J., Sleegers K. Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends Genet. 2018, 34 (6), 434-447. https://doi. org/10.1016/j.tig.2018.02.007

15. Chen X., Mangala L. S., Rodriguez-Aguayo C., Kong X., Lopez-Berestein G., Sood A. K. RNA interference-based therapy and its delivery systems. Canser Metastasis Rev. 2018, 31 (1), 107-124. https://doi.org/10.1007/ s10555-017-9717-6

16. Setten R. L., Rossi J. J., Han S. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 2019. Online.

17. Filipowicz W., Bhattacharyya S. N., Sonen-berg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 2008, V. 9, P. 102-114. https://doi.org/10.1038/ nrg2290 (published, February, 2008).

18. Pepin G., Gantier M. P. MicroRNA decay: refining microRNA regulatory activity. MicroRNA. 2016, 5 (3), 167-174.

19. Tafrihi M., Hasheminasab E. MiRNas: biology, biogenesis, their Web-based tools, and Databases. MicroRNA. 2019, 8 (1), 4-27. https://doi.org/10.2174/221153660766618 0827111633

20. EiringA. M., Harb J. G., Neviani P., Garton C., Oaks J. J., Spizzo R., Liu S., Schwind S., Santhanam R., Hickey C. J., Becker H., Chandler J. C., Andino R., Cortes J., Hok-land P., Huettner C. S., Bhatia R., Roy D. C., Liebhaber S. A., Caligiuri M. A., Marcucci G., Garzon R., Croce C. M., Calin G. A., Perrot-ti D. MiR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010, 140 (5), 652-665. https://doi.org/10.1016/j. cell.2010.01.007

21. Vasudevan S., Tong Y., Steitz J. A Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007, V. 318, P. 1931-1934. https://doi. org/10.1126/science.1149460

22. Zhao J., Yue D., Zhou Y., Jia L., Wang H., Guo M., Xu H., Chen Ch., Zhang J., Xu L. The role of MicroRNAs in Ap deposition and tau phosphorylation in Alzheimer's disease. Front. Neurol. 2017, V. 8, P. 342. https://doi.org/10.3389/fneur.2017.00342 (accessed, July, 2017).

23. Wang R., Wang H. B., Hao C. J., Cui Y., Han X. C. MiR-101is involved in Human breast carcinogenesis by targeting. Stathminl. Plos One. 2012, 7 (10), e46173. https://doi. org/10.1371/journal.pone.0086319

14. Kim J. H., Lee K. S., Lee D. K., Kim J., Kwak S. N, Ha K. S, Choe J., Won M. H, Cho B. R., Jeoung D., Lee H., Kwon Y. G., Kim Y. M. Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/vascular endothelial growth factor axis by targeting cullin 3. Antiox. Redox. Signal. 2014, 21 (18), 2469-2482. https://doi.org/10.1089/ ars.2014.5856

25. Liu J-J, Lin X-J., Yang X-J., Zhou L., He Sh., Zhuang Sh-M., Yang J. A novel AP-1/miR-101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells. Nucl. Acids Res. 2014, 42 (19), 12041-12051. https:// doi.org/10.1093/nar/gku872 (accessed, September, 2014).

26. Lippi G., Fernandes C. C., Ewell L. A., John D, Romoli B., Curia G., Taylor S. R., Frady E. P., Jensen A. B., Liu J. C., Chaabane M. M., Belal C., Nathanson J. L., Zoli M., Leutgeb J. K, Biagini G., Yeo G. W., Berg D. K. MicroRNA-101 regulates multiple developmental programs to constrain excitation in adult neural networks. Neuron. 2016, 92 (6), 1337-1351. https://doi. org/10.1016/j.neuron.2016.11.017

27. Amakiri N., Kubosumi A., Tran J., Reddy P. H. Amyloid beta and MicroRNAs in Alzheimer's disease. Front. Neurosci. 2019, V. 13, P. 430. https://doi.org/10.3389/fnins.2019.00430 (accessed, May, 2019).

28. Vilardo E., Barbato C., Ciotti M., Cogoni C, Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J. Biol. Chem. 2010, V. 285, P. 18344-18351. https://doi.org/10.1074/jbc. M110.112664

29. Alasmari F., Alshammari M. A., Alasmari A. F., Alanazi W. A., Alhazzani Kh. Neuroinflammatory cytokines induce Amyloid beta neurotoxicity through modulating Amyloid Precursor Protein levels/metabolism. BioMed Res. Intern. V. 2018, Article ID 3087475. https://doi. org/10.1155/2018/3087475 (accessed, October, 2018).

30. Domingues C., da Cruz E., Silva O. A. B., Henriques A. G. Impact of cytokines and chemokines on Alzheimer's disease neuropathological hallmarks. Curr. Alzheimer. Res. 2017, 14 (8), 870-882. https://doi.org/10.2174/156720501466617 0317113606

31. Zheng C., Zhou X. W., Wang J. Z. The dual roles of cytokines in Alzheimer's disease: update on interleukins, TNF-a, TGF-P and IFN-y. Transl. Neurodegener. 2016, V. 5, P. 7. https://doi.org/10.1186/s40035-016-0054-4 (accessed, April, 2016).

32. Sokolik V. V., Berchenko O. G, Shulga S. M. Comparative analysis of nasal therapy with soluble and liposomal forms of curcumin on rats with Alzheimer's disease model. J. Alzheimers Dis. Parkinsonism. 2017, V. 7, P. 357. https://doi.org/10.4172/2161-0460.1000357 (accessed, July, 2017).

33. Sokolik V. V., Shulga S. M. Curcumin influence on the background of intrahippocampus administration of P-amyloid peptide in rats. Biotechnol. acta. 2015, 8 (3), 78-88. https:// doi.org/10.15407/biotech8.03.078

34. Goure W. F., Krafft G. A., Jerecic J., Hefti F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer's disease immunotherapeutics. Alzheimers Res. Ther. 2015, V. 6, P. 42. https://doi. org/10.1186/alzrt272

35. Sakono M., Zako T. Amyloid oligomers: formation and toxicity of AP oligomers. FEBS J. 2010, V. 277, P. 1348-1358. https://doi.org/10.1111/j.1742-4658.2010.07568.x

36. Sokolik V. V., Maltsev A. V. Cytokines neuroinflammatory reaction to P-amyloid 1-40 action in homoaggregatic and liposomal forms in rats. Biomed. Chem. 2015, 9 (4), 220-225. https://doi.org/10.1134/ S1990750815040058

37. Sokolik V. V., Shulga S. M. Effect of curcumin liposomal form on angiotensin converting activity, cytokines and cognitive characteristics of the rats with Alzheimer's disease model. Biotechnol. acta. 2015, 8 (6), 48-55. https://doi.org/10.15407/ biotech8.06.048

38. Hampel H., Shen Y., Walsh D. M., Aisen P., Shaw L. M., Zetterberg H., Trojanows-ki J. Q., Blennow K. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease. Exp. Neurol. 2010, 223 (2), 334-346. https://doi.org/10.1016/j. expneurol.2009.09.024

39. Gu L., Guo Z. Alzheimer's AP42 and AP40 peptides form interlaced amyloid fibrils. J. Neurochem. 2013, 126 (3), 305-311. https:// doi.org/10.1111/jnc.12202

40. Bures J., Petran M., Zachar J. Electro-physiological methods in biological research, Ed. 2 Publishing House. 1960, 516 p.

41. Shulga S. M. Obtaining and characteristic of curcumin liposomal form. Biotechnol. acta. 2014, V. 7, P. 55-61. https://doi. org/10.15407/biotech7.05.055

42. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, V. 193, P. 265-275.

43. Hébert S. S., Horré K., NicolaïL., Papadopou-lou A. S., Mandemakers W., Silahtarog-lu A. N., Kauppinen S., Delacourte A.,

De Strooper B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/ beta-secretase expression. Proc. Natl. Acad. Sci. U. S. A. 2008, V. 105, P. 6415-6420. https://doi.org/10.1073/pnas.0710263105 (accessed, April, 2008).

44. Nunez-Iglesias J., Liu C. C., Morgan T. E., Finch C. E., Zhou X. J. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation. PLoS One. 2010, 5 (2), e8898. https://doi.org/10.1371/journal. pone.0008898 (accessed, February, 2010).

45. Zhao Q., Luo L, Wang X., Li X. Relationship between single nucleotide polymorphisms in the 3'UTR of amyloid precursor protein and risk of Alzheimer's disease and its mechanism. Biosci. Rep. 2019, V. 39, P. 5. https://doi.org/10.1042 / BSR20182485 (accessed, May, 2019).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

46. Vilardo E, Barbato C, Ciotti M, Cogoni C., Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J. Biol. Chem. 2010, V. 285, P. 18344-18351. https://doi.org/10.1074/ jbc.M110.112664

47. Long J. M, Lahiri D. K. MicroRNA-101 downregulates Alzheimer's amyloid-P precursor protein levels in human cell cultures and is differentially expressed. Biochem. Biophys. Res. Commun. 2011,

404 (4), 889-895. https://doi.org/10.1016/j. bbrc.2010.12.053 (accessed, January, 2011).

48. Wojdasiewicz P., Poniatowski L. A., Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014, V. 2014, P. 561459. https:// doi.org/10.1155/2014/561459 (accessed, April, 2014).

49. Wang C. C., Yuan J. R., Wang C. F.,Yang N., Chen J., Liu D., Song J., Feng L., Tan X. B., Jia X. B.Anti-inflammatoryeffects of Phyllanthus emblica L on benzopyrene-induced precancerous lung lesion by regulating the IL-1p/miR-101/Lin28B signaling pathway. Integr. Cancer Ther. 2016, 16 (4), 505-515. https://doi. org/10.1177/1534735416659358

50. Saika R., Sakuma H., Noto D., Yamaguchi S., Yamamura T., Miyake S. MicroRNA-101a regulates microglial morphology and inflammation. J. Neuroinf. l017, 14 (1), 109. https://doi.org/10.1186/s12974-017-0884-8 (accessed, May, 2017).

51. Gao Y., Liu F., Fang L., Cai R., Zong C, Qi Y. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPS-activated macrophages. PLoS One. 2014, 9 (5), e96741. https://doi.org/10.1371/ journal.pone.0096741 (accessed, May, 2014)

АНТИАМ1ЛО1ДОГЕННА Д1Я MiR-101 ЗА ЕКСПЕРИМЕНТАЛЬНО1 ХВОРОБИ АЛЬЦГЕЙМЕРА

В. СоколЫ1, О. Берченко1, Н. Левiчеваl, С. Шульга2

1ДУ «1нститут неврологи, n^xiaTpii та наркологй НАМН Укра!ни», Харшв 2ДУ «1нститут харчово1 бмтехнологп i геномiки НАН Укра!ни», Ки1в

E-mail: v.sokolik67@gmail.com

Метою дослвдження було визначення впливу miR-101 на рiвень Р-ам^о!дного пептиду й активацiю системи цитошшв у вiддiлах головного мозку тварин за експериментально! моделi хвороби Альцгеймера. MiR-101 е ключовим оператором функцп мРНК для проте1ну попередника Р-амшощного пептиду шляхом ll деактиваций i здатна пригнiчувати його синтез та амшо!догенний процесинг. Щурам-самцям шзнього зрiлого вiку iнтрагiпокампально одноразово ушлатерально вводили агрегати ß-амiлоlдного пептиду 40 у дозi 15 нмоль. Через 10 дiб розпочинали назально вводити лшосомальну форму miR-101 або пуси лiпосоми. Пiсля 10 дiб щоденно! терапи у неокортексi, гiпокампi та нюхових цибулинах визначали рiвень токсично! ендогенно! форми ß-ашловдного пептиду 42 й актившсть цитокшово! системи за показниками фактора некрозу пухлини а, штерлейкшу-6, штерлейкшу-10. Встановлено, що екзогенш агрегати ß-амiлоlдного пептиду 40 моделюють у щурiв ам^о!догенний i прозапальний стан через 20 дiб лише у неокортеки та гiпокампi (достовiрне збiльшення концентрацп ß-амiлоlдного пептиду 42 на 36% i цитокiнiв на 16-18% в неокортек« та ß-ам^ощного пептиду 42 — на 27% i прозапальних цитокiнiв фактора некрозу пухлин а, штерлейкшу-6 — на 14% у гшокамт), проте не в нюхових цибулинах. Десятиденний курс назально! терапп лiпосомальною miR-101 нормалiзував рiвень ß-амiлоlдного пептиду 42 та цитошшв: у неокортексi концентрацiя ендогенного токсичного ß-амiлоlдного пептиду 42 зменшилася на 33%, у гшокамт — на 15%, а прозапальних цитошшв — на 11-20%. Таким чином, назальна терашя miR-101 у лшосомах зумовила достовiрний антиамшо!догенний ефект у щурiв з моделлю хвороби Альцгеймера, тодi як ll антизапальна дiя передуйм сприяла зниженню концентраций ß-амiлоlдного пептиду 42.

Ключовi слова: miR-101, ß-амiлоlдний пептид, ам^о!доз, хвороба Альцгеймера.

АНТИАМИЛОИДОГЕННОЕ ДЕЙСТВИЕ MiR-101 ПРИ ЭКСПЕРИМЕНТАЛЬНОЙ БОЛЕЗНИ АЛЬЦГЕЙМЕРА

В. Соколик1, О. Берченко1, Н. Левичева1, С. Шульга2

1ГУ «Институт неврологии, психиатрии и наркологии НАМН Украины», Харьков

2ГУ «Институт пищевой биотехнологии и геномики НАН Украины», Киев

E-mail: v.sokolik67@gmail.com

Целью исследования было определение эффекта miR-101 на уровень ß-амилоидного пептида и активацию системы цитокинов в отделах головного мозга животных с экспериментальной моделью болезни Альцгеймера. MiR-101 является ключевым оператором функции мРНК для протеина предшественника ß-амилоидного пептида путем ее деактивации и способна подавлять его синтез и амилоидогенный процес-синг. Крысам-самцам позднего зрелого возраста интрагиппокампально одноразово уни-латерально вводили агрегаты ß-амилоидного пептида 40 в дозе 15 нмоль. Через 10 суток начинали назально вводить липосомальную форму miR-101 или пустые липосомы. После 10 суток ежедневной терапии в неокортексе, гиппокампе и обонятельных луковицах определяли уровень токсической эндогенной формы ß-амилоидного пептида 42 и активности цитокиновой системы по показателям фактора некроза опухоли а, ин-терлейкина-6, интерлейкина-10. Установлено, что экзогенные агрегаты ß-амилоидного пептида 40 моделируют у крыс амилоидогенную и провоспалительную ситуацию через 20 суток только в неокортексе и гиппокампе (достоверное увеличение концентрации ß-амилоидного пептида 42 на 36% и цитокинов на 16-18% в неокортексе и ß-амилоидногопептида 42 — на 27% и провоспалительных цитокинов фактора некроза опухоли а, интерлейкина-6 — на 14% в гиппокампе), однако не в обонятельных луковицах. Десятидневный курс назальной терапии липосомальной miR-101 нормализовал уровень ß-амилоидного пептида 42 и цитокинов: в не-окортексе концентрация эндогенного токсического ß-амилоидного пептида 42 уменьшилась на 33%, в гиппокампе — на 15%, а провоспали-тельных цитокинов — на 11-20%. Таким образом, назальная терапия miR-101 в липосомах обусловила достоверный анти ами лои догенный эффект у крыс с моделью болезни Альцгеймера, в то время как ее антивоспалительное действие прежде всего способствовало снижению концентрации ß-амилоидного пептида 42.

Ключевые слова: miR-101, ß-амилоидный пептид, амилоидоз, болезнь Альцгеймера.

i Надоели баннеры? Вы всегда можете отключить рекламу.