Научная статья на тему 'Аналоговые фильтры доя дифференцирующих индукционных преобразователей тока'

Аналоговые фильтры доя дифференцирующих индукционных преобразователей тока Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
124
30
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Белов А. Г., Богодайко И. А., Герасимов В. Л., Кувшинов Г. Е.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Аналоговые фильтры доя дифференцирующих индукционных преобразователей тока»

SI 1[ср{х) + S(p(x0)dx0S(x~x0)]~~ /[<?(*)]

r = hm

o) 6<p-+o dx0S(p(xQ) f H

dx—»0

Для функционала (5) эт о немедленно дает

SI у/ \

= ЯХ0). * V (14)

, , г

Подчеркнём, что эго - лишь символическая запись некоторого функцио-нального, притом предельного, соотношения, из которого никоим образом не следует равенства 61 = Лхс)<? (д"0). Произвольная вариация функционала (5), вызванная вариацией «траектории» (а-), как было показано, равна (12)

Для вычислений формулу (13) удобно переписать в привычном виде одного предела, введя малую величину размерности [ х) (х)]; тогда

" & = Нт1[(р{х) + х» )1 ~ ШХЯ

Для функционала (1) по этой формуле моментально получаем

= (16)

ЛИТЕРАТУРА

1 БоголюбовНН.,Ширков Д.В Введение в теорию квантованных полей. - М.: ГИТТЛ, 1987.-452 с

2ЛифшицЕ М.,Питаевский Л,П Статистическая физика 4.2 -М.: Наука, 1978.-447 с. 3.Федорюк М.В. Обыкновенные дифференциальные уравнения. - М.. Наука, 1985. - 447 с.

АГечъфандИМ.,ШиловГ.Е. Обобщённые функции и действия над ними. Вып.1. - М.: ГИФМЛ, 1958. -439 с. " '

А.Г.Белов , И.А. Богодайко , В. А. Герасимов , Г Е Кувшинов

АНАЛОГОВЫЕ ФИЛЬТРЫ ДЛЯ ДИФФЕРЕНЦИРУЮЩИХ ИНДУКЦИОННЫХ

ПРЕОБРАЗОВАТЕЛЕЙ ТОКА

В последнее десятилетие наблюдается развивающийся процесс замены трансформаторов тока (ТТ) другой разновидностью измерительных преобразователей тока трансформаторного типа -дифференцирующими индукционными преобразователями тока (ДИПТ). Их огромное преимущество - это в сотни и тысячи раз меньшая чем у ТТ масса. В частности, широкую известность приобрели гибкие катушки Роговского, выпускаемые фирмами LEM (США) и РЕМ (Великобритания) Эти катушки, имеющие гибкий тонкий круглый каркас, измеряют ток в проводнике, который охвачен петлёй, образованной такой катушкой. Катушки этой конструкции используются для проведения оперативных измерений токов в электрических цепях низкого напряжения. Известны и стационарно устанавливаемые в распределительных щитах среднего напряжения ДИПТ других конструкций. Такие ДИПТ, помимо указанных фирм, выпускают и другие фирмы, например Siemens и ABB Среди

этих ДИПТ имеются преобразователи с магнитным сердечником с достаточно большими воздушными зазорами в них (такие ДИПТ известны под названиями: магнитный трансформатор тока, воздушный трансформатор тока и трансреактор), а также с жёстким каркасом из изоляционного материала. Последняя разновидность ДИПТ, которую тоже называют катушками Роговского, обладает ещё одним важным преимуществом перед ТТ - это значительно меньшие ошибки измерения, обусловленные потерями в магнитном сердечнике, нелинейностью характеристики намагничивания и насыщением этой характеристики [1,2].

Выходное напряжение ДИПТ практически равно его ЭДС. которая пропорциональна

производной ^У'^ измеряемого тока /. В [3] показано, что для восстановления формы тока обычный

интегратор не пригоден, его выходной сигнал имеет постоянную составляющую, зависящую от момента начала интегрирования. Все перечисленные выше иностранные фирмы вместо интегратора используют интегрирующий фильтр, передаточная функция которого, как у апериодически о звена первого порядка [1, 2, 4]. Напомним, что передаточная функция является отношением изображения по Лапласу выходной величины к аналогичному изображению входной величины. В рассматриваемом случае входная величина - это выходное напряжение ДИПТ. а выходная величина - это выходное напряжение фильтра.

Исследования, выполненные в ДВГТУ [3], показали, что применение таких фильтров может обеспечить малую погрешность измерения синусоидальных токов в установившихся режимах, но влечёт за собой большие погрешности измерений токов переходных процессов (содержащих ' апериодические составляющие). Для снижения этих погрешностей был предложен 'интегрирующий фильтр, передаточная функция которого, в общем случае, - это отношение многочленов переменной 5 (аргумент изображения функций времени с помощью преобразования Лапласа), при этом наибольшая степень 5 в знаменателе (порядок фильтра п) на единицу превышает наибольшую степень 5 в числителе [5]. Дальнейшие исследования показали, что, при использовании аналогового фильтра, в большинстве случаев достаточно использовать передаточную функцию второго порядка [6]:

^ (5 + а) * = 1 1

где а - параметр фильтра (его полюс двойной кратности), определяемый в зависимости от условий реализации фильтра и желаемой точности измерения тока; к ~~ коэффициент передачи. Передаточная функция ДИПТ. в первом приближении, равна где М - взаимная индуктивность между катушкой ДИПТ и проводником с измеряемым током. Передаточная функция всего измерительного преобразователя тока в относительных единицах (произведение к на взаимную индуктивность М принято в качестве базовой величины этой передаточной функции) имеет вид:

а2 а2

^дипЛ^И-ФИ-Т—*М=7-(2)

+ _ +я]

где ¿-(5) - изображение до Лапласу полной погрешности измерения.

Частотные характеристики, соответствующие передаточной функции (2), получаются путём подстановки. ь=]со, где ] - мнимая единица, а - угловая частота. Из формулы (2) следует, что, во-первых, чем меньше отношение а к номинальному значению угловой частоты Шо измеряемого тока, тем меньше амплитудная, угловая и полная ошибки преобразователя тока [3, 7]. Во-вторых, получается, что чем больше частота, тем меньше погрешность измерения. В действительности же в диапазоне верхних частот погрешности измерения, начиная с некоторой граничной частоты, станут нарастать. Здесь скажется, не учитываемое в выражении (2), проявление индуктивного сопротивления ДИПТ, а оно увеличивается с ростом частоты. В том же направлении, увеличения погрешности в зоне верхних частот, действуют и частотные свойства операционного усилителя, на основе которого выполняется фильтр. Важно обеспечить малые погрешности для первых сорока высших гармоник измеряемого тока [8], а это вполне достижимо.

Проведём краткий анализ указанных выше погрешностей измерения тока с помощью ДИПТ и интегрирующего фильтра второго порядка. Это удобно выполнять, когда угловая частота переменного тока нормирована относительно угловой частоты первой гармоники о\ . Амплитудная

или токовая погрешность относится к установившемуся режиму Она определяется выражением, которое находится на основании (2):

a i &Jü)-+4a _ (ó _ а

z-л--1 & = —> (3)

(У; О).

В рабочем диапазоне угловых частот выполняется неравенство а2 II ог. Поэтому при а < ОД допустимо, раскладывая радикал в ряд Маклорена по степеням а , ограничится двумя членами ряда. При этом формула (3) принимает вид:

—2 —2 а а

(4)

со +а со

При номинальном значении угловой частоты, когда (со = ¿ц = 1), из (4) получаем Авя?р е>) = а: Фазовая погрешность равна • *

f -i ) г - л п

6{jG¡) = ar%\\-'————j ¡-arelan

2 а

Щ-. w

at

а

(ую + а)2 J ^©(¿Г+За2)

При номинальном значении угловой частоты, когда (¿> = ¿^=1), и при а <0,1 из (5) получаем 5{]ф) = 2аъ. _ ■

Полная погрешность в установившемся режиме при измерении синусоидального токат её амплитудного или действующего значения, выраженная в долях от соответствующих величин измеряемого тока, находится по выражению:

:(ja>) =

а2

(jú) + af

Получилось, что при выполнении неравенства a2 Q со2 полная погрешность практически равна токовой. При номинальном значении угловой частоты, когда (¿£ = ¿^=1) , из (6) получаем

e(ja)~a2.

Следует подчеркнуть, как доказательство в пользу применения приближённых выражений (4), (5) и (6), что приближённые выражения дают несколько завышенные оценки погрешностей измерения.

Максимальное значение полной погрешности при измерении токов переходньгх режимов значительно больше, чем в установившемся режиме. Определим полную погрешность при измерении тока, возникающего при подключении активно-индуктивной нагрузки к источнику синусоидального напряжения. Этот ток выразим в относительных единицах, причём угловая частота переменного тока нормирована относительно угловой частоты первой гармоники <х>х.

! < i(0) = sin(0 + Р) -sinр ехр{~0!а)у (7)

где в = cú\í , t - время, /? - начальная фаза измеряемого тока, а - добротность цепи (отношение индуктивного сопротивления цепи к активному при со = сох). Изображение этого тока по Лапласу:

eos Ü + J sin В «sin/? _ s s +1 a s +1 CDi Переходная характеристика может быть найдена с помощью обратного преобразования Лапласа произведения i(j) на £■(?) Графики переходных процессов полной погрешности для двух значений

начальной фазы, р — 0 и = приведены на рис. 1. Значение добротности нагрузки а ~ 25 соответствует расчётной постоянной времени высоковольтной воздушной линии [ JI ].

_7 —7 '

т +а~ от

52 ' . (6)

ч

200 400 600 ВОР 1ШО 1200 1400 Икча

а)

б)

Рис. 1. Переходные характеристики полной погрешности измерения гока включения активно-индуктивной нагрузки при а = 25 для /? - 0 (утолщённая линия) и /3 = - (тонкая линия): а) - при я =0,191, б)-при а =0,003

На основании анализа графиков переходных характеристик полной погрешности и тех выражений для максимума свободной составляющей погрешности, которые получены авторами, но здесь не приводятся, можно сделать следующие выводы:

свободная (апериодическая) составляющая погрешности заметно больше принуждённой (периодической) и тем больше, чем меньше а и больше начальное значение апериодической

составляющей измеряемого тока, то есть чем ближе ¡3 к значениям ;

время затухания апериодической составляющей погрешности быстро возрастает с уменьшением а;

фильтры, у которых параметр а больше 0.01, можно применять для измерения переходных токов только при соблюдении условия, что ¡3 близко к нулю.

Перейдём к схеме интегрирующего фильтра второго порядка Передаточная функция (ПФ) фильтра, определяемая выражением (1), преобразуется к виду >

где Т = На - постоянная времени фильтра; - 2к!а. Видно, что чем меньше а, тем больше постоянные времени, тем больше размеры и масса конденсаторов аналогового фильтра. Следовательно, проектируя фильтр, нужно находить компромисс между требованиями высокой точности и малой массы фильтра.

ДИПТ с такими фильтрами устанавливаются в изготавливаемых в ДВГТУ устройствах для испытания судовых автомагических выключателей. Эти' устройства были глубоко исследованы и выполнялись на максимальный испытательный ток от 5 кА до 20 кА [9, 10]. Для них, особенно тех, что доставляю гея на суда, для проведения испытаний без демонтажа выключателя, очень важно обеспечить малую массу составных элементов, в частности, измерительных преобразователей тока. Последние выдают информацию об испытательном токе как в преобразователи, определяющие действующее значение этого тока, так и на вход регулятора, обеспечивающего стабилизацию заданного значения этого тока.

Для этих устройств была разработана конструкция катушки ДИПТ в виде прямоугольного соленоида, высота которого равна ширине шины, из которой выполнена вторичная обмотка испытательного трансформатора [3]. Дтинные стороны соленоида (в них лежат длинные стороны витков катушки) направлены вдоль поверхности шины, на которую через изоляционную прокладку устанавливалась катушка, параллельно направлению измеряемого тока. Можно, используя рекомендации, приведённые в [3], получить заданное значение взаимной индуктивности между катушкой ДИПТ и эгой шиной, при минимальной длине обмоточного провода катушки и заданном ограничении длины большей стороны соленоида.

В последнем варианте фильтра принято, что угловая погрешность 5 ~ 0,0125 радиана (0,8 углового градуса) При ш0 = 314 с 1 из упрощенною выражения (5) получаем а ~ 60 с"1 (или а =0,191). Принято столь большое значение а , так как система автоматического управления, на основе результатов диагностики цепи испытательного тока, запускает переходный процесс при значениях (3 , близких к нулю Этому значению параметра а по упрощённым выражениям (4) и (6) соответствует одно и то же значение токовой и полной погрешности - 0,0365. Если же брать точные выражения (4) и (6), то полная по1решность (0,0352) несколько больше (на 7,3%) токовой погрешности (0,0328) Использование измерительных преобразователей со столь заметной токовой погрешностью (примерно 3,5%) в устройсшах для испытания автоматических выключателей следует признать обоснованным, гак как у автоматических выключателей проявляется значительный разброс защитных характеристик, примерно в три раза больший указанной погрешности С уменьшением параметра а эти расхождения в значениях полной и токовой погрешностей, рассчитанных по точным или упрощённым выражениям, снижаются

Практически реализовать ПФ (9) можно посредством приведенной на рис. 2 схемы Выполнив несложные преобразования, в основу которых положено основное уравнение операционного усилителя - равенство входного тока и тока цепи обратной связи, получим выражение, позволяющее связать параметры схемы с параметрами ПФ (9)'

Ц«

-2

R2

0,5£2Cs + l

Rl

(R2C) s2+2R2Cb+l

(10)

Рис. 2. Принципиальная схема интегрирующего фильтра второго порядка

Из формулы (10) видно, что она эквивалентна ПФ

(9)

Для обеспечения заданной фазовой ошибки постоянная времени фильтра Т = I/а должна быть равна 0,0167с

Примем значение емкости конденсатора С = 0,1 мкФ Тогда из выражения Т = R2 С определяется значение R2 = 167 кОм.

Предварительно примем к0 R1, определяем i?l = 314 кОм.

Окончательное значение результатам опыта из условия сохранения линейного режима операционного

1 Поскольку ко - 2R2I R1 уточняется по

усилителя при измерении максимального тока.

Полная схема вторичного измерительного преобразователя содержит ещё один операционный усилитель и электронный ключ. Эти элементы позволяют разбить весь диапазон измеряемого тока на два. В конце каждого из этих диапазонов выходной сигнал на выходе вторичного измерительного преобразователя равен максимальному значению для использованного второго операционного усилителя

На рис 3 приведена фотография измерительного преобразователя тока, изготовленного на кафедре ЭОАТ ДВГТУ в соответствии с приведёнными параметрами

Рис 3 Измерительный модуль

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Этот преобразователь рассчитан на измерение токов в диапазонах от 100 А до 1000 А и от 1 к А до 10 кА. Модуль преобразователя включает в себя катушку ДИПТ 1 и электронный блок 2 Габаритные размеры измерительного модуля - 60x25x80 мм (ширина, высота, длина)

Экспериментальное исследование преобразователя, в том числе измерение переходных токов, подтвердило справедливость приведённых выражений для оценки всех видов погрешностей измерения переходных токов

ЛИТЕРАТУРА

1. D. W. Shepard, D. W. Yuach. An overview of Rogowski coil curient sensing technology. - Grove City, Ohio. LEM DynAmp Inc, 1999. - 13 p.

2. W. F. Ray и С. R. Hewson Practical Aspects of Rogowski Current Transducer Performance. PEM_paper_PCIM 2001. - 6 p.

3 Белов А Г. Синтез измерительных преобразователей переменного тока для силовых преобразовательных устройств. Дисс... канд. техн. наук. - М.: ВНТИЦ, № 04.20.0015141, 2000.

4. Ward D.A., Exon J. La Т. Exon. Using Rogowsky coils for transient current measurements. Engineering science and education journal June, 1993. - pp. 105 - 113/

5 Пат. 2139500 RU МКИ6 G 01 D 21/00. Устройство для измерения переменной величины/ Г.Е. Кувшинов, А.Г. Белов,- 1999; БИ № 28.

6. А.Г. Белов, И.А. Богоцайко, Г.Е. Кувшинов. Повышение точности измерения токов в электроэнергетических системах / Четвертая всероссийская научно - техническая конференция «Энергетика: управление, качество и эффективность использования энергоресурсов». -Благовещенск- АмГУ, 2005. - С. 373 -376.

7. Электротехнический справочник: В 3 т. Т. 2. Электротехнические изделия и устройства/Под общ. ред. профессоров МЭИ. - М.: Энергоатомиздат, 1986. - 712 с.

8. Жежеленко И.В. Высшие гармоники в системах электроснабжения прочпредприятий. - М.: Энергоатомиздат, 1994. - 272 с

9. Морозов В. А. Разработка и исследования индуктивно-ёмкостного устройства для проверки токовой защиты: Автореферат кандидатской диссертации. - Владивосток: ДВГТУ, 1994.

10. Яблокова B.C. Устройство для проверки токовой зашиты: Дисс. канд. техн. наук. - Владивосток: ДВГТУ, 2002. - 217 с.

11. Электротехнический справочник: В 3 т. Т. 3. В 2 кн. Кн. 1. Производство и распределение электрической энергии/Под общ. ред. профессоров МЭИ. -М.: Энергоатомиздат, 1988. - 880 с.

Г.Е.Кувшинов , Ю.В. Мясоедов , А.С.Нагорных

ДИФФЕРЕНЦИАЛЬНАЯ ЗАЩИТА ШИН С ИСПОЛЬЗОВАНИЕМ УРАВНОВЕШЕННЫХ

НАПРЯЖЕНИЙ

При исправной изоляции системы (одно- или трёхфазной) шин и линий, в соответствии с первым законом Кирхгофа, сумма токов всех линейных проводов, подключённых к каждой из шин, равна нулю. Следовательно, неравенство нулю указанной суммы свидетельствует о низком сопротивлении изоляции между шинами или линейными проводами разных фаз. На этом принципе работает дифференциальная зашита шин. Она определяет указанные суммы токов всех или двух из трёх фаз и, в случае неравенства нулю любой из контролируемых защитой сумм токов, даёт сигнал на отключение линий, по которым к шинам подключены источники напряжения. Как для любой дифференциальной защиты, возможны две схемы её выполнения - с циркулирующими токами и с уравновешенными напряжениями. В России практически всегда используются защиты с циркулирующими токами. При этом для каждой фазы вторичные обмотки трансформаторов тока (ТТ), измеряющие токи всех линейных проводов, включаются параллельно друг другу и обмотке реле тока. Коэффициенты трансформации всех ТТ должны быть одинаковыми [1].

Такая защита не можег выявить начальную стадию пробоя изоляции, когда в фазных токах содержатся лишь небольшие составляющие, обусловленные коротким замыканием на участке цепи, входящем в зону защиты. (Короткое замыкание через изоляцию может быть междуфазным или коротким замыканием одной фазы на землю) Этому мешает наличие у ТТ достаточно больших полных погрешностей измерения токов. Такие погрешности, вызванные наличием вихревых токов в ферромагнитном сердечнике ТТ, а также гистерезиса и нелинейности в кривой намагничивания этого сердечника, быстро врастают с ростом измеряемого тока и сопротивления нагрузки ТТ [2]. При

i Надоели баннеры? Вы всегда можете отключить рекламу.