Научная статья на тему 'ANALYSIS OF THE POLYMORPHIC VARIANTS OF ADRB2 GENE ASSOCIATION WITH THE β2-AGONISTS RESPONSE IN PATIENTS WITH A RARE THERATYPE OF ASTHMA'

ANALYSIS OF THE POLYMORPHIC VARIANTS OF ADRB2 GENE ASSOCIATION WITH THE β2-AGONISTS RESPONSE IN PATIENTS WITH A RARE THERATYPE OF ASTHMA Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
47
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по фундаментальной медицине , автор научной работы — Mdinaradze D.S., Kozlov I.B., Pavlova K.S., Kofiadi I.A., Kurbacheva O.M.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ANALYSIS OF THE POLYMORPHIC VARIANTS OF ADRB2 GENE ASSOCIATION WITH THE β2-AGONISTS RESPONSE IN PATIENTS WITH A RARE THERATYPE OF ASTHMA»

ANALYSIS OF THE POLYMORPHIC VARIANTS OF ADRB2 GENE ASSOCIATION WITH THE p2-AGONISTS RESPONSE IN PATIENTS WITH A RARE THERATYPE OF ASTHMA

Mdinaradze DS, Kozlov IB, Pavlova KS ^ Kofiadi IA, Kurbacheva OM

National Research Center Institute of Immunology of the Federal Medical-Biological Agency, Moscow, Russia

Standard asthma therapy includes prescription of p2-agonists. Changes in the functional activity of p2-adrenergic receptor are associated with ADRB2 gene polymorphism and related to the low therapeutic response to p2-agonists. Identification of carriers of the clinically significant gene variants will help to avoid ineffective treatment and prescribe an alternative therapy. This study aimed to assess clinical significance of the ADRB2 gene polymorphisms (Arg16Gly and Gln27Glu) associated with the therapeutic response to p2-agonists in the group of asthma patients. We subjected a small group of adult nonsmoking patients (n = 21) with moderate asthma (III-IV stage of GINA) to clinical and genetic examination. The group included patients with the new theratype, those that poorly respond to p2-adrenergic drugs but significantly to M-cholinergic agonists. The first group included patients responding well to both salbutamol and ipratropium bromide. The second group was comprised of the patients for whom salbutamol was not effective but who tested positive for response to ipratropium bromide. The analysis of distribution of polymorphic variants of Arg16Gly and Gln27Glu revealed no significant relationship between alleles and genotypes and the efficacy of p2-agonists (0.52 for the rs1042713 variant, p = 1.0; 1.0 for the rs1042714 variant, p = 0.74, respectively). The genotype of patients that did not respond to salbutamol was either Arg16Gly or Gly16Gly. Further studies are needed that would involve a larger number of patients and an expanded list of the tested polymorphic variants.

Keywords: asthma, asthma control, gene polymorphism, p2-adrenergic receptors, ADRB2, Arg16, Gly16, bronchodilators, short-acting p2-agonists, SABA, short-acting anticholinergics, SAMA, long-acting anticholinergics, LABA

Funding: the study was supported by the Russian Foundation for Basic Research as part of the Project #19-33-90076.

Acknowledgments: we would like to thank the Biomedicine Center for High-Precision Editing and Genetic Technologies of Pirogov Russian National Research Medical University (Moscow, Russia) for access to the molecular genetics systems.

Author contribution: Mdinaradze DS, Pavlova KS, Kurbacheva OM — selection of patients, clinical laboratory and instrumental examinations, collection of biological material; Kozlov IB, Kofiadi IA — development of the new PCR test system for analysis of the ADRB2 gene polymorphic variants, genetic testing execution.

Compliance with ethical standards: the study was approved by the ethics committee of the Institute of Immunology of the Federal Medical-Biological Agency (Minutes #13 of October 16, 2017); all patients signed voluntary consent to participate in the study.

[><] Correspondence should be addressed: Ksenia S. Pavlova

Kashirskoe shosse, 24, Moscow, 115522; ksenimedical@gmail.com

Received: 25.11.2020 Accepted: 09.12.2020 Published online: 26.12.2020

DOI: 10.24075/brsmu.2020.083

АНАЛИЗ АССОЦИАЦИИ ПОЛИМОРФНЫХ ВАРИАНТОВ ГЕНА ADRB2С У ПАЦИЕНТОВ С РЕДКИМ ТЕРАТИПОМ БРОНХИАЛЬНОЙ АСТМЫ

Д. С. Мдинарадзе, И. Б. Козлов, К. С. Павлова И. А. Кофиади, О. М. Курбачева Государственный научный центр «Институт иммунологии» Федерального медико-биологического агентства, Москва, Россия

Стандартная терапия бронхиальной астмы (БА) включает назначение р2-агонистов. Изменение функциональной активности в2-адренорецептора ассоциировано с полиморфизмом гена АОЯВ2 и связано с низким терапевтическим ответом на р2-агонисты. Выявление носителей клинически значимых вариантов гена поможет избежать неэффективного лечения и послужит основанием для назначения альтернативной терапии. Целью исследования было оценить клиническую значимость ассоциированных с терапевтическим ответом на р2-агонисты полиморфных вариантов гена АОИВ2 (Агд16в!у и 0!п270!и) для группы пациентов с БА. Проведено клиническое и генетическое обследование небольшой группы взрослых некурящих пациентов (п = 21) с БА средней степени тяжести (III—IV ступень по Э11МА), в том числе пациентов нового тератипа, для которых характерны плохой ответ на в2-адренергические средства, но значимый ответ на М-холинергические средства. В первую группу были определены пациенты с подтвержденной эффективностью применения сальбутамола, которые в то же время имели хороший ответ на ипратропия бромид. Во вторую группу вошли пациенты с низкой эффективностью терапии сальбутамолом и положительным тестом с ипратропия бромидом. Анализ распределения полиморфных вариантов Агд16Э1у и 01п27в1и показал отсутствие достоверной связи аллелей и генотипов с эффективностью применения р2-агонистов (0,52 — для варианта ^1042713, р = 1,0; и 1,0 — для варианта ^1042714, р = 0,74 соответственно). При этом пациенты с отсутствием ответа на сальбутамол имели генотип либо Агд16в1у, либо Необходимы

дальнейшие исследования с большим числом пациентов и расширением перечня тестируемых полиморфных вариантов.

Ключевые слова: бронхиальная астма, контроль астмы, полиморфизм генов, в2-адренорецепторы, АОНВ2, Агд16, Э!у16, бронхолитические средства, короткодействующие р2-агонисты, КДБА, короткодействующие антихолинергические препараты, КДХП, длительно действующие антихолинергические препараты.

Финансирование: исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-33-90076.

Благодарности: благодарим Центр высокоточного редактирования и генетических технологий для биомедицины РНИМУ им. Н. И. Пирогова (Москва, Россия) за возможность использования молекулярно-генетических технологий.

Вклад авторов: Д. С. Мдинарадзе, К. С. Павлова, О. М. Курбачева — подбор пациентов, проведение клинических лабораторных и инструментальных обследований, забор биологического материала; И. Б. Козлов, И. А. Кофиади — разработка новой тест-системы для анализа полиморфных вариантов гена АОЯВ2 методом ПЦР, проведение генетического обследования.

Соблюдение этических стандартов: исследование одобрено этическим комитетом Института иммунологии Федерального медико-биологического агентства (протокол № 13 от 16 октября 2017 г.); все пациенты подписали добровольное согласие на участие в исследовании.

1X1 Для корреспонденции: Ксения Сергеевна Павлова

Каширское ш., д. 24, г. Москва, 115522; ksenlmedlcal@gmall.com

Статья получена: 25.11.2020 Статья принята к печати: 09.12.2020 Опубликована онлайн: 26.12.2020 DOI: 10.2 40757vrgmu.2020.083

ОТВЕТОМ НА R-АГОНИСТЫ

Personalized medical assistance employs current molecular genetics technologies (pharmacogenetic testing, identification of genomic and transcriptomic biomarkers) to individualize the choice of the drug [1]. In this context, asthma is of considerable interest, since both the pathology itself and the response to asthma therapy are largely shaped by the genes [2-5]. For example, a change in the functional activity of ^-adrenergic receptor (ADRB2) associated with polymorphism of its encoding gene can worsen the pharmacological response to P2-agonists, which asthma therapy mostly relies on [6, 7].

According to the Ensembl database [8], ADRB2 is a highly polymorphic gene. Its coding part contains over 500 single nucleotide substitutions and insertion-deletion polymorphisms. Of these, 276 are missense mutations causing a shift in the reading frame or appearance of a stop codon. From the point of view of response to anti-asthma therapy, the most interesting are the Argl6Gly (rs1042713), Gln27Glu (rs1042714), and Thrl64Ile (rs1800888) polymorphic variants of the gene. Their association with the efficacy of response to P2-agonists is clear. However, various studies [9-11] failed to reliably reproduce the associations established for these molecular genetic markers. In this connection, the question of the possibility of clinical application of the results of testing for ADRB2 gene polymorphisms remains open [12-14].

Some of the reasons behind inability of some researchers to confirm the clinical effect of this or that polymorphic variant of the gene are population heterogeneity, small (insufficient) sample, incomplete description of characteristics of the control groups [15, 16]. Thus, it is necessary to further study the molecular mechanisms of asthma pathogenesis with the involvement of numerous cohorts from different populations. It should be noted that there are practically no efforts pursuing the mentioned purpose in Russia.

Despite the aforesaid, clinicians already have the experience and the necessary tools to use pharmacogenetic testing in practice. It seems interesting to approach the issue of establishing the clinical significance of genetic markers from the other side. We did not aim to establish the association of a marker with a sign; on the contrary, we investigated the applicability of markers with association already established for a limited cohort of patients we have clinically described previously [17]. The confirmation of significance of pharmacogenetic markers for this group would allow actual use of genetic testing results as an additional justification of management decisions made for patients torpid to standard therapy.

Thus, this study aimed to assess the clinical significance of ADRB2 gene polymorphisms associated with therapeutic response to P2-agonists in a group of patients with a rare asthma theratype which we have described earlier.

METHODS

Patients

The inclusion criteria were: signed informed consent to participate in the study; 18 years of age and older (both genders); severe allergic asthma persisting for two years or more; the ability to adequately assess your symptoms and follow recommendations; confirmed reversibility of the bronchial obstruction (after inhalation of 400 |jg of salbutamol FEV1 growth of 12% and 200 ml or more). It was considered acceptable when the patient had reversibility of bronchial obstruction confirmed with a document dated within 12 months before signing of the informed consent.

The exclusion criteria were: acute infectious disease (until recovery), exacerbation of concomitant chronic disease

(until stabilization of the condition); any clinically significant, uncontrolled medical condition for which the patient is receiving or not receiving treatment and that would hinder adherence to the study schedule or procedures, efficacy data interpretation, or pose a threat to the safety of the patient; diagnosed malignant neoplasm; development of a serious adverse event during the course of the study.

The study involved non-smoking adult patients (n = 21) of Russian ethnicity of both sexes (8 men and 13 women), the mean age was 53 years (minimum — 47, maximum — 63); they all suffered from moderate asthma (III-IV stage of GINA) for the mean period of 13 years (minimum — 1 year, maximum — 32 years). All patients were prescribed medium to high doses of inhaled corticosteroids as the main therapy in combination with long-acting anticholinergics (LABA). Asthma symptoms were either not controlled or the control was incomplete: the patients needed symptomatic therapy daily; they scored 1520 points on the ACT scale; the 1 s forced expiration volume (FEV1) before administration of a bronchodilator reached 70.6 ± 5% of the normal values. The patients were divided into two groups. The first (n = 14) included patients who responded well to salbutamol (400 |g of inhaled salbutamol causing the growth of FEV1 of over 12% and 200 ml), with that response confirmed clinically and instrumentally, and, at the same time, exhibited good response to 50 jg of ipratropium bromide (SABA+SAMA+). The second group (n = 7) was comprised of the patients that had poor response to salbutamol (400 |g of inhaled salbutamol causing the growth of FEV1 of less than 12% and 200 ml) and tested positive for response to 50 |g of ipratropium bromide, inhaled (inhalation yielding the growth of FEV1 of over 12% and 200 ml in 30 minutes; SABA-SAMA+).

Genetic markers

The ADRB2 gene is located on the long arm of chromosome 5q32, next to a cluster of genes encoding cytokines and the glucocorticoid receptor. ADRB2 belongs to the genes of receptor molecules that control bronchial lability [18].

The Arg16Gly polymorphism (international polymorphism code: rs1042713) is a single nucleotide substitution in the coding region of the ADRB2 gene, where guanine nucleotide (G) is replaced with adenine nucleotide (A) (genetic marker G46A). This substitution changes the amino acid sequence of the ADRB2 protein at position 16: arginine is replaced by glycine (Arg16Gly). Thus, the following variants are possible: Arg16Arg, Arg16Gly, Gly16Gly. In vitro studies have shown a change in the functional activity of ADRB2 [19]. Some researchers report that the patients homozygous for these gene variants quickly lose sensitivity to short-acting P2-agonists (SABA) and need to corticosteroids prescribing [14].

The Glu27Gln polymorphism (international polymorphism code: rs1042714) is a single nucleotide substitution of cytosine for guanine (genetic marker C79G). As a result of this substitution, the amino acid sequence of the ADRB2 protein has glutamine replaced by glutamic acid (Glu27Gln) at position 27. Martinez et al have reported that Glu27 allele is associated with decreased sensitivity of asthma patients airways to methacholine [20].

DNA purification and typing

Genomic DNA was isolated from peripheral blood lymphocytes through phenol-chloroform extraction. The obtained samples were immediately used for genotyping or stored at -20 °C. The DNA concentration was determined with the help of

А • « *

Fig. 1. The results of sequencing of homozygous and heterozygous samples. The varying nucleotides are shown In gray. Peculiar to the homozygotes Is a single peak In the chromatogram at the position of the rs1042713 and 1042714 polymorphisms (A and B, respectively). Heterozygotes are characterized by a double peak at the position of the rs1042713 and 1042714 polymorphisms (C and D, respectively)

Qubit fluorimeter (Invitrogen; USA); it averaged at 50-100 pg/ml. ADRB2 gene's polymorphisms rs1042713 and rs1042714 were PCR-analyzed (real-time PCR) in the DTprime amplifier (DNA-Technology LLC; Russia) with primers ADRB2-f: 5'-AGTGCGCTCACCTGCCAGACTG-3' and ADRB2': 5'-CCAAACACGATGGCCAGGACGA-3'. The primers were synthesized on a solid support using inverted (5') phosphoramidites and photodegradable linkers. The latter were used to take primers off the solid support, the process relying on the ultraviolet radiation.

To determine the genotypes, we resorted the modified adjacent probes method [21]. This approach compares favorably with the majority of molecular genetic methods enabling determination of single nucleotide polymorphisms, including those relying on the TaqMan technology. The genotype is determined twice, independently, using two fluorescence channels, which significantly increases the reliability of genotyping. No other approach allows this level of accuracy. For amplification, we used 35 pL of reaction mixture, which contained 2.5 pL of 10 — Taq buffer (67 mM Tris-HCl (pH 8.8), 16.6 mM (NH4) 2SO4, 2.5 mM MgCl2, 0.01% Tween-20), 0.1 pg of genomic DNA, dNTP mixture (dATP, dGTP, dCTP, dTTP, 200 pM each), 1 unit of DNA polymerases (DNA-Technology LLC; Russia) and 5-10 pM of locus-specific oligonucleotide primers and probes. The amplification temperature regime was as follows: 94 °C for 10 s, 64 °C for 30 s, for 50 cycles. When the amplification was complete, the reaction mixture was cooled to 25 °C at the rate of 2 °C/s. The melting curves were obtained as follows: the temperature of the reaction mixture was increased from 25 to 75 °C in 1 °C increments, with the fluorescence level measured at each increment.

MS Excel 2013 (Microsoft; USA) enabled statistical processing of the data, which employed Fisher's exact test to check the equivalence of the observed distribution of genotype frequencies [24, 25]. The differences between groups were considered significant at p < 0.05. The following formula was used to establish frequency of the alleles:

where n is the occurrence of the allele. RESULTS

The study focused on the rs1042713 and rs1042714 polymorphisms (rs1800888 was not included because of its low occurrence [24, 25]). To accomplish the objective declared, we designed a new test system to analyze the ADRB2 gene polymorphisms using real-time PCR, and confirmed its efficacy by direct sequencing of homozygous and heterozygous samples (Fig. 1).

In the course of the study, we formed control groups from patients at the Institute of Immunology of the FMBA of Russia. These patients had asthma of different theratypes; we genotyped them and analyzed the differences in the occurrence of alleles and genotypes. Table shows the results of genotyping.

DISCUSSION

We subjected moderate BA patients (III-IV stage of GINA) with variable pharmacological response to P2-agonists to clinical and genetic examination; SABA+SAMA+ are the patients with clinically and instrumentally confirmed positive response to salbutamol, and SABA-SAMA+ are patients that responded poorly to salbutamol but well to ipratropium bromide. In the previous paper, we provided detailed clinical characteristics of these groups of patients [17]. Alleles and genotypes of patients were determined for rs1042713 (Arg16Gly) and rs1042714 (Glu27Gln), polymorphisms of the ADRB2 P2-adrenergic receptor gene.

Arg16Gly polymorphism (rs1042713)

Among the SABA+SAMA+/SABA-SAMA+ patients, those that exhibited poor response to salbutamol had the frequency of

Table. Distribution of the allele and genotype frequencies of ADRB2 gene's rs1042713 (Arg16Gly) and rs1042714 (Gln27Glu) polymorphisms In asthma patients with various theratypes (SABA+SAMA+ — patients with clinically and instrumentally confirmed positive response to salbutamol)

Patient group, n (%) Arg16Gly

Alleles Genotypes

Arg Gly p-value Arg16Arg Arg16Gly Gly16Gly p-value

SABA+SAMA+ (n = 14) 10 (36%) 18 (64%) 1 2 (14%) 6 (43%) 6 (43%) 0.52

SABA+SAMA+ (n = 7) 5 (36%) 9 (64%) 0 5 (71%) 2 (29%)

All patients (n = 21) 2 (10%) 11 (52%) 8 (38%)

Gln27Glu

Alleles Genotypes

Glu Gln p-value Glu27Glu Gln27Glu Gln27Gln p-value

SABA+SAMA+ (n = 14) 17 (61%) 9 (39%) 0.74 4 (29%) 9 (64%) 1 (7%) 1

SABA+SAMA+ (n = 7) 8 (57%) 6 (43%) 2 (29%) 4 (57%) 1 (14%)

All patients (n = 21) 6 (28%) 13 (62%) 2 (10%)

heterozygotes 1.5 greater than those that responded well to the drug. Both groups had the Arg16 and Gly16 alleles detected with the same frequency (see Table).

We have shown that the Arg16Gly polymorphism is associated with desensitization of the ADRB2 receptor. A receptor with Gly16Gly is more susceptible to desensitization by endogenous catecholamines than a receptor with Arg16Arg or Arg16Gly in its structure [26]. As described in the published papers, a variability in response to P2-agonists was revealed [27]. Our data partially agree with the data stating lack of therapeutic response to P2-agonist inhalation therapy in moderate asthma patients that have the Gly allele (Arg16Gly and Gly16Gly genotypes) dominating [28]. In our study, the genotype of all patients showing no response to salbutamol was Arg16Gly or Gly16Gly. However, we could not confirm the association when assessing the effect the Gly allele has on poor response to P2-agonists (odds ratio [OR], 1.00; 95% Cl 0.26-3.81). The most pronounced response to a single administration of a ^-adrenergic agonist was registered in the group of patients homozygous for Arg at position 16 (Arg16Arg) compared with homozygous for Gly at this position (genotype Gly16Gly) [20]. Another study also confirms that the Arg16Arg genotype is associated with mild asthma and a better response to salbutamol [29]. According to our data, 14% of patients that responded well to salbutamol in the SABA+SAMA+ group had the Arg16Arg genotype. No patient in the poor response group has this genotype.

Unfortunately, we only managed to recruit a small number of SABA-SAMA+ asthma patients, since this theratype is rare. Probably, further identification of such patients and a study on a larger sample will yield significant differences.

Glu27Gln polymorphism (rs1042714)

The distribution of genotypes and alleles for the 27th position among SABA+SAMA+/SABA-SAMA+ patients was almost identical. The two groups did not differ significantly in this regard (see Table). However, in the SABA+SAMA+ group we revealed a number of Gln27Glu heterozygotes (64%) that is relatively larger than the frequency of 45.7% previously established for the Russian population [30], but this observation requires confirmation on a larger sample.

The studies focusing on the Gln27Glu polymorphism and variability of response to P2-agonists are limited, and these

results are inconsistent, which prevents us from correlating our data with those reported in the literature. The key subject for research was the distribution of genotype frequencies with asthma of various severity in the background. It was shown that the prevailing genotype in the cohort of severe asthma patients is Glu27Glu (55 and 75%, respectively) [31, 32]. Another study reported the following distribution of genotypes for the 27th position in asthma patients: Glu27Glu — 9.2%, Gln27Glu — 27.8%, Gln27Gln — 63%; there were no differences found in patients with different severity and response to P2-agonists [29]. Thus, the data we obtained are consistent with the data reported in [29] that reports lack of relationship between the response to P2-agonists and the rs1042714 (Gln27Glu) polymorphism.

In this study, we did not evaluate other polymorphisms of the ADRB2 gene that could influence the response to P2-agonists. It is possible that other, nongenetic reasons for desensitization of the ADRB2 gene underlie the poor response to salbutamol in patients with the rare SABA-SAMA+ theratype.

CONCLUSION

The analysis of distribution of rs1042713 (Arg16Gly), ADRB2 gene polymorphisms, showed that the genotype of all patients with no response to P2-agonists (salbutamol) was either Arg16Gly or Gly16Gly, however, we could not confirm the association when assessing the effect the Gly allele has on poor response to P2-agonists, with small sample size being the possible reason therefor. We established no differences in the distribution of rs1042714 (Gln27Glu) allele and genotype frequencies when comparing groups of patients with different clinical responses to P2-agonists. A further study that would include a larger sample of asthma patients with the rare SABA-SAMA+ theratype may reveal statistically significant differences in the distribution of polymorphic rs1042713 (Arg16Gly) variants. In this study, we did not evaluate other polymorphisms of the ADRB2 gene for their possible effect on the response to P2-agonists. It is advisable to include in further research rare functional variants identified as a result of resequencing of polyethnic cohorts. In addition, other, nongenetic reasons for desensitization of the ADRB2 gene may be associated with a poor response to salbutamol in patients with the rare SABA-SAMA+ theratype.

References

1. Hicks JK, Aquilante CL, Dunnenberger HM, Gammal RS, Funk RS, Aitken SL, Bright, et al. Precision Pharmacotherapy: Integrating Pharmacogenomics into Clinical Pharmacy Practice. Journal of the American College of Clinical Pharmacy: JACCP, 2019; 2 (3): 303-13. Available from: https://doi.org/10.1002/jac5.1118.

2. Hüls A, Vanker A, Gray D, Koen N, MacIsaac JL, Lin DT, et al. Genetic susceptibility to asthma increases the vulnerability to indoor air pollution. Eur Respir J. 2020 Mar 26; 55 (3): 1901831. DOI: 10.1183/13993003.01831-2019. PMID: 31949118.

3. Kabesch M, Tost J. Recent findings in the genetics and epigenetics of asthma and allergy. Semin Immunopathol. 2020; 42: 43-60. Available from: https://doi.org/10.1007/s00281-019-00777-w.

4. Makoui MH, Imani D, Motallebnezhad M, Azimi M, Razi B. Vitamin D receptor gene polymorphism and susceptibility to asthma: Meta-analysis based on 1 7 case-control studies. Ann Allergy Asthma Immunol. 2020 Jan; 124 (1): 57-69. DOI: 10.1016/j. anai.2019.10.014. Epub 2019 Oct 22. PMID: 31654764.

5. Perez-Garcia J, Espuela-Ortiz A, Lorenzo-Diaz F, Pino-Yanes M. Pharmacogenetics of Pediatric Asthma: Current Perspectives. Pharmgenomics Pers Med. 2020; 13: 89-103. Available from: doi.org/10.2147/PGPM.S201276.

6. Hikino K, Shinobu Kobayashi S, Erika Ota E, Taisei Mushiroda T, Urayama K, Kobayashi T. A meta-analysis of the influence of ADRB2 genetic polymorphisms on albuterol (salbutamol) therapy in patients with asthma. British Journal of Clinical Pharmacology. Wiley Online Library, 2020. Available from: doi.org/10.1111/ bcp.14570.

7. Karimi L, Vijverberg S, Engelkes M, Hernandez-Pacheco N, Farzan N, Soares P. ADRB2 haplotypes and risk of exacerbations in asthmatic children and young adults treated with long-acting ß2-agonists: A meta-analysis in the PiCA consortium. Eur Respiratory Soc. 2019. DOI: 10.1183/13993003.congress-2019.PA5388.

8. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, et al. Ensembl 2020. Nucleic Acids Res. 2019. DOI: 10.1093/nar/gkz966.

9. Akparova A, Aripova A, Abishev M, Kazhiyakhmetova B, Pirmanova A, Bersimbaev R. An investigation of the association between ADRB2 gene polymorphisms and asthma in Kazakh population. Clin Respir J. 2020 Jun; 14 (6): 514-20. DOI: 10.1111/ crj.13160. Epub 2020 Feb 27. PMID: 32034992.

10. Khan I, Ul-Haq Z, Shaheen A, Zaman M, Ahmad N, Abbasi R, et al. Association of arg16gly and gln27glu, b2-adrenergic receptor gene polymorphism with asthma. A systematic review and meta-analysis of case control studies. J Pak Med Assoc. 2018 Jan; 68 (1): 90-97. PMID: 29371726.

11. Vijverberg S, Farzan N, Slob E,Anne H. Neerincx, Anke H. Maitland-van der Zee. Treatment response heterogeneity in asthma: the role of genetic variation, Expert Review of Respiratory Medicine. 2018; 12: 55-65, DOI: 10.1080/17476348.2018.1403318.

12. Bleecker ER, Postma DS, Lawrance RM, Meyers DA, Ambrose HJ, Goldman M. Effect of ADRB2 polymorphisms on response to longacting beta2-agonist therapy: a pharmacogenetic analysis of two randomised studies. Lancet. 2007 Dec 22; 370 (9605): 211825. DOI: 10.1016/S0140-6736(07)61906-0. PMID: 18156033.

13. Bleecker ER, Yancey SW, Baitinger LA, Edwards LD, Klotsman M, Anderson WH, Dorinsky PM. Salmeterol response is not affected by beta2-adrenergic receptor genotype in subjects with persistent asthma. J Allergy Clin Immunol. 2006 Oct; 118 (4): 809-16. DOI: 10.1016/j.jaci.2006.06.036. Epub 2006 Aug 28. PMID: 17030231.

14. Wechsler ME, Lehman E, Lazarus SC, Lemanske RF, Boushey HA, Deykin A, et al. ß-Adrenergic receptor polymorphisms and response to salmeterol. American journal of respiratory and critical care medicine. 2006; 173 (5): 519-26. Available from: https://doi. org/10.1164/rccm.200509-1519OC.

15. Slob EMA, Vijverberg SJH, Palmer CNA, Zazuli Z, Farzan N, Oliveri N, et al. Pharmacogenetics of inhaled long-acting beta2-agonists in asthma: a systematic review. Pediatric Allergy and Immunology. 2018; 29 (7): 705-14. Available from: https://doi.org/10.1111/ pai.12956.

16. Zhang E, Levin AM, Williams LK. How does race and ethnicity

effect the precision treatment of asthma? Expert Review of Precision Medicine and Drug Development. Taylor & Francis. 2019; 4 (6): 337-56.

17. Pavlova K, Mdinaradze D, Kurbacheva O. The response variability of the asthma patients to the standard pharmacotherapy. Russian Journal of Allergy. 2019; 16 (2): 20-24.

18. Ortega VE, Hawkins GA, Moore WC, Hastie AT, Ampleford EJ, Busse WW, et al. Effect of rare variants in ADRB2 on risk of severe exacerbations and symptom control during longacting — agonist treatment in a multiethnic asthma population: a genetic study. Lancet Respir Med. 2014 Mar; 2 (3): 204-13. DOI: 10.1016/ S2213-2600(13)70289-3. Epub 2014 Jan 27. PMID: 24621682; PMCID: PMC4053167.

19. Savelieva ON, Karunas AS, Fedorova YuYu, Khusnutdinova EK. Farmakogenetika bronhial'noj astmy. Medicinskaja genetika. 2019; 18 (4): 3-23. Dostupno po ssylke: doi.org/10.25557/2073-7998.2019.04. 3-23. Russian.

20. Asanov AY, Namazova LS, Pinelis VG, Zhurkova NV, Voznesenskaya NI. Geneticheskie osnovy bronhial'noj astmy. Pediatricheskaja farmakologija. 2008; 5 (4): 31-33. Russian.

21. Nikiforova AI, Abramov DD, Kadochnikova VV, Zobkova GU, Ogurtsova KA, Brjuhanova NO, et al. Determining the frequency of pah mutations in Moscow region residents with phenylketonuria using a combination of real-time PCR and next-generation sequencing. Bulletin of Russian State Medical University. 2017; 4: 38-44.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

22. Martinez ED, Graves PE, Baldini M, Solomon S, Erickson R. Association between genetic polymorphisms of the ß2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J Clin Invest. 1997; 10: 3184-8. DOI:10.1172/JCI119874.

23. Bateneva E, Maksimenko V, Kadochnikova V, Kofiadi I, Trofimov D, Ragimov A. Vyjavlenie mutacij v genah BRCA1 i BRCA2-perspektivnost' provedenija geneticheskogo skrininga na baze organizacij sluzhby krovi. Medicinskaja genetika. 2014; 13 (4): 30-34. Russian.

24. Ambrosius WT, Lange EM, Langefeld CD. Power for genetic association studies with random allele frequencies and genotype distributions. Am J Hum Genet. 2004 Apr; 74 (4): 683-93. DOI: 10.1086/383282. Epub 2004 Mar 12. PMID: 15024689; PMCID: PMC1181944.

25. Ryman N, Palm S, André C, Carvalho G Dahlgren T, Jorde P. Power for detecting genetic divergence: differences between statistical methods and marker loci. Molecular Ecology. Wiley Online Library. 2006; 15 (8): 2031-45. Available from: doi. org/10.1111/j.1365-294X.2006.02839.x.

26. Green SA, Turki J, Innis M, Liggett SB. Amino-terminal polymorphisms of the human beta 2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry. 1994 Aug 16; 33 (32): 9414-9. DOI: 10.1021 /bi00198a006. Erratum in: Biochemistry 1994 Nov 29; 33 (47): 14368. PMID: 7915137.

27. Turner SW, Khoo SK, Laing IA, Palmer LJ, Gibson NA, Rye P, et al. ß2-adrenoceptor Arg16Gly polymorphism, airway responsiveness, lung function and asthma in infants and children. Clin Exp Allergy. 2004; 34 (7): 1043-8. DOI: 10.1111/j.1365-2222.2004.02001.x.

28. Finkelstein Y, Bournissen FG, Hutson JR, Shannon M. Polymorphism of the ADRB2 gene and response to inhaled beta-agonists in children with asthma: a meta-analysis. J Asthma. 2009; 46 (9): 900-5. DOI:10.3109/02770900903199961.

29. Jovicic N, Babic T, Dragicevic S, Nestorovic B, Nikolic A. ADRB2 gene polymorphisms and salbutamol responsiveness in serbian children with asthma. BJMG. 2018; 21: l33-138. DOI: 10.2478/ bjmg-2018-0007.

30. Kofiadi IA, Kadochnikova VV, Abramov DD, Goncharova EV, Alekseev L P, Haitov RM. Chastota vstrechaemosti 100 klinicheski znachimyh odnonukleotidnyh polimorfizmov u zdorovyh predstavitelej russkoj populjacii. Fiziologija i patologija immunnoj sistemy. 2011; 15 (2): 3-9. Russian.

31. Fedorova YuYu, Karunas AS, Murzina RR, Muhtarova LA, Ramazanova NN, Gimalova GF. Issledovanie associacii polimorfnyh variantov gena ß2-adrenergicheskogo receptora s

bronhial'noj astmoj u russkih. Pul'monologija. Antimikrobnaja role of tiotropium in severe asthmatics and Arg16Gly in ADRB2 as

terapija. 2013; 5 (74): 116-20. Russian. a potential marker to predict response. Allergy 2009; (64): 778-

32. Park HW, Yang MS, Park CS, Kim TB, Moon HB, Min KU. Additive 83. DOI: 10.1111/j.1398-9995.2008.01876.x.

Литература

1. Hicks JK, Aquilante CL, Dunnenberger HM, Gammal RS, Funk RS, 15. Aitken SL, Bright, et al. Precision Pharmacotherapy: Integrating Pharmacogenomics into Clinical Pharmacy Practice. Journal of

the American College of Clinical Pharmacy: JACCP, 2019; 2 (3): 303-13. Available from: https://doi.org/10.1002/jac5.1118.

2. Hüls A, Vanker A, Gray D, Koen N, MacIsaac JL, Lin DT, et al. 16. Genetic susceptibility to asthma increases the vulnerability to indoor air pollution. Eur Respir J. 2020 Mar 26; 55 (3): 1901831.

DOI: 10.1183/13993003.01831-2019. PMID: 31949118.

3. Kabesch M, Tost J. Recent findings in the genetics and epigenetics 17. of asthma and allergy. Semin Immunopathol. 2020; 42: 43-60. Available from: https://doi.org/10.1007/s00281-019-00777-w.

4. Makoui MH, Imani D, Motallebnezhad M, Azimi M, Razi B. Vitamin 18. D receptor gene polymorphism and susceptibility to asthma: Meta-analysis based on 1 7 case-control studies. Ann Allergy Asthma Immunol. 2020 Jan; 124 (1): 57-69. DOI: 10.1016/j. anai.2019.10.014. Epub 2019 Oct 22. PMID: 31654764.

5. Perez-Garcia J, Espuela-Ortiz A, Lorenzo-Diaz F, Pino-Yanes M. Pharmacogenetics of Pediatric Asthma: Current Perspectives. Pharmgenomics Pers Med. 2020; 13: 89-103. Available from: 19. doi.org/10.2147/PGPM.S201276.

6. Hikino K, Shinobu Kobayashi S, Erika Ota E, Taisei Mushiroda T, Urayama K, Kobayashi T. A meta-analysis of the influence of 20. ADRB2 genetic polymorphisms on albuterol (salbutamol) therapy

in patients with asthma. British Journal of Clinical Pharmacology. Wiley Online Library, 2020. Available from: doi.org/10.1111/ 21. bcp.14570.

7. Karimi L, Vijverberg S, Engelkes M, Hernandez-Pacheco N, Farzan N, Soares P. ADRB2 haplotypes and risk of exacerbations in asthmatic children and young adults treated with long-acting ß2-agonists: A meta-analysis in the PiCA consortium. Eur Respiratory

Soc. 2019. DOI: 10.1183/13993003.congress-2019.PA5388. 22.

8. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, et al. Ensembl 2020. Nucleic Acids Res. 2019. DOI: 10.1093/nar/gkz966.

9. Akparova A, Aripova A, Abishev M, Kazhiyakhmetova B, Pirmanova A, Bersimbaev R. An investigation of the association 23. between ADRB2 gene polymorphisms and asthma in Kazakh population. Clin Respir J. 2020 Jun; 14 (6): 514-20. DOI: 10.1111/ crj.13160. Epub 2020 Feb 27. PMID: 32034992.

10. Khan I, Ul-Haq Z, Shaheen A, Zaman M, Ahmad N, Abbasi R, et

al. Association of arg16gly and gln27glu, b2-adrenergic receptor 24. gene polymorphism with asthma. A systematic review and metaanalysis of case control studies. J Pak Med Assoc. 2018 Jan; 68 (1): 90-97. PMID: 29371726.

11. Vijverberg S, Farzan N, Slob E,Anne H. Neerincx, Anke H. Maitland-

van der Zee. Treatment response heterogeneity in asthma: the 25. role of genetic variation, Expert Review of Respiratory Medicine. 2018; 12: 55-65, DOI: 10.1080/17476348.2018.1403318.

12. Bleecker ER, Postma DS, Lawrance RM, Meyers DA, Ambrose HJ, Goldman M. Effect of ADRB2 polymorphisms on response to longacting beta2-agonist therapy: a pharmacogenetic analysis of 26. two randomised studies. Lancet. 2007 Dec 22; 370 (9605): 211825. DOI: 10.1016/S0140-6736(07)61906-0. PMID: 18156033.

13. Bleecker ER, Yancey SW, Baitinger LA, Edwards LD, Klotsman M, Anderson WH, Dorinsky PM. Salmeterol response is not affected by beta2-adrenergic receptor genotype in subjects with persistent asthma. J Allergy Clin Immunol. 2006 Oct; 118 (4): 809-16. 27. DOI: 10.1016/j.jaci.2006.06.036. Epub 2006 Aug 28. PMID: 17030231.

14. Wechsler ME, Lehman E, Lazarus SC, Lemanske RF, Boushey HA, Deykin A, et al. ß-Adrenergic receptor polymorphisms and 28. response to salmeterol. American journal of respiratory and critical

care medicine. 2006; 173 (5): 519-26. Available from: https://doi. org/10.1164/rccm.200509-1519OC.

Slob EMA, Vijverberg SJH, Palmer CNA, Zazuli Z, Farzan N, Oliveri N, et al. Pharmacogenetics of inhaled long-acting beta2-agonists in asthma: a systematic review. Pediatric Allergy and Immunology. 2018; 29 (7): 705-14. Available from: https://doi.org/10.1111/ pai.12956.

Zhang E, Levin AM, Williams LK. How does race and ethnicity effect the precision treatment of asthma? Expert Review of Precision Medicine and Drug Development. Taylor & Francis. 2019; 4 (6): 337-56.

Pavlova K, Mdinaradze D, Kurbacheva O. The response variability of the asthma patients to the standard pharmacotherapy. Russian Journal of Allergy. 2019; 16 (2): 20-24.

Ortega VE, Hawkins GA, Moore WC, Hastie AT, Ampleford EJ, Busse WW, et al. Effect of rare variants in ADRB2 on risk of severe exacerbations and symptom control during longacting — agonist treatment in a multiethnic asthma population: a genetic study. Lancet Respir Med. 2014 Mar; 2 (3): 204-13. DOI: 10.1016/ S2213-2600(13)70289-3. Epub 2014 Jan 27. PMID: 24621682; PMCID: PMC4053167.

Савельева О. Н., Карунас А. С., Федорова Ю. Ю., Хуснутдинова Э. К. Фармакогенетика бронхиальной астмы. Медицинская генетика. 2019; 18 (4): 3-23. Асанов А. Ю., Намазова Л. С., Пинелис В. Г., Журкова Н. В., Вознесенская Н. И. Генетические основы бронхиальной астмы. Педиатрическая фармакология. 2008; 5 (4): 31-33. Nikiforova AI, Abramov DD, Kadochnikova VV, Zobkova GU, Ogurtsova KA, Brjuhanova NO, et al. Determining the frequency of pah mutations in Moscow region residents with phenylketonuria using a combination of real-time PCR and next-generation sequencing. Bulletin of Russian State Medical University. 2017; 4: 38-44.

Martinez ED, Graves PE, Baldini M, Solomon S, Erickson R. Association between genetic polymorphisms of the p2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J Clin Invest. 1997; 10: 3184-8. DOI:10.1172/JCI119874.

Батенева Е., Максименко В., Кадочникова В., Кофиади И., Трофимов Д., Рагимов А. Выявление мутаций в генах BRCA1 и BRCA2-перспективность проведения генетического скрининга на базе организаций службы крови. Медицинская генетика. 2014; 13 (4): 30-34.

Ambrosius WT, Lange EM, Langefeld CD. Power for genetic association studies with random allele frequencies and genotype distributions. Am J Hum Genet. 2004 Apr; 74 (4): 683-93. DOI: 10.1086/383282. Epub 2004 Mar 12. PMID: 15024689; PMCID: PMC1181944.

Ryman N, Palm S, André C, Carvalho G Dahlgren T, Jorde P. Power for detecting genetic divergence: differences between statistical methods and marker loci. Molecular Ecology. Wiley Online Library. 2006; 15 (8): 2031-45. Available from: doi. org/10.1111/j.1365-294X.2006.02839.x. Green SA, Turki J, Innis M, Liggett SB. Amino-terminal polymorphisms of the human beta 2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry. 1994 Aug 16; 33 (32): 9414-9. DOI: 10.1021/bi00198a006. Erratum in: Biochemistry 1994 Nov 29; 33 (47): 14368. PMID: 7915137.

Turner SW, Khoo SK, Laing A, Palmer LJ, Gibson NA, Rye P, et al. p2-adrenoceptor Arg16Gly polymorphism, airway responsiveness, lung function and asthma in infants and children. Clin Exp Allergy. 2004; 34 (7): 1043-8. DOI: 10.1111/j.1365-2222.2004.02001.x. Finkelstein Y, Bournissen FG, Hutson JR, Shannon M. Polymorphism of the ADRB2 gene and response to inhaled beta-agonists in children with asthma: a meta-analysis. J Asthma. 2009; 46 (9): 900-5. DOI:10.3109/02770900903199961.

29. Jovicic N, Babic T, Dragicevic S, Nestorovic B, Nikolic A. ADRB2 gene polymorphisms and salbutamol responsiveness in Serbian children with asthma. BJMG. 2018; 21: l33-138. DOI: 10.2478/ bjmg-2018-0007.

30. Кофиади И. А., Кадочникова В. В., Абрамов Д. Д., Гончарова Е. В., Алексеев Л. П., Хаитов Р. М. Частота встречаемости 100 клинически значимых однонуклеотидных полиморфизмов у здоровых представителей русской популяции. Физиология и патология иммунной системы. 2011; 15 (2): 3-9.

31. Федорова Ю. Ю., Карунас А. С., Мурзина Р. Р, Мухтарова Л. А., Рамазанова Н. Н., Гималова Г. Ф. Исследование ассоциации полиморфных вариантов гена ß2-адренергического рецептора с бронхиальной астмой у русских. Пульмонология. Антимикробная терапия. 2013; 5 (74): 116-20.

32. Park HW, Yang MS, Park CS, Kim TB, Moon HB, Min KU. Additive role of tiotropium in severe asthmatics and Arg16Gly in ADRB2 as a potential marker to predict response. Allergy 2009; (64): 77883. DOI: 10.1111/j.1398-9995.2008.01876.x.

i Надоели баннеры? Вы всегда можете отключить рекламу.