Научная статья на тему 'Anatomical aspects of aging of choroid plexuses of white rats'

Anatomical aspects of aging of choroid plexuses of white rats Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
71
21
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СОСУДИСТЫЕ СПЛЕТЕНИЯ / ГОЛОВНОЙ МОЗГ / СПИННОМОЗГОВАЯ ЖИДКОСТЬ / ЭКСПЕРИМЕНТАЛЬНАЯ АНАТОМИЯ / VASCULAR PLEXUS / BRAIN / CEREBROSPINAL FLUID / EXPERIMENTAL ANATOMY

Аннотация научной статьи по биотехнологиям в медицине, автор научной работы — Kunitsa V.N., Gasanova I. Kh., Shaymardanova L.R., Gasanli Z. Kh., Abdullaeva V.D.

The study of the variability of cerebral vascular plexuses is an actual problem of modern morphology. The choroid plexuses play an important role in liquor production, thus participating in the exchange, trophical functions and providing brain homeostasis. Multiple infusions of the cerebrospinal fluid to adult and presenile animals have positively influenced age-related changes of the connective tissue stroma and inhibition of the organ involution.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

АНАТОМИЧЕСКИЕ АСПЕКТЫ СТАРЕНИЯ ХОРОИДНЫХ СПЛЕТЕНИЙ БЕЛЫХ КРЫС

Изучение изменчивости сосудистых сплетений головного мозга является актуальной проблемой современной морфологии. В сосудистых сплетениях принято различать несколько составных: соединительная ткань, сосудистая сеть и эпителиальный покров. Сосудистые сплетения играют весьма важную роль в ликворообразовании, тем самым участвуют в обменной, трофической функции, обеспечивая гомеостаз головного мозга. При многократном введении ликвора у животных половозрелого и предстарческого возраста наблюдается положительный эффект на возрастные изменения соединительнотканной стромы и торможение возрастной инволюции органа.

Текст научной работы на тему «Anatomical aspects of aging of choroid plexuses of white rats»

УДК: 611.82+611.81+611.1

АНАТОМИЧЕСКИЕ АСПЕКТЫ СТАРЕНИЯ ХОРОИДНЫХ СПЛЕТЕНИЙ БЕЛЫХ КРЫС

Куница В. Н.1, Гасанова И. Х.1, Шаймарданова Л. Р.1, Гасанли З. Х.2, Абдуллаева В. Д.1, Аллахвердиев Э. Г.1, Новосельская Н. А.1

'Кафедра нормальной анатомии, 2кафедра пропедевтики стоматологии, Медицинская академия имени С.И. Георгиевского ФГАОУ ВО «Крымский федеральный университет имени В.И. Вернадского», 295051, бульвар Ленина 5/7, Симферополь, РФ

Для корреспонденции: Гасанова Илаха Халис, кандидат медицинских наук, доцент кафедры нормальной анатомии Медицинской академии имени С.И. Георгиевского «ФГАОУ ВО КФУ им. В.И. Вернадского», e-mail:ilaha_gasanova@mail.ru

For correspondence: Gasanova I. Kh., PhD, Assistant Professor of the Department of human anatomy, Medical Academy named after S.I. Georgievsky of Vernadsky CFU, e-mail: ilaha_gasanova@mail.ru

Information about authors:

Kunitsa V. N. http://orcid.org/0000-0001-5178-5061 Gasanova I. Kh. http://orcid.org/0000-0003-3743-9829 Shaymardanova L. R. http://orcid.org/0000-0003-3154-3203 Gasanli Z. Kh. http://orcid.org/0000-0001-5527-8075 Abdullaeva V. D. http://orcid.org/0000-0002-1767-965\ Allahverdiyev E. G. http://orcid.org/0000-0002-9006-8580 Novoselskaya N. A. http://orcid.org/0000-0001-920166-9704

РЕЗЮМЕ

Изучение изменчивости сосудистых сплетений головного мозга является актуальной проблемой современной морфологии. В сосудистых сплетениях принято различать несколько составных: соединительная ткань, сосудистая сеть и эпителиальный покров. Сосудистые сплетения играют весьма важную роль в ликворообразовании, тем самым участвуют в обменной, трофической функции, обеспечивая гомеостаз головного мозга. При многократном введении ликвора у животных половозрелого и предстарческого возраста наблюдается положительный эффект на возрастные изменения соединительнотканной стромы и торможение возрастной инволюции органа.

Ключевые слова: сосудистые сплетения; головной мозг; спинномозговая жидкость; экспериментальная анатомия.

ANATOMICAL ASPECTS OF AGING OF CHOROID PLEXUSES OF WHITE RATS

Kunitsa V. N., Gasanova I. Kh., Shaymardanova L. R., Gasanli Z. Kh., Abdullaeva V. D., Allahverdiyev E. G., Novoselskaya N. A.

Medical Academy named after S.I. Georgievsky of Vernadsky CFU, Simferopol, Russia

SUMMARY

The study of the variability of cerebral vascular plexuses is an actual problem of modern morphology. The choroid plexuses play an important role in liquor production, thus participating in the exchange, trophical functions and providing brain homeostasis. Multiple infusions of the cerebrospinal fluid to adult and presenile animals have positively influenced age-related changes of the connective tissue stroma and inhibition of the organ involution.

Key words: vascular plexus, brain, cerebrospinal fluid, experimental anatomy.

The vascular plexuses of the brain ventricles, as derivatives of the pia mater, connect the important systems of the body: the blood system and the nervous one. They are responsible for production and resorbtion of the cerebrospinal fluid, thus providing the brain homeostasis [1, 2, 3]. The study of the variability of cerebral vascular plexuses is an actual problem of modern morphology. Commonly the following parts in the vascular plexus are distinguished: the connective tissue, the vascular network, and the epithelial cover [4, 5]. On the base of vascular plexuses of the stroma the connective

tissue is pronounced, with a predominant amount of collagen fibres forming a broad network. Elastic fibers pass under the epithelium and around the vessels [6]. The data on the amount of connective tissue in the brain vascular plexuses at different age levels have not been studied sufficiently.

The investigations of vascular plexuses by many authors [7] showed the age-related involution of the organ, and the increase of the amount of connective tissue was considered as a sign of the involution start. The connective tissue of the vascular plexus in young species was loose and pappy, with a

КРЫМСКИЙ ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ И КЛИНИЧЕСКОЙ МЕДИЦИНЫ

small amount of elastic and collagen fibers having a large number of cells. With age, the number of fibers increased, and the connective tissue became denser. In newborns and children of early age, the connective tissue is very thin, in addition, it is difficult to distinguish between the epithelial and vascular layers. At older ages and under pathological conditions, the subepithelial layer expands and is encrusted with mineral salts [8]. Physiological calcification of the vascular-epithelial plexuses takes place at the age of 30 years [9]. The vascular network was formed by wide and winding vessels. The epithelium covered the free surface of the vascular plexus and, consequently, of all the villi, consisting of one layer of cubic granular cells that contained the nucleus in the center with a large nucleolus.

According to the authors [10], the ageing was accompanied by an increase of the number of squamous epithelial cells in the vascular plexuses, the number of vacuoles was increasing, the amount of collagen fibers in the plexus stroma was rising up, some of them were undergoing hyalinosis and calcification. In the process of aging, the length and area of the exchange surface of the capillaries decreased. The flattening of the epithelium, the increase in the volume of connective tissue, the hyalinosis, fibrosis and defragmentation of collagen fibers, the increase of psammomial bodies in the number was described. The diameter of the capillaries, on the contrary, was increasing [11, 12]. At the same time, the specific gravity of all types of connective tissue fibers increased.

Thus, the information about the features of age-related changes in the structure of the vascular plexuses in the sources is contradictory.

The purpose of our study was to study the age-related features of the morphological organization of the vascular plexuses of the human cerebral ventricles after application of the xenogenic cerebrospinal fluid.

MATERIAL AND METHODS

White Wistar rats of the neonatal age (one day after birth, average weight being 6-8 g), immature (30 days, average weight being 30-40 g), mature (6 months, average weight being 180-200 g) and pre-senileperiods (20 months, average weight being 250-280 g) were used for the experiment. The age and weight of rats are indicated according to the start of the experiment. The total number of animals was 96, each experimental series contained 24 rats. The study was carried out with dividing the animals into the control group (subject to infusions of saline solution) and the experimental ones (with infusions of xenogenous cerebrospinal fluid (CSF)) [13, 14]. The solutions were calculated for a single dose of 2 ml / kg of the body weight, the injections were given once to the newborn

rats and repeatedly with an interval of 2 days to the remaining age groups. In the experiment, rats were sacrificed on the 7th and 30th days. In order to study the structures of the connective tissue stroma, Merkulov's method of impregnation for the serial histological sections was used [15].

RESULTS AND DISCUSSION

The villous and non-villous parts in the vascular plexuses of the cerebral ventricles in neonatal rats of the control group and the experimental one were poorly differentiated. The well-defined layers of the reticular fibers were visible in the walls of the large vessels, which sometimes formed a small looped network around them. Around the vessels of small villi they were visible in the form of thin, barely noticeable fibers (Fig. 1).

Fig.1. Vascular plexuses of the brain ventricles of the experimental rats of the neonatal period on the 7th day of the experiment. Reticular fibers (arrows).

In the group of immature animals, delicate and thin elastic argyrophilic and collagen fibers were found in the villi and on the base of plexuses, also there were few cellular elements. Reticular fibers were visible as thin, hardly noticeable fibers in the wall of some vessels and in most of cases were not stained.

Reticular fibers of mature animals are concentrated in the villous and nonvillous parts, formed by thin collagen and elastic fibers in the epithelium around the vessels, with their caliber large enough, and on the base of the plexus. The number of fibers in the vascular plexuses of this group was significant. In villi, the argyrophilic skeletons are represented perivascularly, as thick ring-shaped closed structures. In some areas of the non-villous part, there are individual fibroblasts and thin argyrophilic fibers. The stroma of the villi is dark brown, and the black fibers concentrate around large vessels, mainly in the non-villous part of the plexus (Figure 2).

Fig. 2. Vascular plexus of the ventricles of the brain in the experimental mature animals on the 7th day of the experiment. Ring-shaped perivascular network of reticular fibers (arrows).

On the 30 th day of the experiment in mature rats of the control group, expressed bundles of collagen fibers, intertwined with each other, form large networks. On the base of the plexus in the non-villous part, a moderate thickening of the subepithelial layer of the stroma and perivascular space is caused by coarsening of the connective tissue fibers and an increase in their number is observed, with a simultaneous decrease in the number of cellular elements (Figure 3).

Fig. 3. Choroid plexuses of the mature-age group of the control series on the 30th day of the experiment. Thick bundles of reticular fibers (arrows).

In the experimental animals of the same age group, with 10 injections of cerebrospinal fluid, the connective tissue stroma is formed by ordered collagen fibers. The most pronounced bundles of connective tissue fibers are in the perivascular region; they are also found in the form of small

bundles in the thickness of villi. Based on that, we assume that XCSF positively affects the microstructure of the plexus and inhibits the processes of age-related organ involution (Fig. 4).

Fig. 4. Vascular plexus of the brain ventricles of the of experimental animals of the mature age group on the 30th day of the experiment.

The villous and non-villous parts in the vascular plexuses of animals of the pre-senile age were clearly differentiated. Involute changes were characteristic for that period. In the control group, on the plexus base there was a large number of thick collagen fibers intertwining with each other and forming a coarse network with numerous cellular elements. After XCSF was administered to animals, the reticular fibers in vascular plexuses were seen as thin, barely noticeable fibers in the wall of some vessels, which also could suggest a positive dynamics of the effect of XCSF on the age-related changes in the ventricles plexuses.

CONCLUSION

Beginning with the period of maturity, moderate thickening of the stromal layers occured in the vascular plexuses due to coarsening of the fibers and the increase of their number. After the single and triple XCSF injections, no distinct pattern of changes in the number of fibers was observed. After repeated use of the cerebrospinal fluid in animals of mature and presenile age, inhibition of age-related organ involution was observed.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

The authors have no conflict of interests to declare.

RESOURSES

1. Автандилов Г. Г Сосудистые сплетения головного мозга. (Морфология, функция, патология). Нальчик. 1962:89.

2018, т. 8, № 2

КРЫМСКИЙ ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ И КЛИНИЧЕСКОЙ МЕДИЦИНЫ

2. Гасанова И.Х., Пикалюк В.С. Морфологические преобразования эпендимоцитов сосудистых сплетений желудочков головного мозга половозрелых крыс при введении ксеногенного ликвора. Таврический медико-биологический вестник. 2013;16,1(1):59-61.

3. Kriventsov M.A. Cerebrospinal fluid review: considerations for immunoregulatory role and current trends. Таврический медико-биологический вестник. 2013;16:1-2(61):257-265.

4. Дарий А. Взаимоотношения тканевых структур в сосудистых сплетениях третьего и четвертого желудочка головного мозга. Кл^чна та експериментальна патолопя. 2010;1Х,4(34):С.27-31.

5. Serot J.-M., Bene M.-Ch., Faure G. C. Choroid plexus, ageing of the brain, and Alzheimer's disease. Frontiers in Bioscience. 2003;8(1):515-521.

6. Бабик Т.М. Ворсинки сосудистых сплетений желудочков головного мозга человека. Морфология. 2002;121(2-3):16.

7. Currle, D. S., Cheng, X., Hsu, C. M. & Monuki, E. S. Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation. Development. 2005;132:3549-3559.

8. Коржевский Д.Э. Тканевая организация и развитие сосудистого сплетения головного мозга человека. Морфология. 1998;113(2):105-114.

9. Макаров А.Ю. Клиническая ликворология. Л.: Медицина. 1984:216.

10. Redzic, Z. B. & Segal, M. B. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv. Drug Deliv. Rev. 2004;56:1695-1716.

11. Гасанова И.Х. Возрастные органометрические показатели головного мозга крыс в норме и при введении ксеногенной спинномозговой жидкости. Украшський морфолопчний альманах. 2012;10(4):23-24.

12. Гасанова И.Х., Куница В.Н., Ермола Ю.А., Га-санли З.Х., Новосельская Н.А. Анатомические особенности ультраструктуры сосудистых сплетений желудочков головного мозга новорожденных крыс в контроле и при введении ксеногенного ликвора. Современные проблемы науки и образования. 2018;(2). URL: http:// www.science-education.ru/article/view?id=27561 (дата обращения: 28.04.2018).

13. Кривенцов М.А., Пикалюк В.С., Девятова Н.В. Пролиферативный потенциал тимуса в постлучевом периоде при введении ксеногенной спинномозговой жидкости. Крымский журнал экспериментальной и клинической медицины. 2016;6(3):63-68.

14. Беляева Е.А., Кривенцов М.А. Экспериментальное моделирование применения ксеногенной спинномозговой жидкости в качестве протекторного средства при лучевом поражении поднижнечелюстной слюнной железы. Украшський морфолопчний альманах. 2014;12(2):106-108.

15. Кривенцов М.А., Девятова Н.В. Эффект цереброспинальной жидкости на функциональное состояние лейкоцитов периферической крови облученных

крыс. Крымский журнал экспериментальной и клинической медицины. 2017;7(3):33-37.

REFERENCES

1. Avtandilov G. G. Sosudistye spleteniya golovnogo mozga. (Morfologiya, funktsiya, patologiya). Nal'chik. 1962:89. (In Russian)

2. Gasanova I.Kh., Pikalyuk V.S. Morphological changes of cerebral sinus vascular plexus of white rats in their presenile age during xenogenic spinal fluid administration. Tavricheskii mediko-biologicheskii vestnik. 2013;16,1(1):59-61. (In Russian)

3. Kriventsov M.A. Cerebrospinal fluid review: considerations for immunoregulatory role and current trends. Tavricheskii mediko-biologicheskii vestnik. 2013;16:1-2(61):257-265.

4. Darii A. Mutual relations of tissue structures in the vascular plexuses of the third and fourth ventricles of the brain. Klinichna ta eksperimental'na patologiya. 2010;1Х,4(34):С.27-31. (In Russian)

5. Serot J.-M., Bene M.-Ch., Faure G. C. Choroid plexus, ageing of the brain, and Alzheimer's disease. Frontiers in Bioscience. 2003;8(1):515-521.

6. Babik T.M. Vorsic vascular plexuses of human brain ventricles. Morfologiya. 2002;121(2-3):16. (In Russian)

7. Currle, D. S., Cheng, X., Hsu, C. M. & Monuki, E. S. Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation. Development. 2005;132:3549-3559.

8. Korzhevskii D.E Tissue organization and development of human cerebral vascular plexus. Morfologiya. 1998;113(2):105-114. (In Russian)

9. Makarov A.Yu. Klinicheskaya likvorologiya. L.: Meditsina. 1984:216. (In Russian)

10. Redzic, Z. B. & Segal, M. B. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv. Drug Deliv. Rev. 2004;56:1695-1716.

11. Gasanova I.Kh. Age-related organometric data of the rat brain indexes after xenogenic cerebrospinal fluid intake. Ukraïns'kii morfologichnii al'manakh. 2012;10(4):23-24. (In Russian)

12. Gasanova I.Kh., Kunitsa V.N., Ermola Yu.A., Gasanli Z.Kh., Novosel'skaya N.A. Anatomical peculiarities of intraventricular vascular plexi ul-trastructure ofnormal newborn rats and exposed tocerebrospinal fluid. Sovremennye problemy nauki i obrazovaniya. 2018;(2). URL: http://www.science-education.ru/article/ view?id=27561 (date of the application: 28.04.2018). (In Russian)

13. Kriventsov M.A., Pikalyuk V.S., Devyatova N.V. Proliferative potential of the thymus at postradiation period with administration of xenogenic cerebrospinal fluid. Krymskii zhurnal eksperimental'noi i klinicheskoi meditsiny. 2016;6(3):63-68. (In Russian)

14. Belyaeva E.A., Kriventsov M.A Experimental model of administration of xenogenic cerebrospinal fluid as a protector in radiation injury of the submandibular

salivary gland. Ukrams'kii morfologichnii al'manakh. 2014;12(2):106-108. (In Russian)

15. Kriventsov M.A., Devyatova N.V. Effect of cerebrospinal fluid on the functional state of peripheral

blood leukocytes of irradiated rats. Krymskii zhurnal eksperimental'noi i klinicheskoi meditsiny. 2017;7(3):33-37. (In Russian)

i Надоели баннеры? Вы всегда можете отключить рекламу.