Научная статья на тему 'ANALYSIS OF THE EFFECT OF DRY HOT CLIMATE ON THE WORK OF REINFORCED CONCRETE ELEMENTS'

ANALYSIS OF THE EFFECT OF DRY HOT CLIMATE ON THE WORK OF REINFORCED CONCRETE ELEMENTS Текст научной статьи по специальности «Строительство и архитектура»

CC BY
260
43
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Climate influence / dry conditions / reinforced concrete / construction. / Влияние климата / сухие условия / железобетон / строительство.

Аннотация научной статьи по строительству и архитектуре, автор научной работы — S. Kholmirzayev, I. Akhmedov, A. Khamidov, Sh. Yusupov, I. Umarov

The article provides information on the influence of conditions on reinforced concrete elements in dry hot climates and their changes.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

В статье приведены сведения о влиянии условий на железобетонные элементы в условиях сухого жаркого климата и их изменениях.

Текст научной работы на тему «ANALYSIS OF THE EFFECT OF DRY HOT CLIMATE ON THE WORK OF REINFORCED CONCRETE ELEMENTS»

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 8 UIF-2022: 8.2 | ISSN: 2181-3337

ANALYSIS OF THE EFFECT OF DRY HOT CLIMATE ON THE WORK OF REINFORCED CONCRETE ELEMENTS Kholmirzayev Sattor

Professor of Namangan Engineering-Construction Institute Akhmedov Islombek Dasent of Namangan Engineering-Construction Institute Khamidov Adhamjon Professor of Namangan Engineering-Construction Institute

Yusupov Shavkatjon Teacher of Namangan Engineering-Construction Institute

Umarov Isroiljon Teacher of Namangan Engineering-Construction Institute

Hakimov Sodiqjon Teacher of Namangan Engineering-Construction Institute https://doi.org/10.5281/zenodo.7447676

Abstract. The article provides information on the influence of conditions on reinforced concrete elements in dry hot climates and their changes.

Keywords: Climate influence, dry conditions, reinforced concrete, construction.

ANALYSIS OF THE EFFECT OF DRY HOT CLIMATE ON THE WORK OF REINFORCED CONCRETE ELEMENTS

Аннотация. В статье приведены сведения о влиянии условий на железобетонные элементы в условиях сухого жаркого климата и их изменениях.

Ключевые слова: Влияние климата, сухие условия, железобетон, строительство.

INTRODUCTION

The work of reinforced concrete structures, their strength and deformation characteristics in a dry hot climate differ from the strength and deformation characteristics in normal temperature and humidity conditions. In conditions of dry hot climate, the strength of concrete decreases, the deflection and the width of crack opening in reinforced concrete structures increases under long-acting loads. If the effects of these factors are not taken into account, the quality and durability of reinforced concrete structures significantly decreases due to prolonged cyclic exposure to elevated temperatures and low humidity. In this regard, in the chapter CMC2.03.01.-96 [1] it is indicated that for structures unprotected from solar radiation intended for operation in the climatic subdistrict IVA, the calculation should take into account the temperature climatic effects.

RESEARCH MATERIALS AND METHODOLOGY

According to [94], when calculating the strength, deformations and crack resistance of reinforced concrete structures, it is necessary to multiply the calculated concrete resistance to compression and stretching by the coefficient of working conditions yb7= 0,85 and the modulus of elasticity of concrete by the coefficient Pb=0,85, which take into account the adverse effects of climatic conditions.

Elevated temperature and low relative humidity of the environment lead to significant temperature-shrinkage deformations and stresses. Consequently, structures that are unprotected

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 8 UIF-2022: 8.2 | ISSN: 2181-3337

from solar radiation have increased cracking of a temperature-shrinkage nature. Therefore, the study of the influence of dry hot climate on crack resistance is of great importance.

RESEARCH RESULTS

In conditions of dry hot climate, cracking in reinforced concrete structures must be determined taking into account the combined cyclic changes in temperature and humidity of the environment, the season of manufacture and loading of structures. For example, in the work [2], the crack resistance of reinforced concrete beams made of light concrete was investigated in a dry hot climate. With short-term loading of experimental beams that are not exposed to the influence of a dry hot climate, the theoretical width of the opening of normal cracks determined by the method [94] approximately corresponds to the width of the opening of cracks determined by experience. For other beams tested in conditions of dry hot climate, the theoretical width of normal cracks opening turned out to be underestimated by 10-25%. At the same time, the samples were at the time of loading for 3 and 20 months under climatic influences. The more beams were in conditions of dry hot climate, the more cracks opened, and the theoretical width of crack opening according to [1] does not take into account these factors.

Temperature and humidity deformations of precast reinforced concrete elements operating in the climate of Central Asia are periodic in nature due to changes in temperature and relative humidity of the environment both during the day and throughout the year [2]. At the same time, the maximum of deformations during the day corresponds to 17 hours, and the minimum is about 4-6 hours in the morning. The maximum values of deformations during the year correspond to the summer period, and the minimum values correspond to winter. The conducted experimental studies show that when calculating reinforced concrete structures, it is necessary to take into account the change in strength, the increase in shrinkage and creep deformations of concrete, the manufacturing season and the operating conditions of the element. Experiments have established that the limiting values of shrinkage deformations of winter-made concrete are on average 10%, and creep is 25% less than that of summer-made concrete (loading) [8]. As a result of the analysis of numerous studies, it was found that the CMC 2.03.01.-96 technique underestimates the loss of prestress from shrinkage and creep by about 12% [3].

In a dry, hot climate, there are daily and seasonal fluctuations in the temperature and humidity of the outdoor air. When heated, temperature deformation consists of two types of deformations: reversible deformation - temperature expansion of concrete and irreversible deformation - temperature shrinkage of concrete. The temperature deformation of concrete expansion mainly depends on the type of aggregate and the humidity of concrete. When the temperature rises, the cement stone expands significantly less than the filler, and this expansion "disappears" when the adsorption-bound water is removed from the gel and the temperature deformation of shrinkage develops. With the effective humidity of concrete, approximately equal to 2 ... 3%, the gel has the maximum degree of moisture and there is no free water.

When heated with humidity less effective, the temperature shrinkage of concrete occurs even with a short-term rise in temperature. The temperature shrinkage of concrete on Portland cement is mainly due to the shrinkage of cement stone. When concrete is heated, deformations of thermal expansion and shrinkage are simultaneously manifested. The temperature deformation of

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 8 UIF-2022: 8.2 | ISSN: 2181-3337

concrete Sbt will be less than the temperature expansion Stt by the amount of temperature

shrinkage Scs

Sbt =stt -Scs =(att -acs) ■ t =abt-1 ( 1 )

When heating concrete with a humidity higher than effective or dry concrete, the

temperature deformations Sbt will be equal to the deformations of the temperature expansion of

concrete Sbt=Stt, since the temperature shrinkage in wet concrete has not yet manifested itself,

but in dry concrete has already passed. The values of temperature deformations SSbt in wet concrete will be greater than dry concrete. If the concrete is moistened during cooling, then temperature shrinkage will appear again during subsequent heating.

400

300

■JD I

^ 200

ik/> LJ LLJ

100

30

0

80

3

40

XII II VI XII II VI XII II VI XII II VI XII II VI XII XII

Fig.1. Deformations of moisture shrinkage of concrete in a dry hot climate [2]

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 8 UIF-2022: 8.2 | ISSN: 2181-3337

1 - prisms with a cross section of 70x70 mm;

2 - призмы сечением 200x200 мм;

3 - temperature, °С; 4 - outdoor humidity.

The coefficient of linear temperature deformation of concrete (Xbt of natural humidity at the first heating depends on the type of aggregate made of granite 11-10-6с-1, limestone 10-10-6с-1 and expanded clay 9-10-6с-1. The main climatic factors affecting the change in the temperature of structures are the outdoor temperature and solar radiation. In their changes, two periodic fluctuations can be distinguished with annual (winter-summer) and daily (day-night) periods. Under the influence of fluctuations in air temperature and the intensity of solar radiation, the temperature field of structures changes over time and is non-stationary. The temperature distribution over the cross section of the element at any given time is nonlinear.

CONCLUSION

In practical calculations of structures, the temperature field is considered during the period of the most unfavorable impact of climatic temperatures. At the same time, to simplify the calculation, a non-stationary temperature field leads to equivalent stationary ones. It is assumed that within any cross-section, the temperature is distributed according to a linear law.

REFERENCES

1. Fathulloev A.M., Eshev S.S., Samiev L.N., Ahmedov I.G'., Jumaboyev X., Arifjanov S. Boglanmagan gruntlardan tashkil topgan uzanlarda yuvilmaslik tezliklarini aniklash [To the determination of non-effective speed in the beds containing from unconnected soils] //Journal "Irrigatsiya va melioratsiya". Tashkent. - 2019. - С. 27-32.

2. Arifjanov A., Akmalov Sh., Akhmedov I., Atakulov D. Evaluation of deformation procedure in waterbed of rivers //IOP Conference Series: Earth and Environmental Science. - IOP Publishing, 2019. - Т. 403. - №. 1. - С. 012155.

3. Arifjanov A., Samiyev L., Akhmedov I., Atakulov D. Innovative Technologies In The Assessment Of Accumulation And Erosion Processes In The Channels //Turkish Journal of Computer and Mathematics Education (TURCOMAT). - 2021. - Т. 12. - №. 4. - Pp. 110114.

4. Axmedov I.G'., Muxitdinov M., Umarov I., Ibragimova Z. Assessment of the effect of sedibles from sokhsoy river to kokand hydroelectric power station //InterConf. - 2020.

5. Arifjanov A.M., Ibragimova Z.I., Axmedov I.G'. Analysis Of Natural Field Research In The Assessment Of Processes In The Foothills The American Journal of Applied sciences. -2020. - Т. 2. - №. 09. - Pp. 293-298.

6. Арифжанов А.М., Самиев, Л.Н., Абдураимова, Д.А., Ахмедов, И.Г. Ирригационное значение речных наносов [Irrigation value of river sediments] //Актуальные проблемы гуманитарных и естественных наук. - 2013. - №. 6.

7. Ахмедов И.Т., Ортитов И.А., Умаров И.И. Дарё узанидаги деформацион жараёнлаарни бах,олашда инновацион технологиялар [Innovative technologies in the assessment of deformation processes in the riverbed] // Фаргона политехника институти илмий-техника журнали. - Фаргона. - 2021. - Т.25, №.1. - С. 139-142.

8. Axmedov I.G'., Ortiqov I.A., Umarov I.I. Effects of water flow on the erosion processes in the channel of GIS technology // https://doi.org/10.5281/zenodo.5819579

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 8 UIF-2022: 8.2 | ISSN: 2181-3337

9. Tadjiboyev S., Qurbonov X., Akhmedov I., Voxidova U., Babajanov F., Tursunova E., Xodjakulova D. Selection of Electric Motors Power for Lifting a Flat Survey in Hydraulic Structures // AIP Conference Proceedings 2432, 030114 (2022); https://doi.org/10.1063/5.0089643

10. Abduraimova D., Rakhmonov R., Akhmedov I., Xoshimov S., Eshmatova B. Efficiency of use of resource-saving technology in reducing irrigation erosion // AIP Conference Proceedings 2432, 040001 (2022); https://doi.org/10.1063/5.0089645

11. Холмирзаев С. А., Комилова Н. Х. Влияние сухого жаркого климата на ширину раскрытия трещин внецентренно-сжатых железобетонных элементов //Приволжский научный вестник. - 2015. - №. 4-1 (44).

12. Холмирзаев С. А. Температурные изменения в керамзитобетонных колоннах в условиях сухого жаркого климата //Журнал «Бетон и железобетон. - 2001. - №. 2.

13. СА Холмирзаев, АР Ахмедов. Базальт толасининг тулдирувчи сифатида цемент тошининг мустах,камлик хоссаларига таъсирини урганиш

14. Ijtimoiy fanlarda innovasiya onlayn ilmiy jurnali 2 (6), 49-55 2022

15. Хамидов А. И. и др. Использование теплоизоляционного композиционного гипса в энергоэффективном строительстве. - 2021.

16. Хамидов А. И., Нуманова С. Э., Жураев Д. П. У. Прочность бетона на основе безобжиговых щёлочных вяжущих, твердеющего в условиях сухого и жаркого климата //Символ науки. - 2016. - №. 1-2. - С. 107-109.

17. Нуманова С. Э. Хамидов Адхамжон Иномжонович //ISSN 2410-700X. - С. 107.

18. Хамидов А. И., Ахмедов И., Кузибаев Ш. Теплоизоляционные материалы на основе гипса и отходов сельского хозяйства. - 2020.

19. Хамидов А. И. Использование теплоизоляционных материалов для крыш в энергоэффективном строительстве //Научно-технический журнал ФерПИ. Спец. - №. 2018.

20. Хамидов А. И., Мухитдинов М. Б., Юсупов Ш. Р. Физико-механические свойства бетона на основе безобжиговых щелочных вяжущих, твердеющих в условиях сухого и жаркого климата. - 2020.

21. Нуриддинов А. О., Ахмедов И., Хамидов А. И. АВТОМОБИЛ ЙУЛЛАРИНИ ^УРИЛИШИДА ИННОВАЦИЯЛАР //Academic research in educational sciences. - 2022. - Т. 3. - №. TSTU Conference 1. - С. 73-77.

22. Нуманова С. Э. Хамидов Адхамжон Иномжонович //ISSN 2410-700X. - С. 107.

23. Ризаев Б. Ш. Прочность, деформативность и трещиностойкость внецентренно-сжатых железобетонных элементов в условиях сухого жаркого климата. - 1993.

24. Абдуназаров, А., Хакимов, С., Умаров, И., Мухторалиева, М., Дедаханов, Ф., & Шаропов, Б. (2022). МЕРОПРИЯТИЯ ПО ПОВЫШЕНИЮ ЭНЕРГОЭФФЕКТИВНОСТИ СОВРЕМЕННЫХ И РЕКОНСТРУИРУЕМЫХ ЗДАНИЙ. Journal of new century innovations, 18(1), 130-134.

25. Hakimov, S., Sharopov, B., Umarov, I., Muxtoraliyeva, M., Dadaxanov, F., & Abdunazarov, A. (2022). URILISH MATERIALLARI SANOATIDA INNOVATSION MATERIALLAR ISHLAB CHIQARISHNING ISTIQBOLLI TOMONLARI. Journal of new century innovations, 18(1), 149-156.

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 8 UIF-2022: 8.2 | ISSN: 2181-3337

26. Sharopov, B., Hakimov, S., Umarov, I., Muxtoraliyeva, M., Dadaxanov, F., & Abdunazarov, A. (2022). QUYOSH ENERGIYASIDAN FOYDALANIB TURAR JOY BINOLARI QURISHNING ISTIQBOLI TOMONLARI. Journal of new century innovations, 18(1), 135-141.

27. Sodiqjon, K., Begyor, S., Aleksandr, K., Farrukh, D., Mukhtasar, M., & Akbarjon, A. (2022). PROSPECTIVE ASPECTS OF USING SOLAR ENERGY. Journal of new century innovations, 18(1), 142-148.

28. Kazadayev, A., Sharopov, B., Hakimov, S., Umarov, I., Muxtoraliyeva, M., Dadaxanov, F., & Abdunazarov, A. (2022). MAMLAKATIMIZDA NEMIS TA'LIM TIZIMINI JORIY QILISHNING SAMARADORLIGI TAHLILI. Journal of new century innovations, 18(1), 124-129.

29. Mukhtasar, M., Begyor, S., Aleksandr, K., Farrukh, D., Isroil, U., Sodiqjon, K., & Akbarjon, A. (2022). ANALYSIS OF THE EFFECTIVENESS OF THE DEVELOPMENT OF THE GERMAN EDUCATION SYSTEM IN OUR COUNTRY. Journal of new century innovations, 18(1), 168-173.

30. Dadakhanov, F., Sharopov, B., Umarov, I., Mukhtoraliyeva, M., Hakimov, S., Abdunazarov, A., & Kazadayev, A. (2022). PROSPECTS OF INNOVATIVE MATERIALS PRODUCTION IN THE BUILDING MATERIALS INDUSTRY. Journal of new century innovations, 18(1), 162-167.

31. Begyor, S., Isroil, U., Aleksandr, K., Farrukh, D., Mukhtasar, M., Sodiqjon, K., & Akbarjon, A. (2022). MEASURES TO IMPROVE THE ENERGY EFFICIENCY OF MODERN AND RECONSTRUCTED BUILDINGS. Journal of new century innovations, 18(1), 157-161.

32. Kodirova F. M., Negmatov U. Algorithms For Stable Estimation Of The Extended State Vector Of Controlled Objects //Solid State Technology. - 2020. - Т. 63. - №. 6. - С. 1490314909.

33. Кодиров Д. Т., Кодирова Ф. М. Aлгоритмы совместного оценивания вектора состояния и параметров динамических систем //Universum: технические науки. - 2021. - №. 7-1 (88). - С. 66-68.

34. Кодиров Д. Т., Кодирова Ф. М. Перспективные энергоносители будущего //Вестник Науки и Творчества. - 2020. - №. 5 (53). - С. 50-53.

35. Кодирова Ф. М. Получение кондиционных углеводородов переработкой пироконденсата и подземной газификацией угля компаундированием //Вестник Науки и Творчества. - 2017. - №. 7 (19). - С. 15-18.

36. Yuvmitov A., Hakimov S. R. Influence of seismic isolation on the stress-strain state of buildings //Acta of Turin Polytechnic University in Tashkent. - 2021. - Т. 11. - №. 1. - С. 71-79.

37. Ювмитов А., Хакимов С. Исследование влияния сейсмоизоляции на динамические характеристики ЗДАНИЯ //Acta of Turin Polytechnic University in Tashkent. - 2020. - Т. 10. - №. 2. - С. 14.

38. Abdunazarov A., Soliev N. tudy of the performance of frameless construction structures under the influence of vertical stresses of ultra-submerged the lyoss soils //Студенческий вестник. - 2020. - Т. 28. - №. 126 часть 3. - С. 39.

39. Хошимов С. Н. У., Казадаев А. М. УСТАНОВКА ДООЧИСТКИ СТОЧНЫХ ВОД ОТ НЕФТЕПРОДУКТОВ //Вестник Науки и Творчества. - 2017. - №. 3 (15). - С. 147-150.

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 8 UIF-2022: 8.2 | ISSN: 2181-3337

40. Ювмитов А. С., Казадаев А. М. ИССЛЕДОВАНИЕ РАСПРОСТРАНЕННЫХ ОШИБОК, ДОПУСКАЕМЫХ В ПРОЦЕССЕ СТРОИТЕЛСТВА ЗДАНИЙ И СООРУЖЕНИЙ, МЕРЫ ПО ИХ НЕДОПУЩЕНИЮ И УЛУЧШЕНИЮ КАЧЕСТВА СТРОИТЕЛЬСТВА //Central Asian Research Journal for Interdisciplinary Studies (CARJIS). - 2022. - №. Special issue. - С. 140-145.

41. Казадаев А. М., Обидинова ГШ., РОЛЬ МАЛОГО БИЗНЕСА И ЧАСТНОГО ПРЕДПРИНИМАТЕЛЬСТВА В РЕСПУБЛИКЕ УЗБЕКИСТАН // Теория и практика современной науки. - 2017. - №. 5 (23). - С. 1005-1008.

i Надоели баннеры? Вы всегда можете отключить рекламу.