Анализ влияния скорости резания точек режущей кромки на стойкость спирального сверла и пути ее увеличения
д.т.н. проф. Петухов Ю.Е., Водовозов А. А.
МГТУ «СТАНКИН» 8-499-962-9 72-94-5 7, а1еха1ггех@таИ ги
Аннотация. В статье проведен анализ влияния скорости резания и толщины срезаемого слоя на стойкость точек режущей кромки. На основе проведенного анализа рассмотрена конструкция режущей части спирального сверла с более равномерным по сравнению со стандартным сверлом распределением стойкости точек режущей кромки. Получено уравнение, описывающее проекцию режущей кромки на плоскость, перпендикулярную оси сверла.
Ключевые слова: спиральное сверло, криволинейная режущая кромка, стойкость
Спиральные сверла относятся к одним из самых распространенных в промышленности режущим инструментам. Вместе с тем спиральное сверло до настоящего времени является инструментом, режущая часть которого имеет много существенных недостатков. К основным недостаткам спирального сверла можно отнести резкое изменение нагрузки вдоль режущей кромки (РК), связанное с изменением вдоль нее скорости резания и толщины срезаемого слоя обрабатываемого материала, что приводит к неравномерному распределению стойкости точек РК. В результате стойкость всего инструмента определяется участком РК, обладающим минимальной стойкостью, что снижает стойкость всего инструмента.
Целью научной работы является определение геометрии криволинейной РК сверла, обладающего более равномерным по сравнению со стандартным сверлом распределением стойкости точек РК.
Определим критерий выравнивания стойкости точек РК сверла. Согласно эмпирическим данным, на стойкость Т влияют скорость резания V, ширина Ь и толщина а срезаемого слоя [1]:
Т = с Vl/m ьх/т аУ/т (1)
где: С - коэффициент, учитывающий материалы инструмента, детали и условия резания; т =
0,1...0,35 - показатель относительной стойкости; х = 0,3...0,66 - степень ширины срезаемого слоя; у = 0,3... 0,6 - степень толщины срезаемого слоя.
Определим степень влияния изменения скорости резания V и толщины срезаемого слоя а на изменение стойкости Т в точках режущей кромки для на примере стандартного сверла с прямолинейной РК, с показателями степеней т = 0,125 и у = 0,5, радиусом сердцевины гс = 0,2 Я, где Я - радиус режущей части сверла, углом в плане ф = 590, углом наклона поперечной кромки ц0 = 550. Степень влияния изменения указанных параметров будем оценивать по отношению максимальной стойкости Ттах в центре сверла на радиусе г1 к минимальной стойкости Тт;п на периферии сверла. Радиус г1 определяется из соотношения (2):
г
Г1 =—^ - 0,24 • Я (2)
С1П I I 4 '
Скорость резания V определяется по зависимости (3):
V« • г V = ©• г = р Я (3)
где: ю - круговая скорость вращения сверла при сверлении; г - радиус точки режущей кромки; Vp - скорость резания на периферии сверла.
Согласно зависимости (3) скорость резания V в направлении от центра сверла к пери-
ферии увеличивается от 0,24Vp до Vp (рисунок 1). Отношение максимальной стойкости Ттах в центре сверла к минимальной стойкости Тт;п на периферии при изменении только скорости
резания V согласно (1), (2) и (3) составляет (4):
/р/0,24 • Vp
I V R ГНЛГШУ V
T /Т ■ = (V /0 24• V )1/m « 09-105
ma^ min V vp ' "з-"^ "р/ "з^
(4)
0,24-V,,- - -0 r,=i
Рисунок 1. График изменения скорости резания
r,=0,24R R
Рисунок 2. График изменения толщины срезаемого слоя
Толщина срезаемого слоя a определяется по формуле [2](5):
s
a = — • 2
1
1 +
.2 / 2 2ч
tg ф-(Г - Гс )
(5)
где: б - подача при сверлении.
Согласно формуле (5) толщина срезаемого слоя а в направлении от центра сверла к периферии увеличивается от 0,345б до 0,426б (рисунок 2). Отношение максимальной стойкости Ттах в центре сверла к минимальной стойкости Тт;п на периферии при изменении только толщины срезаемого слоя а согласно (1) и (5) составляет (6):
Tmax/Tmin = (0,426 • s/0,345 • s)
y/m
2,3
(6)
2
r
Полученные значения (4) и (6) показывают, что степень влияния изменения скорости резания V на изменение стойкости Т точек РК на четыре порядка больше, чем влияние изменения толщины срезаемого слоя а. Основной вклад в изменение стойкости точек РК вносит изменение скорости резания V, следовательно, на выравнивание стойкости точек РК в значительной степени будет оказывать влияние выравнивание скорости резания V точек РК.
Разложим вектор скорости резания V в точке РК в плоскости, перпендикулярной оси сверла, на две составляющие: проекцию Vn скорости резания на нормаль n и проекцию скорости резания Vx на касательную т к проекции РК на рассматриваемую плоскость (рисунок 3). В процессе резания проекция Vx соответствует перемещению участка РК вдоль самого себя, что не приводит к срезанию материала обрабатываемой детали и не приводит к уменьшению стойкости в точке РК. Следовательно, стойкость в точке РК в значительной степени определяется первой составляющей скорости резания - Vn, которой соответствует в процессе резания перемещение участка РК в направлении, перпендикулярном РК. Назовем проекцию Vn как скорость врезания в точке РК.
За критерий выравнивания стойкости вдоль РК примем постоянство скорости врезания на протяжении всей кромки:
Vn = const (7)
Определим геометрию РК спирального сверла, удовлетворяющего критерию (7). Для этого определим зависимость скорости врезания от геометрических параметров РК. На рис. 3 приведена расчетная схема определения скорости врезания. Система декартовых координат Oxy расположена в плоскости, перпендикулярной оси сверла, начало координат O лежит на оси сверла. Проекцию РК зададим в декартовых координатах функцией _f(x) и в полярных координатах функцией ц(г) зависимости полярного угла ц от радиуса r точки A проекции РК. По определению скалярного произведения векторов скорость врезания Vn в точке A(x;y) про-
екции РК определяется по формуле (8):
_ Vn = (V,n),
где: n - единичный вектор нормали n.
(8)
Рисунок 3. Схема определения скорости врезания
Вектор V равен: = f(x). V = ' V Ю ' X у (9)
Угол наклона 0 касательной т к оси Ox равен:
0 = arctg(f'(x)) (10)
Единичный вектор т касательной т определяется углом 0 и равен:
-_ÍTX W ((f'(x))2 + 1)"1/2 ^ yf'(x)• ((f'(x))2 +1)-1/2, . (11)
Вектор нормали n ортогонален вектору касательной т, следовательно, исходя из (10),
равен (11):
n =
Í-Т Л С L y
VT x J
- f'(x) • ((f'(x))2 + 1)
((f'(x))2 + 1) "1/2
-1/2Л
Окончательно на основании (8), (9) и (12) получим (13):
V о f(x) • f'(x) + x
Vn = ®--1 2
Vf'(x))2 +1 .
Декартовы координаты связаны с полярными следующими формулами:
х = r • cos ^(r)
y = r • sin ^(r)
,
fu ч sin |i(r) + r • cos |д(г) -д'(г)
I (X) —
cos ^(r) - r • sin ^(r) • д' (r) С помощью (14) выражение (13) преобразуется к виду (15):
r
Vn =(£>■-
(12)
(13)
(14)
(15)
+ г2 • (|Дг))2
Примем в (7) скорость врезания равной скорости резания в точке РК с радиусом гь Тогда на основании (9) и (15) критерий (7) примет вид (16):
(16)
Из (16) получим ( 17): (17)
2 2 2 r "r1 = + 1 -, 1 - r1 r2.r12 "r i r2
Проинтегрировав (17), получим уравнение, задающее в полярных координатах проек-
цию PK на плоскость, перпендикулярную оси сверла:
(
(
arcsin
r, W
2 2 r - r
— I + -r
(18)
Из (18) следует, что критерию (8) соответствует два решения и два вида РК. Уравнение выпуклой проекции ВС режущей кромки (рисунок 4):
^(r) = arcsin
r. U
2 2 r - r
(19)
V
r
Рисунок 4. Выпуклая проекция режущей кромки сверла
Рисунок 5. Вогнутая проекция режущей кромки сверла
^(r) = - arcsin Г r ï V r2 - r12 (20)
1 r J r1
Полученные результаты показывают, что выравнивание стойкости точек режущей кромки сверла возможно за счет изменения геометрии режущей кромки. Проекция режущей кромки на плоскость, перпендикулярную оси сверла, при этом не прямолинейная как у стандартного сверла, а криволинейная и может быть как вогнутой, так и выпуклой.
Литература
1. Бобров В.Ф. Основы теории резания металлов. - М.: Машиностроение. 1975. - 344с., ил.
2. Исаев A.B., Гречишников В.А., Маркош Ш. Применение режущих пластин с прямолинейной кромкой для обработки криволинейных участков профиля // СТИН. 2010. № 1. с. 26-30.
3. Кокарев В.И., Рыбалко А.П., Смирнов Д.С., Стариков М.А. Исследование процесса лазерного упрочнения рабочей поверхности штампов совместности с фрезерованием на станке с ЧПУ // Вестник МГТУ Станкин. 2012. Т. 1. № 1. с. 54-57.
4. Колесов Н.В., Андреевский Д.В., Григорьев C.B. Графоаналитическая модель сложных винтовых поверхностей // СТИН. 1997. № 6. с. 23.
5. Петухов Ю.Е., Домнин П.В. Способ формообразования фасонной винтовой поверхности стандартным инструментом прямого профиля // Вестник МГТУ Станкин. 2011. № 3. с. 102-106.
6. Петухов Ю.Е., Колесов Н.В. Численные модели режущего инструмента для обработки 34 Известия МГТУ «МАМИ» № 1(15), 2013, т. 2
r
1
r
сложных поверхностей // Вестник машиностроения. 2003. № 5. с. 61.
7. Петухов Ю.Е. Проектирование инструментов для обработки резанием деталей с фасонной винтовой поверхностью на стадии технологической подготовки производства. Диссертация на соискание учёной степени доктора технических наук / Москва, 2004.
8. Петухов Ю.Е., Водовозов А.А. Математическая модель криволинейной режущей кромки спирального сверла повышенной стойкости // Вестник МГТУ Станкин. 2012. № 3. с. 2832.
9. Родин П.Р. Геометрия режущей части спирального сверла. - К.: Техшка, 1971. - 136 с.
10. Романов В.Б. Повышение точности производящего профиля зуборезных долбяков.
11. Султанов Т.А., Артюхин Л.Л. Кинетопластика // СТИН. 2004. № 8. с. 31.
Исследование статистических связей механических свойств с химическим составом прутков и листов из титановых сплавов
к.т.н. доц. Давыденко Л.В. Университет машиностроения 8 (495) 223-05-23, доб. 15-51, [email protected] д.т.н. проф. Егорова Ю.Б., к.т.н. доц. Мамонов И.М., Чибисова Е.В.
МАТИ - РГТУ имени К.Э. Циолковского egorova_mati@mail. ги
Аннотация. На основе статистического анализа опубликованных данных по механическим свойствам установлены корреляционные связи предела прочности, относительного удлинения, поперечного сужения с химическим составом титановых сплавов разных классов.
Ключевые слова: титановые сплавы, механические свойства, химический состав
К настоящему времени в мире исследовано несколько сот опытных титановых сплавов и разработано более сотни промышленных композиций [1, 2]. В связи с этим целесообразно провести статистическое обобщение их состава, механических и технологических свойств. Несмотря на большое число опубликованных материалов (статей, монографий, сборников трудов конференций и т.п.), в них не всегда указан точный химический состав исследованных сплавов. В ранее проведенных нами исследованиях [3-6 и др.] в качестве исходных данных для статистического анализа был использован средний химический состав сплавов по нормативной документации и типичные механические свойства (предел прочности и относительное удлинение) отожженных прутков диаметром 8-12 мм [1, 2]. Для оценки прочностных и пластических свойств прутков в зависимости от содержания легирующих элементов и примесей были использованы понятия о структурных и прочностных эквивалентах легирующих элементов и примесей по алюминию и молибдену [1]. Совместное влияние Р-стабилизирующих элементов на структуру и прочность сплавов можно оценить с помощью структурного и прочностного эквивалентов по молибдену, а влияние а-стабилизаторов и нейтральных упрочнителей - с помощью структурного и прочностного эквивалентов по алюминию [1]:
№ = %А1 + %Би/3 + %7г/6 +10[%0 + %С + 2% N ], (1)
[Мо]™? = %Мо + %Та/4,5 + %КЪ/3,3 + «^/2 + %У/1,4 + %Сг/0,6 + %Мп/0,6 + (2) + %Бе/0,4 + %№/0,8,
[А1£ = % А1 + %8п/2 + %2г/3 + 3,3%$ + 20%0 + 33% N + 12%С, (3)
[Мо]?кв = %Мо + %У/1,7 + %Мп + %W + %Сг/0,8 + %Бе/0,7 + %Ш/3,3. (4)
В монографии [2] для расчета уровня прочности отожженных прутков (диаметром 8-12