Основания и фундаменты, Foundation engineering and
подземные сооружения underground structures
Обзорная статья УДК 625.122
DOI: 10.14529/build240402
АНАЛИЗ ПРИЧИН ДЕФОРМАЦИЙ ЗЕМЛЯНОГО ПОЛОТНА ЖЕЛЕЗНОЙ ДОРОГИ НА МНОГОЛЕТНЕМЕРЗЛЫХ ГРУНТАХ
Д.В. Жуковский1'2, [email protected]
1 ООО «Газпромтранс», Тюмень, Россия
2 Тюменский индустриальный университет, Тюмень, Россия
Аннотация. В настоящее время проблематика прогнозирования и поддержания геотехнического состояния объектов железнодорожной инфраструктуры, вызванная активностью деструктивных криогенных процессов в засоленных аллювиальных, морских и лагунно-морских отложений, является одним из ключевых аспектов повышения надежности и безопасной эксплуатации железнодорожной инфраструктуры. С целью предварительной оценки технического состояния земляного полотна и выявления проблемных мест по внешним признакам проводится постоянный мониторинг состояния земляного полотна железной дороги, а в локальных местах, наиболее подверженных деформациям и воздействию опасных геологических процессов, проводится инструментальное обследование с применением термокос и георадиолокационного оборудования. Полученные результаты инструментальных обследований применяются для оценки изменения геокриологических условий и состояния грунтов основания в зоне исследования, при этом составление численных моделей температурных режимов грунтов основания и земляного полотна по климатическим данным осуществляется в ПО «Борей 3D». По результатам исследования установлено, что наблюдается повышение температурного режима в период с 2015 по 2023 г. не только деятельного слоя объекта, но и зоны нулевых колебаний температур многолетне-мерзлых грунтов от 0,5 до 1,5 градуса. При оттаивании грунты основания сжимаются под весом земляного полотна железной дороги, тем самым формируя подтопляемые пониженные места вдоль подошвы насыпи. Вследствие подтопления откосных частей насыпи происходит водонасыщение грунтов тела земляного полотна, вызывая криогенные процессы в конструкции основания дороги. В большинстве случаев скопившаяся вода вдоль откосов дорог находится круглогодично в талом и мерзлом состоянии. Таким образом, возведение линейных железнодорожных насыпей на многолетнемерзлых грунтах Западно-Сибирской плиты является дорогостоящим экспериментом по причине того, что обоснованность сохранения грунтов основания и прилегающей территории в вечномёрзлом состоянии весьма сомнительна.
Ключевые слова: криолитозона, температурный режим многолетнемерзлых грунтов, земляное полотно, железнодорожная линия, деградация мерзлоты, деформация
Для цитирования. Жуковский Д.В. Анализ причин деформаций земляного полотна железной дороги на многолетнемерзлых грунтах // Вестник ЮУрГУ. Серия «Строительство и архитектура». 2024. Т. 24, № 4. С. 11-19. DOI: 10.14529/build240402
Review article
DOI: 10.14529/build240402
THE CAUSES OF RAILWAY ROADBED DEFORMATIONS ON PERMAFROST SOILS
D.V. Zhukovsky1'2, [email protected]
1 Gazpromtrans LLC, Tyumen, Russia
2 Tyumen Industrial University, Tyumen, Russia
Abstract. Currently, the problem of forecasting and maintaining the geotechnical condition of railway infrastructure facilities caused by the activity of destructive cryogenic processes in saline alluvial, marine and lagoon-marine sediments is one of the key aspects of improving the reliability and safe operation of railway infrastructure. Continuous monitoring of the railway roadbed state helps to preliminarily assess the technical condition of the roadbed and identify
© Жуковский Д.В., 2024.
problem areas by external signs. The paper highlights an instrumental survey using thermal chains and ground-penetrating radar equipment which is carried out in local places most susceptible to deformations and exposure to hazardous geological processes. The obtained results of instrumental surveys help to assess changes in geocryologi-cal conditions and the state of foundation soils in the study area. The compilation of numerical models of temperature regimes of foundation soils and roadbed based on climatic data is carried out in the Borey 3D software. According to the results, an increase in the temperature regime is observed in the period from 2015 to 2023 not only in the active layer of the object, but also in the zone of zero temperature fluctuations permafrost soils from 0.5 to 1.5 degrees. During thawing, the foundation soils are compressed under the weight of the railway roadbed, thereby forming flooded low-lying areas along the embankment base. Due to the flooding of the slope parts of the embankment, water saturation of the soils of the roadbed body occurs causing cryogenic processes in the structure and foundation of the road. In most cases, the accumulated water along the slopes of roads is in a thawed and frozen state all year round. Thus, the construction of linear railway embankments on permafrost soils of the West Siberian Plate is an expensive experiment, due to the fact that the feasibility of preserving the foundation soils and adjacent territory in a permafrost state is highly questionable.
Keywords: cryolithozone, temperature regime of permafrost soils, roadbed, railway line, permafrost degradation, deformation
For citation. Zhukovsky D.V. The causes of railway roadbed deformations on permafrost soils. Bulletin of the South Ural State University. Ser. Construction Engineering and Architecture. 2024;24(4):11-19. (in Russ.). DOI: 10.14529/build240402
Введение
Проблемы, связанные с проектированием, строительством, эксплуатацией земляного полотна инженерных сооружений в условиях вечной мерзлоты, несмотря на многочисленные исследования отечественных и зарубежных ученых, остаются до конца не изученными [1]. В качестве объекта исследований рассмотрим железнодорожную линию «Обская - Бованенково - Карская», строительство которой начато в 1986 году в условиях вечной мерзлоты [2], эксплуатацию линии в настоящее время осуществляет Ямальский филиал ООО «Газ-промтранс». На всем протяжении железнодорожной линии в основании насыпи земляного полотна железной дороги залегают вечномерзлые низкотемпературные грунты. При проектировании сооружения принят I принцип [3], т. е. с учетом сохранения грунтов основания в мерзлом состоянии.
Криолитологическая характеристика мёрзлых грунтов верхней 20-метровой части разреза в соответствии со схемой геокриологического районирования территории полуострова Ямал приведена в [4], сведения о геокриологическом районировании Западно-Сибирской плиты указаны в [5]. Верхняя граница многолетнемерзлых пород повсеместно прослеживается на глубинах 0,3-0,8 м. Максимальная мощность слоя сезонного протаивания на момент исследования (2015-2023 гг.) составила 4 м. Температура ММП вблизи границы нулевых амплитуд колеблется в пределах минус 5,5 °С -минус 4,9 °С. Мерзлые грунты характеризуются различным содержанием льда - цемента, ледяных включений в виде шлиров и ледяных макрострук-турных образований в виде повторно-жильных льдов и реже включений пластового льда.
Методы и материалы
С целью предварительной оценки технического состояния земляного полотна и выявления
проблемных мест по внешним признакам специалистами ООО «Газпромтранс» проводится постоянный мониторинг состояния земляного полотна железной дороги. Рассмотрим результаты визуального обследования участка ж.д. линии ПК 14501+00 - 14971+00. В локальных местах этого участка, наиболее подверженных деформациям и воздействию опасных геологических процессов, проводилось инструментальное обследование. При обследовании фиксировались изменения геометрии основной площадки, тела и основания насыпи. В результате обследования установлены типовые, визуально определяемые деформационные процессы (рис. 1) для участка ПК 14651+70: это сползание грунта (солифлюкция), поперечные трещины откосной части, обводнение прилегающей территории. Возникновение указанных опасных геологических процессов оказывает значительное влияние на безопасность эксплуатируемых сооружений, что необходимо учитывать для своевременной разработки компенсирующих мероприятий [6]. Для организации инструментальных наблюдений за изменением температурного режима рассмотрены ранее выполненные исследования в этой области [7, 8], которые в отличие от рассматриваемого объекта были направлены на оценку состояния насыпей автомобильных дорог в условиях многолетней мерзлоты [9], а также для оценки возможности использования теплоизоляционных материалов для снижения влияния земляного сооружения на основание [10, 11]. На исследуемом объекте для оценки температуры грунтов основания земляного полотна железной дороги выполнены инструментальные исследования по заложенным (перпендикулярно оси ж.д. пути) термометрическим скважинам глубиной 10 м. Методика заложения термоскважин и основные принципы контроля температуры грунтов схожи с теми, которые используются для ре-
шения аналогичных задач для автомобильных дорог [12]. В нашем случае три скважины находятся в теле насыпи земляного полотна: две - у подошвы и одна - в зоне бровки основной площадки. Четвертая скважина расположена на расстоянии около 50 м от насыпи (рис. 2). Термокаротажные наблюдения на участке (ПК 14501+00 -14971+00) проводились на 15 поперечных профилях, на всю глубину термоскважин согласно ГОСТ 25358-2020 «Грунты. Метод полевого определения температур».
Полученные результаты использованы для оценки изменения в динамике геокриологических
условий и состояния грунтов основания в зоне исследования, так как известно [1, 13], что обводнение участков оказывает значительное влияние на температурный режим мерзлых грунтов. Для расчета температурного поля существуют различные программные комплексы, например, Frost 3D [14] или Борей 3D [15].
Численные модели температурных режимов грунтов основания и земляного полотна построены в ПО «Борей 3D». Прогнозное моделирование с учетом требований СП 25.13330.2020 (п. 4.1, 4.4, 6.3.1, 7.1.1), РСН 31-83 (п. 1.6, 2.35, 3.153.19, 4.16-4.19.), РСН 67-87 и анализ температур-
Рис. 2. ПК 14651+70. Топографический план с расположением термоскважин ТС1-ТС4
ного поля грунтов выполнены до октября 2027 года.
Пример температурного поля грунтов основания линии ПК 14651+70 (Тип III насыпи, конструкция насыпи высотой более 6,0 м), предоставлены на рис. 3-7.
Анализ температурных режимов грунтов основания путем сопоставления температур и определения динамики роста показывает следующие результаты.
В 2015 году локальное мёрзлое ядро в центральной части насыпи (1) отсутствует (рис. 8). Ореол протаивания в границах полосы отвода
Рис. 3. Температурный разрез по оси термоскважин ТС1-ТС4 на ПК 14651+70 в октябре 2015 г.
Температурное поле в октябре 2016 года
Состояние грунтов в октябре 2016 года
Рис. 4. Температурный разрез по оси термоскважин ТС1-ТС4 на ПК 14651+70 в октябре 2016 г.
Рис. 5. Температурный разрез по оси термоскважин ТС1-ТС4 на ПК 14651+70 в октябре 2017 г.
Рис. 6. Температурный разрез по оси термоскважин ТС-1-ТС-4 на ПК 14651+70 в октябре 2022 г.
в период максимальной оттайки (2) достигает в среднем 2 метров (см. рис. 8).
В 2022 году локальное мёрзлое ядро в центральной части насыпи - сформировано (1); ореол протаивания в период максимальной оттайки (2) достигает в среднем 3 метров (см. рис. 8).
Прогнозное моделирование в горизонте ближайших пяти лет (до 2027 года) показывает следующее (см. рис. 8):
• температурный режим и размер локального мёрзлого ядра в центральной части насыпи (1) уменьшился;
• ореол протаивания в период максимальной оттайки (2) достигает в среднем до 4 метров.
Результаты моделирования сравнивались с результатом инструментального замера температуры грунтов основания. В период с 2022 года по 2023 год температура в ТС-1 повышается от 0,09 до 0,31 °С
Рис. 7. Прогнозирование температурного поля и состояния грунтов основания на октябрь 2027 г.
Рис. 8. Динамика развития максимальной оттайки в период 2015-2027 гг: 1 - локальное мерзлое ядро; 2 - ореол протаивания в период максимальной оттайки
на каждом метре глубины скважины и на 0,2 °С повышение средней температуры (с 3,0 до 9,0 м -без учета деятельного слоя). Максимальный рост температуры расположен на глубине 6 метров.
В период с 2015 года по 2023 год температура в ТС-1 повышается от 0,01 до 0,56 °С на каждом метре глубины скважины и на 0,4 °С повышение средней температуры (с 3,0 до 9,0 м - без учета деятельного слоя). Максимальный рост температуры расположен на глубине 9 метров.
Глубина нулевых годовых колебаний температуры в 2023 году расположена ниже забоя десятиметровой скважины.
В период с 2022 года по 2023 год температура в ТС-2 показывает отрицательную динамику. Происходит снижение температуры от 0,01 до 0,46 °С на каждом метре глубины скважины.
В период с 2015 года по 2023 год температура в ТС-2 повышается от 0,17 до 0,37 °С на каждом метре глубины скважины и на 0,3 °С повышение средней температуры (с 3,0 до 9,0 м - без учета деятельного слоя). Максимальный рост температуры расположен на глубине 8 метров.
Глубина нулевых годовых колебаний температуры в 2023 году составляет 6 метров.
В период с 2022 года по 2023 год температура в ТС-3 показывает отрицательную динамику. Происходит снижение температуры от 0,04 до 0,7 °С на каждом метре глубины скважины.
В период с 2015 года по 2023 год температура в ТС-3 повышается от 0,15 до 0,36 °С на каждом метре глубины скважины и на 0,3 °С - повышение средней температуры (с 3,0 до 9,0 м - без учета деятельного слоя). Максимальный рост температуры расположен на глубине 6 метров.
Глубина нулевых годовых колебаний температуры в 2023 году составляет 8 метров.
В период с 2022 года по 2023 год температура в ТС-4 показывает отрицательную динамику. Происходит снижение температуры от 0,01 до 0,81 °С на каждом метре глубины скважины.
В период с 2015 года по 2023 год температура в ТС-4 повышается от 0,01 до 0,98 °С на каждом метре глубины скважины и на 0,01 °С - повышение средней температуры (с 3,0 до 9,0 м - без учета деятельного слоя). Максимальный рост температуры расположен на глубине 2 метров.
Глубина нулевых годовых колебаний температуры в 2023 году составляет 9 метров.
Таким образом установлено формирование мерзлого ядра в основании насыпи земляного полотна, что является основной причиной соли-флюкции земляного полотна. Кроме того, повышение температуры грунтов у подошвы насыпи свидетельствуют об образовании термокарста и таликовых зон, которые, в свою очередь, предрасположены к снегонакоплению с последующим обводнением и заболочиванием прилегающей территории.
Выводы
Инструментальными исследованиями установлено повышение температурного режима в период с 2015 по 2023 гг. не только деятельного слоя объекта, но и зоны нулевых колебаний температур многолетнемерзлых грунтов от 0,5 до 1,5 градуса.
Согласно трудам [5, 16], многослойное снегонакопление является достаточно хорошим тепло-изолятором. Изменение высоты и плотности устойчивого снежного покрова относительно естественных значений запускает процессы изменений геокриологических условий.
В связи с масштабными изменениями климатических условий региона и накопленным опытом эксплуатации линейных сооружений на многолетне-мерзлых грунтах для обеспечения надежной работы оснований и земляного полотна помимо температурных прогнозов на проблемных участках необходимо выполнять оценку напряженно-деформационного состояния грунтов геотехнической системы «основание - сооружение».
Список литературы
1. Горелик Я.Б., Земеров И.В. Влияние поверхностного обводнения на температурный режим мерзлых грунтов // Вестн. ТГУ. Физ.-мат. моделирование. Нефть, газ, энергетика. 2020. Т. 6, № 1 (21). С. 10-40.
2. Алексеев, В.В. История Ямала. В 2 т. Екатеринбург: Баско, 2010.
3. Черкасов А.М. Обоснование конструктивно-технологических решений по земляному полотну железных дорог на многолетнемерзлых основаниях: дис. ... канд. техн. наук. М.: МИИТ, 2009.
4. Геокриология СССР. Западная Сибирь / В.Т. Трофимов, Ю.К. Васильчук, В.В. Баулин [и др.]; под ред. Э.Д. Ершова. М.: Недра, 1989. 453 с.
5. Геокриологическое районирование Западно-Сибирской плиты / В.Т. Трофимов, Ю.Б. Баду, Ю.К. Васильчук и др. М.: Наука, 1987. 219 с.
6. Войтенко А.С., Гришакина Е.А., Исаев В.С. и др. Значение изменения геокриологических условий для эксплуатации инфраструктуры и охраны окружающей среды (на примере участка детальных исследований в нижнем течении реки Воркуты) // Арктика: экология и экономика. 2017. № 2(26). С. 53-61.
7. Haghi N.T., Hashemian L., Bayat A. Effects of seasonal variation on the load-bearing capacity of pavements composed of insulation layers. Transportation Research Record. 2016. No. 2579. P. 87-95.
8. Hashemyan L., Bayat A. Three-year monitoring of the automated test road IRRF // In: Aguiar-Moya J., Vargas-Nordkbeck A., Leyva-Villacorta F., LoriaSalazar L. (eds.) The role of accelerated pavement testing in ensuring pavement stability. Springer, Cham. 2016. P. 829-843.
9. Xu J., Niu F.-J., Niu Y.-H., Lin Z.-J., Xu Z.-Y. The design parameters of roadbed with insulation in seasonal frozen ground. Journal of Civil, Architectural and Environmental Engineering. No. 31(3). P. 83 -89.
10. Edgar T., Potter C., Mathis R. Frost Heave Mitigation Using Polymer Injection and Frost Depth Prediction. Proceedings of the International Conference on Cold Regions Engineering. 2015. P. 416-427.
11. Liu G., Zhang B. Experimental study on the thermal conductivity of light soil mixed with EPS particles. Fifth Asian Regional Conference on Geosynthetics: Geosynthetics for Sustainable Adaptation to Climate Change. 2012. P. 463-466.
12. Исследование температурного режима земляного полотна автомобильной дороги Петропавловск-Камчатский - Мильково / В.В. Лопашук, А.В. Лопашук, В.Н. Ермолин, А.Е. Казаринов // Вестник Евразийской науки. 2021, № 2.
13. Макаров А.С. Влияние поверхностных длительно стоящих вод на температурный режим грунтов земляного полотна и многолетнемерзлого основания: дис. ... канд. техн. наук. Тюмень, 2023.
14. Ковенькин Д.А., Насников Д.Н., Чернецкая И.С. Применение программного комплекса Frost 3D Universal для проведения прогнозных расчетов земляного полотна // Современные технологии. Системный анализ. Моделирование. 2022. № 3 (75). С. 80-90.
15. Королев В.А. Теоретическое грунтоведение и его задачи // Сергеевские чтения. Фундаментальные и прикладные вопросы современного грунтоведения. Вып. 23. Материалы годичной сессии Научного совета РАН по проблемам геоэкологии, инженерной геологии и гидрогеологии (31 марта - 1 апреля 2022 г.). М.: Изд-во «ГеоИнфо», 2022. С. 21-26.
16. Жданова С.М. Инженерное мерзлотоведение: конспект лекций. Хабаровск: Изд-во ДВГУПС, 2004.
С. 3.
References
1. Gorelik Ya.B., Zemerov I.V. [Influence of surface flooding on the temperature regime of frozen soils]. Vestnik TGU. Fiz.-mat. modelirovanie. Neft', gaz, energetika [Bulletin of the Tyumen State University. Series: Physical and Mathematical Modeling. Oil, Gas, Energy], 2020, vol. 6, no. 1 (21), pp. 10-40. (in Russ.)
2. Alekseev V.V. Istoriya Yamala [History of Yamal]. In 2 volumes. Ekaterinburg, Basko, 2010. (in Russ.)
3. Cherkasov A.M. Obosnovanie konstruktivno-tekhnologicheskikh resheniy po zemlyanomu polotnu zhelez-nykh dorog na mnogoletnemerzlykh osnovaniyakh: diss. ... kand. tekhn. nauk [Justification of design and technological solutions for the roadbed of railways on permafrost bases. Cand. sci. diss.]. Moscow; MIIT, 2009. (in Russ.)
4. Trofimov V.T., Vasilchuk Yu.K., Baulin V.V. et al. Geokriologiya SSSR. Zapadnaya Sibir [Geocryology of the USSR. Western Siberia]. Ed. by E.D. Ershov. Moscow, Nedra Publ., 1989. 453 p. (in Russ.)
5. Trofimov V.T., Badu Yu.B., Vasil'chuk Yu.K., Kashperyuk P.I., Kudryashov V.G., Firsov N.G. Geokri-ologicheskoe rayonirovanie Zapadnosibirskoy plity [Geocryological zoning of the West Siberian Plate]. Moscow, Nauka Publ., 1987. 219 p. (in Russ.)
6. Voitenko A.S., Grishakina E.A., Isaev V.S., Koshurnikov A.V., Pogorelov A.A., Podchasov O.V., Ser-geev D.O. [The importance of changes in geocryological conditions for the operation of infrastructure and environmental protection (based on the example of a detailed study site in the lower reaches of the Vorkuta River)]. Arktika: ekologiya i ekonomika [Arctic: Ecology and Economics], 2017, no. 2 (26), pp. 53-61. (in Russ.)
7. Haghi N.T., Hashemian L., Bayat A. Effects of seasonal variation on the load-bearing capacity of pavements composed of insulation layers. Transportation Research Record, 2016, no. 2579, pp. 87-95.
8. Hashemyan L., Bayat A. Three-year monitoring of the automated test road IRRF. In: Aguiar-Moya J., Var-gas-Nordkbeck A., Leyva-Villacorta F., LoriaSalazar L. (eds.) The role of accelerated pavement testing in ensuring pavement stability. Springer, Cham, 2016, pp. 829-843.
9. Xu J., Niu F.-J., Niu Y.-H., Lin Z.-J., Xu Z.-Y. The design parameters of roadbed with insulation in seasonal frozen ground. Journal of Civil, Architectural and Environmental Engineering, no. 31(3), pp. 83-89.
10. Edgar T., Potter C., Mathis R. Frost Heave Mitigation Using Polymer Injection and Frost Depth Prediction. Proceedings of the International Conference on Cold Regions Engineering, 2015, pp. 416-427.
11. Liu G., Zhang B. Experimental study on the thermal conductivity of light soil mixed with EPS particles. Fifth Asian Regional Conference on Geosynthetics: Geosynthetics for Sustainable Adaptation to Climate Change, 2012, pp. 463-466.
12. Lopashuk V.V., Lopashuk A.V., Ermoolin V.N., Kazarinov A.E. Study of the temperature regime of the roadbed of the Petropavlovsk-Kamchatsky-Milkovo highway [Issledovanie temperaturnogo rezhima zemlyanogo polotna avtomobil'noy dorogi Petropavlovsk-Kamchatskiy - Mil'kovo]. Vestnik Evraziyskoy nauki [The Eurasian Scientific Journal], 2021, no. 2(13). (in Russ.)
13. Makarov A.S. Vliyaniepoverkhnostnykh dlitel'no stoyashchikh vodna temperaturnyy rezhim gruntov zem-lyanogo polotna i mnogoletnemerzlogo osnovaniya: diss. ... kand. tekhn. nauk [Influence of long-standing surface waters on the temperature regime of subgrade soils and permafrost base. Cand. sci. diss.]. Tyumen; 2023. (in Russ.)
14. Kovenkin D.A., Nasnikov D.N., Chernetskaya I.S. [Application of the Frost 3D Universal software package for predictive calculations of the subgrade]. Sovremennye tekhnologii. Sistemnyy analiz. Modelirovanie [Modern Technologies. Systems Analysis. Modeling], 2022, no. 3 (75), pp. 80-90. (in Russ.)
15. Korolev V.A. [Theoretical soil science and its tasks]. Sergeevskie chteniya. Fundamental'nye i prikladnye voprosy sovremennogo gruntovedeniya. Vypusk 23. Materialy godichnoy sessii Nauchnogo soveta RAN po prob-lemam geoekologii, inzhenernoy geologii i gidrogeologii (31 marta -1 aprelya 2022 goda) [Sergeev readings. Fundamental and Applied Issues of Modern Soil Science. Issue 23. Proceedings of the Annual Session of the Scientific Council of the Russian Academy of Sciences on the Problems of Geoecology, Engineering Geology and Hydroge-ology (March 31 - April 1, 2022)]. Moscow, GeoInfo Publishing House, 2022, pp. 21-26. (in Russ.)
16. Zhdanova S.M. Inzhenernoe merzlotovedenie: konspekt lektsiy [Permafrost engineering: lecture notes]. Khabarovsk, DVGUPS Publ., 2004. 3 p. (in Russ.)
Информация об авторе:
Жуковский Денис Владимирович, начальник отдела строительного контроля и геотехнического мониторинга Ямальского филиала ООО «Газпромтранс», соискатель ученой степени кандидата наук без освоения программы подготовки научных и научно-педагогических кадров, Тюменский индустриальный университет, Тюмень, Россия; [email protected]
Information about the author:
Denis V. Zhukovsky, Head of the Department of Construction Control and Geotechnical Monitoring of the Yamal Branch of Gazpromtrans LLC, Tyumen, Russia; a candidate for the degree of Candidate of Sciences without mastering the program of training scientific and scientific-pedagogical personnel in postgraduate studies in a scientific specialty 2.1.2. Foundations and foundations, underground structures, Tyumen Industrial University, Tyumen, Russia; [email protected].
Статья поступила в редакцию 26.09.2024, принята к публикации 04.10.2024.
The article was submitted 26.09.2024, approved after reviewing 04.10.2024.