Научная статья на тему 'ANALYSIS OF THE SENSITIVITY OF THE GAS ELECTRON DIFFRACTION METHOD TO THE DETERMINATION OF THE CONFORMATIONAL COMPOSITION OF PHENYL AND THIOPHENYL SUBSTITUTED AZA-BODIPY: THEORETICAL STUDY'

ANALYSIS OF THE SENSITIVITY OF THE GAS ELECTRON DIFFRACTION METHOD TO THE DETERMINATION OF THE CONFORMATIONAL COMPOSITION OF PHENYL AND THIOPHENYL SUBSTITUTED AZA-BODIPY: THEORETICAL STUDY Текст научной статьи по специальности «Химические науки»

CC BY
48
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
GAS ELECTRON DIFFRACTION / DFT / CONFORMATIONAL ANALYSIS / AZA-BODIPY

Аннотация научной статьи по химическим наукам, автор научной работы — Pogonin Alexander E., Postnikova Daria A., Shagurin Artem Yu., Marfin Yuriy S., Girichev Georgy V.

Conformational manifold of 1,3,5,7-tetraphenyl-aza-BODIPY and 1,3,5,7-tetra(2-thiophenyl)-aza-BODIPY was studied by B3LYP calculations. The addition of four cyclic groups to the aza-BODIPY core defines the non-planarity of the molecule and movement of the substituents from the heterocycle plane. The rotation angles of the phenyl and thiophenyl groups in the molecules are about 30° and 17°, respectively. For phenyl-substituted aza-BODIPY four conformers were found using quantum chemical calculations (B3LYP/6-31G* and B3LYP/cc-pVTZ), for thiophenyl-substituted aza-BODIPY - 30 conformers. Relative energies of some conformers are quite low, therefore they should be taken into account in the treatment of the gas electron diffraction (GED) experimental data. In current work the sensitivity of the GED method to the structural changes induced by different positions of phenyl and thiophenyl substituents relative to the aza-BODIPY core and each other was examined. Model radial distribution curves f(r) for all conformers were compared. It demonstrates that the bond distances can be reliably determined from experimental data, while the refinement of mutual orientations of neighboring groups relating to each other is at the limit of the possibilities of the GED method. Based on experimental data, it is possible to distinguish 1,3,5,7-tetra(2-thiophenyl)-aza-BODIPY conformers, which differ in the mutual arrangement of sulfur atoms. The use of the results of various quantum chemical calculations leads to the same conclusions about the possibility of the gas electron diffraction method to determine the conformational composition.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ANALYSIS OF THE SENSITIVITY OF THE GAS ELECTRON DIFFRACTION METHOD TO THE DETERMINATION OF THE CONFORMATIONAL COMPOSITION OF PHENYL AND THIOPHENYL SUBSTITUTED AZA-BODIPY: THEORETICAL STUDY»

DOI: 10.6060/ivkkt.20226510.6687 УДК 544.122

АНАЛИЗ ЧУВСТВИТЕЛЬНОСТИ МЕТОДА ГАЗОВОЙ ЭЛЕКТРОНОГРАФИИ К ОПРЕДЕЛЕНИЮ КОНФОРМАЦИОННОГО СОСТАВА ФЕНИЛ-И ТИОФЕНИЛЗАМЕЩЕННЫХ АЗА-BODIPY: ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ

А.Е. Погонин, Д.А. Постникова, А.Ю. Шагурин, Ю.С. Марфин, Г.В. Гиричев

Александр Евгеньевич Погонин (ORCID 0000-0002-5389-6109)*, Дарья Алексеевна Постникова (ORCID 0000-0001-9121-7085)

Кафедра технологии керамики и наноматериалов, Ивановский государственный химико-технологический университет, Шереметевский пр., 7, Иваново, Российская Федерация, 153000 E-mail: pogoninalexander@mail.ru *, postnikovadarya35@gmail.com

Артем Юрьевич Шагурин (ORCID 0000-0003-2103-2813), Юрий Сергеевич Марфин (ORCID 0000-00021620-7175)

Кафедра неорганической химии, Ивановский государственный химико-технологический университет, Шереметевский пр., 7, Иваново, Российская Федерация, 153000 E-mail: Shagurin.A.Y@gmail.com, marfin@isuct.ru

Георгий Васильевич Гиричев (ORCID 0000-0003-0264-3408)

Кафедра физики, Ивановский государственный химико-технологический университет, Шереметевский пр., 7, Иваново, Российская Федерация, 153000 E-mail: girichev@isuct.ru

С помощью квантово-химических расчетов при использовании метода функционала плотности (гибридный функционал B3LYP) изучено конформационное многообразие 1,3,5,7-тетрафенил-аза-BODIPY и 1,3,5,7-тетра(2-тиофенил)-аза-BODIPY. Введение в структуру аза-BODIPY четырех групп-заместителей приводит к повороту и сопутствующему выходу данных групп из плоскости гетероцикла. Углы поворота фенильной и тиофенильной групп в рассмотренных молекулах составляют около 30° и 17°, соответственно. С помощью квантово-химических расчетов B3LYP/6-31G* и B3LYP/cc-pVTZ найдено четыре конформера для фенилзамещенного аза-BODIPY и 30 конформеров для тиофенилзамещенного аза-BODIPY. Относительные энергии некоторых конформеров достаточно малы, поэтому их возможное присутствие в паре необходимо учитывать при обработке экспериментальных электронографических данных. В настоящей работе исследована чувствительность метода газовой электронографии к структурным изменениям, вызванным различным положением фенильных и тиофенильных заместителей относительно друг друга и относительно остова аза-BODIPY. Сопоставлены теоретические функции радиального распределения f(r) для конформеров двух рассмотренных молекул. Межъядерные расстояния между химически связанными атомами могут быть надежно определены из экспериментальных электронографических данных. Однако определение взаимных ориентаций соседних групп по отношению друг к другу находится на пределе возможностей метода газовой электронографии. На основании экспериментальных данных можно различить конформеры 1,3,5,7-тетра(2-тиофенил)-аза-БОБ1РУ с отличными друг от друга взаимными расположениями атомов серы. Использование результатов квантово-химических расчетов, полученных при использовании различных наборов базисных функций (6-31G* и cc-pVTZ), позволяет получить сходные друг с другом изображения функций радиального распределения f(r), а значит и одинаковые выводы о возможности метода газовой электронографии определять конформационный состав.

Ключевые слова: газовая электронография, теория функционала плотности, конформационный анализ, аза-BODIPY

ANALYSIS OF THE SENSITIVITY OF THE GAS ELECTRON DIFFRACTION METHOD TO THE DETERMINATION OF THE CONFORMATIONAL COMPOSITION OF PHENYL AND THIOPHENYL SUBSTITUTED AZA-BODIPY: THEORETICAL STUDY

A.E. Pogonin, D.A. Postnikova, A.Yu. Shagurin, Yu.S. Marfin, G.V. Girichev

Alexander E. Pogonin (ORCID 0000-0002-5389-6109)*, Daria A. Postnikova (ORCID 0000-0001-9121-7085)

Department of Nanomaterials and Ceramic Technology, Ivanovo State University of Chemistry and Technology, Sheremetevskiy ave., 7, Ivanovo, 153000, Russia E-mail: pogoninalexander@mail.ru*, postnikovadarya35@gmail.com

Artem Yu. Shagurin (ORCID 0000-0003-2103-2813), Yuriy S. Marfin (ORCID 0000-0002-1620-7175)

Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevskiy

ave., 7, Ivanovo, 153000, Russia

E-mail: Shagurin.A.Y@gmail.com, marfin@isuct.ru

Georgy V. Girichev (ORCID 0000-0003-0264-3408)

Department of Physics, Ivanovo State University of Chemistry and Technology, Sheremetevskiy ave., 7, Ivanovo, 153000, Russia E-mail: girichev@isuct.ru

Conformational manifold of 1,3,5,7-tetraphenyl-aza-BODIPY and 1,3,5,7-tetra(2-thiophenyl)-aza-BODIPY was studied by B3LYP calculations. The addition of four cyclic groups to the aza-BODIPY core defines the non-planarity of the molecule and movement of the substitu-ents from the heterocycle plane. The rotation angles of the phenyl and thiophenyl groups in the molecules are about 30° and 17°, respectively. For phenyl-substituted aza-BODIPY four con-formers were found using quantum chemical calculations (B3LYP/6-31G* and B3LYP/cc-pVTZ), for thiophenyl-substituted aza-BODIPY - 30 conformers. Relative energies of some conformers are quite low, therefore they should be taken into account in the treatment of the gas electron diffraction (GED) experimental data. In current work the sensitivity of the GED method to the structural changes induced by different positions of phenyl and thiophenyl substituents relative to the aza-BODIPY core and each other was examined. Model radial distribution curves f(r) for all conformers were compared. It demonstrates that the bond distances can be reliably determined from experimental data, while the refinement of mutual orientations of neighboring groups relating to each other is at the limit of the possibilities of the GED method. Based on experimental data, it is possible to distinguish 1,3,5,7-tetra(2-thiophenyl)-aza-BODIPY conformers, which differ in the mutual arrangement of sulfur atoms. The use of the results of various quantum chemical calculations leads to the same conclusions about the possibility of the gas electron diffraction method to determine the conformational composition.

Key words: gas electron diffraction, DFT, conformational analysis, aza-BODIPY

Для цитирования:

Погонин А.Е., Постникова Д.А., Шагурин А.Ю., Марфин Ю.С., Гиричев Г.В. Анализ чувствительности метода газовой электронографии к определению конформационного состава фенил - и тиофенилзамещенных аза-BODIPY: теоретическое исследование. Изв. вузов. Химия и хим. технология. 2022. Т. 65. Вып. 10. С. 29-37. DOI: 10.6060/ivkkt.20226510.6687.

For citation:

Pogonin A.E., Postnikova D.A., Shagurin A.Yu., Marfin Yu.S., Girichev G.V. Analysis of the sensitivity of the gas electron diffraction method to the determination of the conformational composition of phenyl and thiophenyl substituted aza-BODIPY: theoretical study. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 10. P. 29-37. DOI: 10.6060/ivkkt.20226510.6687.

INTRODUCTION

One of the main problems of modern chemistry is the molecular design of chemical structures. The

emergence of new fields of practical application of BODIPY derivatives as parts of sensor devices and solar cells, materials for nonlinear optics, medicine [1, 2], etc. requires a fundamental study of the relationship

between the structure, physicochemical properties, and reactivity in various processes. BODIPY derivatives are studied by almost all physicochemical methods: a variety of spectroscopies in the visible region, including UV-Vis spectroscopy [3-5], transient absorption [6-8] and multiphoton absorption [9-12], as well as IR spectroscopy [13-16], NMR spectroscopy [17-20], EPR spectroscopy [21-23], differential scanning calorimetry [24-26], cyclic voltammetry [27-29] and X-ray diffraction (XRD) analysis [30-32]. Moreover, a large number of works [13,33,34] are devoted to the quantum chemical (QC) calculations of BOD-IPYs structures. At the same time, it is surprising that there are no data on the structure of these molecules in the gas phase. Structural information about free molecules is of particular importance, since in the gas phase there are no collective interactions that introduce significant distortions of the molecules, as is the case in the condensed state. By studying free molecules, one can establish with the greatest certainty the individual properties of compounds, describe the fine details of their geometric and electronic structure and nuclear dynamics. The most common experimental

method for determination of gas-phase structures is gas electron diffraction (GED) [35, 36]. Molecular structures determined by GED can be used for the development of the corresponding subsections of stereochemistry and for the assessment of the performance of various theoretical methods [37, 38]. However, in the case of large molecules structural refinement of GED data is usually a nontrivial procedure [39-41]. The cyclic compounds with various substituents can exhibit different types of non-planar distortions and this circumstance brings the additional difficulties in the structural analysis.

The sensitivity of the GED method to the determination of the conformational composition of compounds bearing ethyl and halogenophenyl sub-stituents was examined [38, 42-44] on the example of porphyrins. In order to assess the ability of the GED method to distinguish between different conformations of molecules, it is proposed to compare the model curves of the radial distribution f(r) for appropriate conformations using the results of QC calculations. GED method did not allow solving the confor-

mational problem of the ethyl and halogenophenyl substituted porphyrins in a gas phase [38, 42-44], but at the same time GED proved to be sensitive to the situation regarding position of the ethyl groups relatively to the macroheterocycle. For 5,10,15,20-tetrakis(40-fluorophenyl)porphyrin, the results based on this theoretical approach [38] were obtained in good qualitative and even quantitative agreement with the results described in subsequent experimental GED work [44].

The present work continues the studies devoted to determining the sensitivity of the GED method to the determination of the conformational composition of cyclic compounds. The objects of the current study are 1,3,5,7-tetraphenyl-aza-BODIPY (1) and 1,3,5,7-tetra(2-thiophenyl)-aza-BODIPY (2) (Fig. 1).

Fig. 1. Molecular structure and atom nambering in molecules 1 and 2

Рис. 1. Молекулярная структура и нумерация атомов для молекул 1 и 2

COMPUTATIONAL DETAILS

QC calculations of molecular geometries and Hessians of the 1 and 2 were performed using the Gaussian 09 program package [45] in the framework of DFT method with the functional B3LYP. Calculations were carried out using following basis sets - 6-31G* [46-49] and cc-pVTZ [50,51] for all atoms. The basis sets were taken from the Basis Set Exchange software [52-54]. The optimized structures from QC calculations are given in the Supplementary materials.

Vibrational amplitudes and vibrational corrections to nuclear distances were calculated on the base of force field obtained from quantum chemical calculations with the use VibModule program [55] for the temperature T = 430 K. In calculations for confor-

mations (VI - for 1; Vaa, Vab, Vba, Vbb - for 2), the imaginary vibration frequencies were taken as real (35 and 21 cm-1 (according to B3LYP/6-31G* and B3LYP/cc-pVTZ calculations, respectively) - for 1; 58, 20, 60, 21 cm-1 (according to B3LYP/6-31G* calculations) - for Vaa, Vab, Vba, Vbb of 2, respectively).

Calculations of the model radial distributions curves f(r) were performed in the modified KCED-35 program, which is similar to the program described in the paper [56]. The difference curves Af(r) were calculated relative to the curve corresponding to conformer with minimal energy: Af(r) = fj(r)-freference(r)). The deviation of the j-th curve from the reference curve was characterized by disagreement factor (Rf) between the theoretical molecular scattering intensities corresponding to different models:

RfJ =

(Si)reference

sM(si)modelj)2

^i=1(SM (^i)reference))

• 100%

where sM(spreference - theoretical molecular scattering intensities for conformer with minimal energy: for 1 -conformer IV, for 2 - conformer Iaa; sM(s)model j -theoretical molecular scattering intensities for corresponding conformer.

RESULTS AND DISCUSSION

Conformational multiformity of 1 and 2 is associated with the possible rotation of substituent groups around the C-C bonds. Rotation barriers of phenyl and thiophenyl are around 23 and 35 kJ-mol-1, respectively [34]. The molecules are non-planar due to the movement of the substituents out of the hetero-cycle plane. For 1 the torsional angles t(C2-C3-Ci7-Cis) and t(C2-Ci-Cii-Ci2) are about 34° and 28°, respectively; for 2 - T(C2-C3-Cl6-Sl7) ~ T(C2-Cl-Cl1-Sl2) ~ 17°. Conformations of 1 differ by mutual orientations of neighboring phenyl groups relating to each other (Fig. 2). According to the QC calculations, structures I, II, IV and V (Fig. 2) of molecule 1 correspond to minima on the potential energy surface (PES). Conformation VI corresponds to the saddle point on the PES with the imaginary frequencies describing rotation of phenyl groups in positions 1 and 7 (Fig. 2). It should be noted that the structure III transforms to conformer I within geometry optimization. Conformer IV possesses the lowest energy (Table l). QC calculations with different basis sets give the same qualitative picture of the relative energies of the considered structures (Table l).

In order to assess the ability of the GED method to distinguish between conformations of molecule 1, the simulated radial distributions curves f(r) were compared (Fig. 3, Fig. Sl). Bond lengths and

bond angles are almost the same values in all con-formers of 1, thereby Af(r) for considered structures differ only slightly. Considered models should equally describe the experimental data. Bond lengths and bond angles can be refined with a typical accuracy of GED method. Therefore, the geometry structures of aza-BODIPY core and phenyl rings can be reliably determined. It should be noted that the simulated f(r) and Af(r) obtained using B3LYP/6-31G* and B3LYP/cc-pVTZ calculations are in good agreement with each other (Fig. 3, Fig. S1). Although it is worth noting a noticeable increase in the Rf for conformer V (for B3LYP/cc-pVTZ - Rf = 1.97%, for B3LYP/6-31G* Rf= 4.59%). The reason is the overestimated values of the vibrational corrections, since the frequency values are underestimated in the QC calculations. In case of results from B3LYP/6-31G* calculations for conformer V, the vibrational frequency of rotations of phenyls is 6.5 cm-1. According to other QC calculations of conformers of molecule 1, minimal frequency is not lower than 14 cm-1.

Table 1

Relative energies of conformers I, II, IV, III and V, conformation VI of molecule 1 Таблица 1. Относительные энергии конформеров I,

Structure I II III IV V VI

Symmetry C2 C2 Ci Ci Cs Cs

ДБ, kl-mol"1 B3LYP/6-31G* 0.60 2.25 - 0.00 3.21 7.36

ДЕ, kJmol"1 B3LYP/cc-pVTZ 0.74 2.42 - 0.00 2.55 6.87

Fig. 2. Conformation models of aza-BODIPY derivatives substituted by cyclic groups in 1, 3, 5, 7-positions Рис. 2. Модели конформаций производных аза-BODIPY с циклическими группами-заместителями в 1, 3, 5, 7-положениях

Fig. 3. Comparison of theoretical radial distribution functions f(r) of molecule 1. Differences functions Af(r) were calculated concerning conformer IV (Fig. 2). Molecular parameters were calculated at B3LYP/cc-pVTZ theory level Рис. 3. Сравнение теоретических функций радиального распределения f(r) для 1. Разностные функции Af(r) рассчитаны относительно конформера IV (Рис. 2). Молекулярные параметры рассчитаны в приближении B3LYP/cc-pVTZ

Conformational multiformity of the molecule 2 is additionally complicated by the presence of a sulfur atom in the cyclic substituent group, i.e. by different arrangement of sulfur atoms with respect to the center of the molecule (Fig. 4). Given the presence of four 2-thiophenyl groups, 10 models need to be considered (Fig. 5). By adding the factor of groups rotation discussed earlier in example of 1 (Fig. 2), the number of models to consider increases to 60 (models NXX, where N = I/II/III/IV/V/VI (see Fig. 2), X = = a/b/c (see Fig. 5)). According to the QC calculations, structures IXX, IIXX and IVXX (Table 2) correspond to minima on the PES. The structures Vaa, Vab, Vba, Vbb of C2 symmetry corresponds to the saddle points on the PES (AE = 5.97, 8.55, 20.03 and 23.22 kJ-mol"1, respectively) with the imaginary frequencies describing rotation of phenyl groups in positions 1 and 7. Within geometry optimization other models transform to the structures noted above. The most energetically preferable conformer is Iaa.

As described above for molecule 1, various variants of the mutual orientation of thiophenyl groups located outside the plane of the aza-BODIPY core (INN^IINN^IVNN, Fig. 2) do not lead to a significant change in the f(r). According to the difference curves Af(r), such conformers will be indistinguishable in the GED experiment conditions (for ex-

am-ple, Iaa, Ilaa, IVaa, see Fig. S2-4). Although some conformers differing in the mutual arrangement of sulfur atoms inside the molecule (Fig. 4) can be distinguished (Fig. 6). There are several reasons for this. Foremost, there are significant changes in the distances between nonbonded atoms, primarily S--S, S—N and S—F (Table S1). It is worth noting here that sulfur atoms have higher scattering ability as compared to other atoms. In connection with it a change in distances should lead to bigger changes of radial distribution curves. Secondly, rotation of the thiophenyl groups can lead to some changes in the structure. According to the B3LYP/cc-pVTZ calculations, the transition Iaa^Ibb is accompanied by an increase in distances re(C20-Ci6) by 0.006 A and by a decrease in distances re(Sl7-Cl6), re(Si2-Cii), re(B4-Fi0) by 0.009 A, 0.005 A, 0.003 A, respectively. It is worth noting a slight difference in the f(r) obtained for the conformers Iaa and Iac (Rf,Iac = 3.i3%, Fig. 6). The GED method is more sensitive to different arrangements of thiophenyl fragments located in positions 3 and 5 than to different arrangements of the groups located in positions i and 7 (Fig. 6).

Analysis of the sensitivity of the GED method to the determination of the conformational composition using 6-3iG* and cc-pVTZ basis sets confirms that they give the same results. This fact can be used in preparation for the GED investigation of objects with many possible conformers in order to minimize computational time.

Fig. 4. Conformation models of aza-BODIPY derivatives substituted by thiophenyl groups in 1, 3, 5, 7-positions: (a) sulfur atoms

in thiophenyl groups are oriented by "outer" direction with respect to center of molecule; (b) sulfur atoms in thiophenyl groups are directed by "inner" direction with respect to center of molecule; (c) one sulfur atom in one thiophenyl group is directed by "inner" direction, another sulfur atom in another group—by "outer" Рис. 4. Модели конформаций производных аза-BODIPY с тиофенильными группами-заместителями в 1, 3, 5, 7-положениях: (a) атомы серы в тиофенильных группах ориентированы «наружу» по отношению к центру молекулы; (b) атомы серы в тиофенильных группах направлены «внутрь» по отношению к центру молекулы; (c) один атом серы в одной тиофенильной группе направлен «внутрь», другой атом серы в другой группе - «наружу

Fig. 5. Conformation models of 2. The first letter (a/b/c - see Fig. 4) indicates the arrangement of neighboring thiophenyl groups in positions 3, 5, the second letter indicates the arrangement of neighboring thiophenyl groups in positions 1, 7 Рис. 5. Модели конформаций молекулы 2. Первая буква (a/b/c - см. Рис.4) указывает на вариант расположения соседних тио-фенильных фрагментов в положениях 3, 5, вторая буква - на вариант расположения соседних тиофенильных фрагментов в положениях 1, 7

Table 2

Relative energies of conformers of molecule 2

model NXX Naa Nab Nac Nba Nbb Nbc Nca Ncb Ncc -1 Ncc-2

Symmetry С2 С2 С1 С2 С2 С1 С1 С1 С1 С1

AE, kJmol-1 6-31G* IXX 0.00 6.05 1.40 14.63 21.19 16.30 6.99 13.31 8.70 8.35

AE, kJmol-1 cc-pVTZ IXX 0.00 5.18 1.33 14.81 20.49 16.40 7.13 12.56 8.73 8.40

AE, kJmol-1 6-31G* IIXX 0.33 6.29 1.65 15.11 21.64 16.72 7.43 13.67 9.10 8.67

AE, kJmol-1 6-31G* IVXX 1.43 7.41 2.61 15.46 22.02 17.22 8.03 14.30 9.56 9.48

According to the data of the present study, the structural parameters in the considered molecules change slightly upon rotations of phenyl and thio-phenyl groups. The refinement of mutual orientations of neighboring groups relating to each other (models I-VI) is at the limit of the abilities of the GED method. In the case of molecule 2, it is quite possible to distinguish from each other conformers with different mutual arrangement of sulfur atoms in relation to each other (models aa-cc). The changes in the non-bonded distances with sulfur atoms influence the model molecular intensities sM(s) and therefore an attempt can be made to distinguish between the conformers based on the experimental GED data.

At the same time, in both cases, bond lengths and bond angles can be refined with a typical accuracy of GED method.

SUPPLEMENTARY MATERIALS

The following are available online: Fig. S1. Comparison of theoretical radial distribution functions f(r) of molecule 1. Fig. S2-S5. Comparison of theoretical radial distribution functions f(r) of con-formers and conformations of molecule 2. Table S1. Comparison of internuclear distances (Â) for con-formers Iaa, Iab, Ibb of molecule 2 from B3LYP/cc-pVTZ calculations. Additionally, optimized structures from B3LYP/6-31G* and B3LYP/cc-pVTZ calcula-

tions are given in Supplementary materials. Supplementary materials to this article can be found online at http://journals.isuct.ru/ctj/.

Fig. 6. Comparison of theoretical radial distribution functions f(r) of molecule 2. Differences functions Af(r) were calculated concerning conformer Iaa (Fig. 2, 5). Molecular parameters were calculated at B3LYP/cc-pVTZ theory level Рис. 6. Сравнение теоретических функций радиального распределения f(r) для 2. Разностные функции Af(r) рассчитаны относительно конформера Iaa (Рис. 2, 5). Молекулярные параметры рассчитаны в приближении B3LYP/cc-pVTZ

ACKNOWLEDGEMENTS

The reported study was funded by the grant of the President of the Russian Federation (project МК-5965.2021.1.3).

The study was carried out using the resources of the Center for Shared Use of Scientific Equipment of the ISUCT (with the support of the Ministry of Science and Higher Education of Russia, grant No. 07515-2021-671).

The authors declare the absence a conflict of interest warranting disclosure in this article.

Данное исследование выполнено за счет гранта Президента Российской Федерации (проект МК-5965.2021.1.3).

Исследование выполнено с использованием ресурсов Центра коллективного пользования научной аппаратурой ИГХТУ (при поддержке Минобрнауки России, грант № 075-15-2021-671).

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

REFERENCES ЛИТЕРАТУРА

1. Kamkaew A., Lim S.H., Lee H.B., Kiew L.V., Chung L.Y., Burgess K. BODIPY dyes in photodynamic therapy. Chem Soc Rev. 2013. V. 42. N 1. P. 77-88. DOI: 10.1039/C2CS35216H.

2. Zhang W., Ahmed A., Cong H., Wang S., Shen Y., Yu

B. Application of multifunctional BODIPY in photody-namic therapy. Dye Pigment. 2021. N 185. P. 108937. DOI: 10.1016/j.dyepig.2020.108937.

3. Meng G., Velayudham S., Smith A., Luck R., Liu H. Color Tuning of Polyfluorene Emission with BODIPY Monomers. Macromolecules. 2009. V. 42. N 6. P. 1995-2001. DOI: 10.1021/ma8023975.

4. Boens N., Leen V., Dehaen W. Fluorescent indicators based on BODIPY. Chem Soc Rev. 2012. V. 41. N 3. P. 1130-1172. DOI:10.1039/c1cs15132k

5. Zhao J., Xu K., Yang W., Wang Z., Zhong F. The triplet excited state of Bodipy: formation{,} modulation and application. Chem Soc Rev. 2015. V. 44. N 24. P. 8904-8939. DOI: 10.1039/C5CS00364D.

6. Whited M.T., Patel N.M., Roberts S.T., Allen K., Dju-rovich P.l, Bradforth S.E., Thompson M.E. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads. Chem Commun. 2012. V. 48. N 2. P. 284-286. DOI: 10.1039/C1CC12260F.

7. Adarsh N., Avirah R.R., Ramaiah D. Tuning Photosensitized Singlet Oxygen Generation Efficiency of Novel Aza-BODIPY Dyes. Org Lett. 2010. V. 12. N 24. P. 5720-5723. DOI: 10.1021/ol102562k.

8. Liu J.Y., El-Khouly M.E., Fukuzumi S., Ng D.K.P. Photoin-duced Electron Transfer in a Distyryl BODIPY-Fullerene Dyad. Chem - An Asian J. 2011. V. 6. N 1. P. 174-179. DOI: 10.1002/asia.201000537.

9. Kulyk B., Taboukhat S., Akdas-Kilig H., Fillaut J.L., Boughaleb Y., Sahraoui B. Nonlinear refraction and absorption activity of dimethylaminostyryl substituted BOD-IPY dyes. RSC Adv. 2016. V. 6. N 88. P. 84854-84859. DOI: 10.1039/C6RA19023E.

10. Peterson J.A., Wijesooriya C., Gehrmann E.J., Mahoney K.M., Goswami P.P., Albright T.R., Syed A., Dutton A.S., Smith E.A., Winter A.H. Family of BODIPY Photocages Cleaved by Single Photons of Visible/Near-Infrared Light. J. Am. Chem. Soc. 2018. V. 140. N 23. P. 7343-7346. DOI: 10.1021/jacs.8b04040.

11. Bouit P.A., Kamada K., Feneyrou P., Berginc G., Toupet L., Maury O., Andraud C. Two-Photon Absorption-Related Properties of Functionalized BODIPY Dyes in the Infrared Range up to Telecommunication Wavelengths. Adv Mater. 2009. V. 21. N 10-11. P. 1151-1154. DOI: 10.1002/adma.200801778.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

12. Zhang X., Xiao Y., Qi J., Qu J., Kim B., Yue X., Belfield K.D. Long-Wavelength, Photostable, Two-Photon Excitable BODIPY Fluorophores Readily Modifiable for Molecular Probes. J. Org. Chem. 2013. V. 78. N 18. P. 9153-9160. DOI: 10.1021/jo401379g.

13. Pogonin A.E., Postnikova D.A., Shagurin A.Y., Belov D.V., Usoltsev S.D., Marfin Y.S. Assignment of the vibrations of un-substituted BODIPY and aza-BODIPY. Macroheterocycles. 2021. V. 14. N 3. P. 240-248. DOI: 10.6060/mhc213973p.

14. Suhina T., Amirjalayer S., Woutersen S., Bonn D., Brouwer A.M. Ultrafast dynamics and solvent-dependent deactivation kinetics of BODIPY molecular rotors. Phys. Chem. Chem. Phys. 2017. V. 19. N 30. P. 19998-20007. DOI: 10.1039/C7CP02037F.

15. Sun S., Zhuang X., Wang L., Liu B., Zhang B., Chen Y. BODIPY-based conjugated polymer covalently grafted reduced graphene oxide for flexible nonvolatile memory devices. Carbon N Y. 2017. V. 116. P. 713-721. DOI: 10.1016/j.carbon.2017.02.034.

16. Ksenofontova K.V., Ksenofontov A.A., Khodov I.A., Rumyantsev E.V. Novel BODIPY-conjugated amino acids: Synthesis and spectral properties. J. Mol. Liq. 2019. V. 283. P. 695-703. DOI: 10.1016/j.molliq.2019.03.148.

A.E. noroHHH h gp.

17. Benniston A.C., Clift S., Harriman A. Intramolecular charge-transfer interactions in a julolidine-Bodipy molecular assembly as revealed via 13C NMR chemical shifts. J. Mol. Struct. 2011. V. 985. V. 2. P. 346-354. DOI: 10.1016/j.molstruc.2010.11.018.

18. Kim K., Jo C., Easwaramoorthi S., Sung J., Kim D.H., Churchill D.G. Crystallographic, Photophysical, NMR Spectroscopic and Reactivity Manifestations of the "8-Heteroaryl Effect" in 4,4-Difluoro-8-(C4H3X)-4-bora-3a,4a-diaza-s-indacene (X = O, S, Se) (BODIPY) Systems. Inorg. Chem. 2010. V. 49. N 11. P. 4881-4894. DOI: 10.1021 /ic902467h.

19. Roacho R.I., Metta-Magaña A., Portillo M.M., Peña-Cabrera E., Pannell K.H. 8-Amino-BODIPYs: Structural Variation, Solvent-Dependent Emission, and VT NMR Spectroscopic Properties of 8-R2N-BODIPY. J. Org. Chem. 2013. V. 78. N 9. P. 4245-4250. DOI: 10.1021/jo302758a.

20. Guliyev R., Ozturk S., Sahin E., Akkaya E.U. Expanded Bodipy Dyes: Anion Sensing Using a Bodipy Analog with an Additional Difluoroboron Bridge. Org. Lett. 2012. V. 14. N 6. P. 1528-1531. DOI: 10.1021/ol300260q.

21. Toffoletti A., Wang Z., Zhao J., Tommasini M., Barbon A. Precise determination of the orientation of the transition dipole moment in a Bodipy derivative by analysis of the magnetopho-toselection effect. Phys. Chem. Chem. Phys. 2018. V. 20. N 31. P. 20497-20503. DOI: 10.1039/C8CP01984C.

22. Wang Z., Huang L., Yan Y., El-Zohry A.M., Toffoletti A., Zhao J., Barbon A., Dick B., Mohammed O.F., Han

G. Elucidation of the Intersystem Crossing Mechanism in a Helical BODIPY for Low-Dose Photodynamic Therapy. Angew Chemie Int Ed. 2020. V. 59. N 37. P. 16114-16121. DOI:10.1002/anie.202005269.

23. Wang J., Hou Y., Lei W., Zhou Q., Li C., Zhang B., Wang X. DNA Photocleavage by a Cationic BODIPY Dye through Both Singlet Oxygen and Hydroxyl Radical: New Insight into the Photodynamic Mechanism of BOD-IPYs. ChemPhysChem. 2012. V. 13. N 11. P. 2739-2747. DOI: 10.1002/cphc .201200224.

24. Ooyama Y., Hagiwara Y., Oda Y., Fukuoka H., Ohshita J. BODIPY dye possessing solid-state red fluorescence and green metallic luster properties in both crystalline and amorphous states. RSC Adv. 2014. V. 4. N 3. P. 1163-1167. DOI: 10.1039/C3RA45785K.

25. Olivier J.H., Camerel F., Ulrich G., Barbera J., Ziessel R. Luminescent Ionic Liquid Crystals from Self-Assembled BODIPY Disulfonate and Imidazolium Frameworks. Chem - A Eur J. 2010. V. 16. N 24. P. 7134-7142. DOI: 10.1002/chem.201000339.

26. Ozdemir M., Choi D., Kwon G., Zorlu Y., Cosut B., Kim

H., Facchetti A., Kim C., Usta H. Solution-Processable BODIPY-Based Small Molecules for Semiconducting Mi-crofibers in Organic Thin-Film Transistors. ACS Appl. Mater. Interfaces. 2016. V. 8. N 22. P. 14077-14087. DOI: 10.1021/acsami.6b02788.

27. Ziessel R., Allen B.D., Rewinska D.B., Harriman A. Selective Triplet-State Formation during Charge Recombination in a Full-erene/Bodipy Molecular Dyad (Bodipy=Borondipyrromethene). Chem - A Eur J. 2009. V. 15. N 30. P. 7382-7393. DOI: 10.1002/chem.200900440.

28. Nepomnyashchii A.B., Bard A.J. Electrochemistry and Electrogenerated Chemiluminescence of BODIPY Dyes. Acc. Chem. Res. Publ. online. 2012. P. 1844-1853. DOI: 10.1021/ar200278b.

29. Hua L., Wang Q., Gai L., Li Z., Deng Y., Xiao X., Lai G., Shen Z. Tuning the Solid-State Luminescence of BODIPY Derivatives with Bulky Arylsilyl Groups: Synthesis and Spectroscopic Properties. Chem - A Eur J. 2012. V. 18. N 25. P. 7852-7861. DOI: 10.1002/chem.201200169.

30. Arroyo I.J., Hu R, Merino G., Tang B.Z., Peña-Cabrera E. The smallest and one of the brightest. Efficient preparation and optical description of the parent borondipyrromethene system. J. Org. Chem. 2009. V. 74. N 15. P. 5719-5722. DOI: 10.1021/jo901014w.

31. Tram K., Yan H., Jenkins H.A., Vassiliev S., Bruce D. The synthesis and crystal structure of unsubstituted 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY). Dye Pigment. 2009. V. 82. N 3. P. 392-395. DOI: 10.1016/j.dyepig.2009.03.001.

32. Schmitt A., Hinkeldey B., Wild M., Jung G. Synthesis of the Core Compound of the BODIPY Dye Class: 4,4'-Difluoro-4-bora-(3a,4a)-diaza-s-indacene. J. Fluoresc. 2009. V. 19. N 4. P. 755-758. DOI: 10.1007/s10895-008-0446-7.

33. Shagurin A.Y., Usoltsev S.D., Marfin Y.S. Quantum-chemical study of oxophosphorus dipyrromethene (PODIPY) fluorophore coordination environment. Comput. Theor. Chem. 2019. N 1164. P. 112553. DOI: 10.1016/j.comptc.2019.112553.

34. Pogonin A.E., Shagurin A.Y., Savenkova M.A., Telegin F.Y., Marfin Y.S., Vashurin A.S. Quantum Chemical Study Aimed at Modeling Efficient Aza-BODIPY NIR Dyes: Molecular and Electronic Structure, Absorption, and Emission Spectra. Molecules. 2020. V. 25. N 22. P. 5361. DOI: 10.33 90/molecules25225361.

35. Hilderbrandt R.L., Bonham R.A. Structure Determination by Gas Electron Diffraction. Ann. Rev. Phys. Chem. 1971. V. 22. N 1. P. 279-312. DOI: 10.1146/annurev.pc.22.100171.001431.

36. Vogt J., Popov E., Rudert R., Vogt N. MOGADOC: a database with 3D-structures. J. Cheminform. 2014. V. 6. N 1. P. P3. DOI: 10.1186/1758-2946-6-S1-P3.

37. Girichev G.V., Giricheva N.I, Koifman O.I., Minenkov Y.V., Pogonin A.E., Semeikin A.S., Shlykov S.A. Molecular structure and bonding in octamethylporphyrin tin(ii), SnN4C28H28. Dalt. Trans. 2012. V. 41. N 25. P. 7550-7558. DOI: 10.1039/c2dt12499h.

38. Kurochkin I.Y., Pogonin A.E., Otlyotov A.A., Kiselev A.N., Girichev G.V. DFT study of molecular structure of 5,10,15,20-tetrakis(4'-halogenophenyl)porphyrins and their isomers. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.J. 2020. V. 63. N 1. P. 51-57. DOI: 10.6060/ivkkt.20206301.5957.

Курочкин И.Ю., Погонин А.Е., Отлетов А.А., Киселев А.Н., Гиричев Г.В. DFT изучение молекулярной структуры 5,10,15,20-тетракис(4'-галогенфенил)порфинов и их изомеров. Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 1. С. 51-57. DOI: 10.6060/ivkkt.20206301.5957.

39. Zhabanov Y.A., Pogonin A.E. An alternative approach to structural analysis for gas electron diffraction method. Comput. Theor. Chem. 2018. N 1123. P. 149-153. DOI: 10.1016/J.COMPTC.2017.11.024.

40. Pogonin A.E., Otlyotov A.A., Minenkov Y., Semeikin A.S., Zhabanov Y.A., Shlykov S.A., Girichev G.V.

Molecular Structure of Nickel Octamethylporphy-rin—Rare Experimental Evidence of a Ruffling Effect in Gas Phase. Int. J. Mol. Sci. 2022. V. 23. N. 1. DOI:10.3390/ijms23010320.

41. Dunaeva V.V., Girichev G.V., Giricheva N.I. Molecular structure of tryptophan: gas-phase electron diffraction and quantumchemical studies. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 3. P. 37-45. DOI: 10.6060/ivkkt.20206303.6112.

Дунаева В.В., Гиричев Г.В., Гиричева Н.И. Строение молекулы триптофана: электронографическое и кванто-во-химическое исследование. Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 3. С. 37-45. DOI: 10.6060/ivkkt.20206303.6112.

42. Pogonin A.E., Tverdova N.V., Ischenko A.A., Rumyan-tseva V.D., Koifman O.I., Giricheva N.I., Girichev G.V. Conformation analysis of copper(II) etioporphyrin-II by combined gas electron diffraction/mass-spectrometry methods and DFT calculations. J. Mol. Struct. 2015. N 1085. P. 276-285. DOI: 10.1016/j.molstruc.2014.12.089.

43. Tverdova N.V., Pogonin A.E., Ischenko A.A., Rumyantseva V.D., Koifman O.I., Giricheva N.I., Girichev G.V. Combined gas-phase electron diffraction/mass spectrometry and DFT study of the molecular structure of zinc(II) etioporphyrin-II. Struct Chem. 2015. V. 26. N 5-6. P. 1521-1530. DOI: 10.1007/s11224-015-0656-y.

44. Kurochkin I.Y., Pogonin A.E., Otlyotov A.A., Kiselev A.N., Krasnov A.V., Shlykov S.A., Girichev G.V. Molecular structure of 5,10,15,20-tetrakis(4'-fluorophenyl)porphyrin by combined gas-phase electron diffraction/mass spectrometry experiment and DFT calculations. J. Mol. Struct. 2020. N 1221. P. 128662. DOI: 10.1016/j.molstruc.2020.128662.

45. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fu-kuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision D.02. Wallingford CT: Gaussian Inc. 2009.

46. Ditchfield R., Hehre W.J., Pople J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971. V. 54. N 2. P. 724-728. DOI: 10.1063/1.1674902.

47. Hehre W.J., Ditchfield K., Pople J.A. Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972. V. 56. N 5. P. 2257-2261. DOI: 10.1063/1.1677527.

48. Hariharan P.C., Pople J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta. 1973. V. 28. N 3. P. 213-222. DOI: 10.1007/BF00533485.

49. Rassolov V.A., Pople J.A., Ratner M.A., Windus T.L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 1998. V. 109. N 4. P. 1223-1229. DOI: 10.1063/1.476673.

50. Dunning T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989. V. 90. N 2. P. 1007-1023. DOI: 10.1063/1.456153.

51. Woon D.E., Dunning T.H.J. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993. V. 98. N 2. P. 1358-1372. DOI: 10.1063/1.464303.

52. Pritchard B.P., Altarawy D., Didier B., Gibson T.D., Windus T.L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019. V. 59. N 11. P. 4814-4820. DOI: 10.1021/acs .j cim. 9b00725.

53. Feller D. The role of databases in support of computational chemistry calculations. J. Comput. Chem. 1996. V. 17. N 13. P. 15711586. DOI: 10.1002/(sici)1096-987x(199610)17:13<1571::aid-jcc9>3.0.co;2-p.

54. Schuchardt K.L., Didier B.T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J., Windus T.L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007. V. 47. N 3. P. 1045-1052. DOI: 10.1021 /ci600510j.

55. Vishnevskiy Y.V., Zhabanov Y.A. New implementation of the first-order perturbation theory for calculation of interatomic vibrational amplitudes and corrections in gas electron diffraction. J. Phys. Conf. Ser. 2015. V. 633. N 1. P. 012076. DOI: 10.1088/1742-6596/633/1/012076.

56. Andersen B., Seip H.M., Strand T.G., Stolevik R. Procedure and Computer Programs for the Structure Determination of Gaseous Molecules from Electron Diffraction Data. Acta Chem. Scand. 1969. N. 23. P. 3224-3234. DOI: 10.3891 /acta.chem. scand.23-3224.

Поступила в редакцию 07.06.2022 Принята к опубликованию 23.06.2022

Received 07.06.2022 Accepted 23.06.2022

i Надоели баннеры? Вы всегда можете отключить рекламу.